| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 | """  Copyright (c) 2019-present NAVER Corp.MIT License"""# -*- coding: utf-8 -*-import torchimport torch.nn as nnimport torch.nn.functional as Ffrom basenet.vgg16_bn import vgg16_bn, init_weightsclass double_conv(nn.Module):    def __init__(self, in_ch, mid_ch, out_ch):        super(double_conv, self).__init__()        self.conv = nn.Sequential(            nn.Conv2d(in_ch + mid_ch, mid_ch, kernel_size=1),            nn.BatchNorm2d(mid_ch),            nn.ReLU(inplace=True),            nn.Conv2d(mid_ch, out_ch, kernel_size=3, padding=1),            nn.BatchNorm2d(out_ch),            nn.ReLU(inplace=True)        )    def forward(self, x):        x = self.conv(x)        return xclass CRAFT(nn.Module):    def __init__(self, pretrained=False, freeze=False):        super(CRAFT, self).__init__()        """ Base network """        self.basenet = vgg16_bn(pretrained, freeze)        """ U network """        self.upconv1 = double_conv(1024, 512, 256)        self.upconv2 = double_conv(512, 256, 128)        self.upconv3 = double_conv(256, 128, 64)        self.upconv4 = double_conv(128, 64, 32)        num_class = 2        self.conv_cls = nn.Sequential(            nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),            nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),            nn.Conv2d(32, 16, kernel_size=3, padding=1), nn.ReLU(inplace=True),            nn.Conv2d(16, 16, kernel_size=1), nn.ReLU(inplace=True),            nn.Conv2d(16, num_class, kernel_size=1),        )        init_weights(self.upconv1.modules())        init_weights(self.upconv2.modules())        init_weights(self.upconv3.modules())        init_weights(self.upconv4.modules())        init_weights(self.conv_cls.modules())            def forward(self, x):        """ Base network """        sources = self.basenet(x)        """ U network """        y = torch.cat([sources[0], sources[1]], dim=1)        y = self.upconv1(y)        y = F.interpolate(y, size=sources[2].size()[2:], mode='bilinear', align_corners=False)        y = torch.cat([y, sources[2]], dim=1)        y = self.upconv2(y)        y = F.interpolate(y, size=sources[3].size()[2:], mode='bilinear', align_corners=False)        y = torch.cat([y, sources[3]], dim=1)        y = self.upconv3(y)        y = F.interpolate(y, size=sources[4].size()[2:], mode='bilinear', align_corners=False)        y = torch.cat([y, sources[4]], dim=1)        feature = self.upconv4(y)        y = self.conv_cls(feature)        return y.permute(0,2,3,1), featureif __name__ == '__main__':    model = CRAFT(pretrained=True).cuda()    output, _ = model(torch.randn(1, 3, 768, 768).cuda())    print(output.shape)
 |