| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 | """  Copyright (c) 2019-present NAVER Corp.MIT License"""# -*- coding: utf-8 -*-import sysimport osimport timeimport argparseimport torchimport torch.nn as nnimport torch.backends.cudnn as cudnnfrom torch.autograd import Variablefrom PIL import Imageimport cv2from skimage import ioimport numpy as npimport craft_utilsimport imgprocimport file_utilsimport jsonimport zipfilefrom craft import CRAFTfrom collections import OrderedDictdef copyStateDict(state_dict):    if list(state_dict.keys())[0].startswith("module"):        start_idx = 1    else:        start_idx = 0    new_state_dict = OrderedDict()    for k, v in state_dict.items():        name = ".".join(k.split(".")[start_idx:])        new_state_dict[name] = v    return new_state_dictdef str2bool(v):    return v.lower() in ("yes", "y", "true", "t", "1")parser = argparse.ArgumentParser(description='CRAFT Text Detection')parser.add_argument('--trained_model', default='weights/craft_mlt_25k.pth', type=str, help='pretrained model')parser.add_argument('--text_threshold', default=0.7, type=float, help='text confidence threshold')parser.add_argument('--low_text', default=0.4, type=float, help='text low-bound score')parser.add_argument('--link_threshold', default=0.4, type=float, help='link confidence threshold')parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda for inference')parser.add_argument('--canvas_size', default=1280, type=int, help='image size for inference')parser.add_argument('--mag_ratio', default=1.5, type=float, help='image magnification ratio')parser.add_argument('--poly', default=False, action='store_true', help='enable polygon type')parser.add_argument('--show_time', default=False, action='store_true', help='show processing time')parser.add_argument('--test_folder', default='/data/', type=str, help='folder path to input images')parser.add_argument('--refine', default=False, action='store_true', help='enable link refiner')parser.add_argument('--refiner_model', default='weights/craft_refiner_CTW1500.pth', type=str, help='pretrained refiner model')args = parser.parse_args()""" For test images in a folder """image_list, _, _ = file_utils.get_files(args.test_folder)result_folder = './result/'if not os.path.isdir(result_folder):    os.mkdir(result_folder)def test_net(net, image, text_threshold, link_threshold, low_text, cuda, poly, refine_net=None):    t0 = time.time()    # resize    img_resized, target_ratio, size_heatmap = imgproc.resize_aspect_ratio(image, args.canvas_size, interpolation=cv2.INTER_LINEAR, mag_ratio=args.mag_ratio)    ratio_h = ratio_w = 1 / target_ratio    # preprocessing    x = imgproc.normalizeMeanVariance(img_resized)    x = torch.from_numpy(x).permute(2, 0, 1)    # [h, w, c] to [c, h, w]    x = Variable(x.unsqueeze(0))                # [c, h, w] to [b, c, h, w]    if cuda:        x = x.cuda()    # forward pass    with torch.no_grad():        y, feature = net(x)    # make score and link map    score_text = y[0,:,:,0].cpu().data.numpy()    score_link = y[0,:,:,1].cpu().data.numpy()    # refine link    if refine_net is not None:        with torch.no_grad():            y_refiner = refine_net(y, feature)        score_link = y_refiner[0,:,:,0].cpu().data.numpy()    t0 = time.time() - t0    t1 = time.time()    # Post-processing    boxes, polys = craft_utils.getDetBoxes(score_text, score_link, text_threshold, link_threshold, low_text, poly)    # coordinate adjustment    boxes = craft_utils.adjustResultCoordinates(boxes, ratio_w, ratio_h)    polys = craft_utils.adjustResultCoordinates(polys, ratio_w, ratio_h)    for k in range(len(polys)):        if polys[k] is None: polys[k] = boxes[k]    t1 = time.time() - t1    # render results (optional)    render_img = score_text.copy()    render_img = np.hstack((render_img, score_link))    ret_score_text = imgproc.cvt2HeatmapImg(render_img)    if args.show_time : print("\ninfer/postproc time : {:.3f}/{:.3f}".format(t0, t1))    return boxes, polys, ret_score_textif __name__ == '__main__':    # load net    net = CRAFT()     # initialize    print('Loading weights from checkpoint (' + args.trained_model + ')')    if args.cuda:        net.load_state_dict(copyStateDict(torch.load(args.trained_model)))    else:        net.load_state_dict(copyStateDict(torch.load(args.trained_model, map_location='cpu')))    if args.cuda:        net = net.cuda()        net = torch.nn.DataParallel(net)        cudnn.benchmark = False    net.eval()    # LinkRefiner    refine_net = None    if args.refine:        from refinenet import RefineNet        refine_net = RefineNet()        print('Loading weights of refiner from checkpoint (' + args.refiner_model + ')')        if args.cuda:            refine_net.load_state_dict(copyStateDict(torch.load(args.refiner_model)))            refine_net = refine_net.cuda()            refine_net = torch.nn.DataParallel(refine_net)        else:            refine_net.load_state_dict(copyStateDict(torch.load(args.refiner_model, map_location='cpu')))        refine_net.eval()        args.poly = True    t = time.time()    # load data    for k, image_path in enumerate(image_list):        print("Test image {:d}/{:d}: {:s}".format(k+1, len(image_list), image_path), end='\r')        image = imgproc.loadImage(image_path)        bboxes, polys, score_text = test_net(net, image, args.text_threshold, args.link_threshold, args.low_text, args.cuda, args.poly, refine_net)        # save score text        filename, file_ext = os.path.splitext(os.path.basename(image_path))        mask_file = result_folder + "/res_" + filename + '_mask.jpg'        cv2.imwrite(mask_file, score_text)        file_utils.saveResult(image_path, image[:,:,::-1], polys, dirname=result_folder)    print("elapsed time : {}s".format(time.time() - t))
 |