| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- # -*- coding: utf-8 -*-
- import numpy as np
- import cv2
- import math
- def getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text):
- # prepare data
- linkmap = linkmap.copy()
- textmap = textmap.copy()
- img_h, img_w = textmap.shape
- """ labeling method """
- ret, text_score = cv2.threshold(textmap, low_text, 1, 0)
- ret, link_score = cv2.threshold(linkmap, link_threshold, 1, 0)
- text_score_comb = np.clip(text_score + link_score, 0, 1)
- nLabels, labels, stats, centroids = cv2.connectedComponentsWithStats(text_score_comb.astype(np.uint8), connectivity=4)
- det = []
- mapper = []
- for k in range(1,nLabels):
- # size filtering
- size = stats[k, cv2.CC_STAT_AREA]
- if size < 10: continue
- # thresholding
- if np.max(textmap[labels==k]) < text_threshold: continue
- # make segmentation map
- segmap = np.zeros(textmap.shape, dtype=np.uint8)
- segmap[labels==k] = 255
- segmap[np.logical_and(link_score==1, text_score==0)] = 0 # remove link area
- x, y = stats[k, cv2.CC_STAT_LEFT], stats[k, cv2.CC_STAT_TOP]
- w, h = stats[k, cv2.CC_STAT_WIDTH], stats[k, cv2.CC_STAT_HEIGHT]
- niter = int(math.sqrt(size * min(w, h) / (w * h)) * 2)
- sx, ex, sy, ey = x - niter, x + w + niter + 1, y - niter, y + h + niter + 1
- # boundary check
- if sx < 0 : sx = 0
- if sy < 0 : sy = 0
- if ex >= img_w: ex = img_w
- if ey >= img_h: ey = img_h
- kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1 + niter, 1 + niter))
- segmap[sy:ey, sx:ex] = cv2.dilate(segmap[sy:ey, sx:ex], kernel)
- # make box
- np_contours = np.roll(np.array(np.where(segmap!=0)),1,axis=0).transpose().reshape(-1,2)
- rectangle = cv2.minAreaRect(np_contours)
- box = cv2.boxPoints(rectangle)
- # align diamond-shape
- w, h = np.linalg.norm(box[0] - box[1]), np.linalg.norm(box[1] - box[2])
- box_ratio = max(w, h) / (min(w, h) + 1e-5)
- if abs(1 - box_ratio) <= 0.1:
- l, r = min(np_contours[:,0]), max(np_contours[:,0])
- t, b = min(np_contours[:,1]), max(np_contours[:,1])
- box = np.array([[l, t], [r, t], [r, b], [l, b]], dtype=np.float32)
- # make clock-wise order
- startidx = box.sum(axis=1).argmin()
- box = np.roll(box, 4-startidx, 0)
- box = np.array(box)
- det.append(box)
- mapper.append(k)
- return det, labels, mapper
- def getDetBoxes(textmap, linkmap, text_threshold, link_threshold, low_text):
- boxes, labels, mapper = getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text)
- return boxes
- def adjustResultCoordinates(polys, ratio_w, ratio_h, ratio_net = 2):
- if len(polys) > 0:
- polys = np.array(polys)
- for k in range(len(polys)):
- if polys[k] is not None:
- polys[k] *= (ratio_w * ratio_net, ratio_h * ratio_net)
- return polys
|