| 1234567891011121314151617181920212223242526272829303132 |
- import math
- import torch
- from torch import nn
- def trunc_normal_init_(tensor: torch.Tensor, std: float = 1.0, lower: float = -2.0, upper: float = 2.0):
- # NOTE: PyTorch nn.init.trunc_normal_ is not mathematically correct, the std dev is not actually the std dev of initialized tensor
- # This function is a PyTorch version of jax truncated normal init (default init method in flax)
- # https://github.com/jax-ml/jax/blob/main/jax/_src/random.py#L807-L848
- # https://github.com/jax-ml/jax/blob/main/jax/_src/nn/initializers.py#L162-L199
- with torch.no_grad():
- if std == 0:
- tensor.zero_()
- else:
- sqrt2 = math.sqrt(2)
- a = math.erf(lower / sqrt2)
- b = math.erf(upper / sqrt2)
- z = (b - a) / 2
- c = (2 * math.pi) ** -0.5
- pdf_u = c * math.exp(-0.5 * lower ** 2)
- pdf_l = c * math.exp(-0.5 * upper ** 2)
- comp_std = std / math.sqrt(1 - (upper * pdf_u - lower * pdf_l) / z - ((pdf_u - pdf_l) / z) ** 2)
- tensor.uniform_(a, b)
- tensor.erfinv_()
- tensor.mul_(sqrt2 * comp_std)
- tensor.clip_(lower * comp_std, upper * comp_std)
- return tensor
|