| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- from typing import Tuple
- import einops
- import torch
- from torch import nn
- import torch.nn.functional as F
- #try:
- # from flash_attn_interface import flash_attn_func # type: ignore[import]
- #except ImportError:
- # # Fallback to FlashAttention 2
- # from flash_attn import flash_attn_func # type: ignore[import]
- from torch.nn.functional import scaled_dot_product_attention
- from models.common import trunc_normal_init_
- CosSin = Tuple[torch.Tensor, torch.Tensor]
- def _find_multiple(a, b):
- return (-(a // -b)) * b
- def rotate_half(x: torch.Tensor):
- """Rotates half the hidden dims of the input."""
- x1 = x[..., : x.shape[-1] // 2]
- x2 = x[..., x.shape[-1] // 2 :]
- return torch.cat((-x2, x1), dim=-1)
- def apply_rotary_pos_emb(q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
- # q, k: [bs, seq_len, num_heads, head_dim]
- # cos, sin: [seq_len, head_dim]
- orig_dtype = q.dtype
- q = q.to(cos.dtype)
- k = k.to(cos.dtype)
- q_embed = (q * cos.unsqueeze(-2)) + (rotate_half(q) * sin.unsqueeze(-2))
- k_embed = (k * cos.unsqueeze(-2)) + (rotate_half(k) * sin.unsqueeze(-2))
- return q_embed.to(orig_dtype), k_embed.to(orig_dtype)
- class CastedLinear(nn.Module):
- def __init__(self,
- in_features: int,
- out_features: int,
- bias: bool):
- super().__init__()
- # Truncated LeCun normal init
- self.weight = nn.Parameter(
- trunc_normal_init_(torch.empty((out_features, in_features)), std=1.0 / (in_features ** 0.5))
- )
- self.bias = None
- if bias:
- # Zero init bias
- self.bias = nn.Parameter(torch.zeros((out_features, )))
- def forward(self, input: torch.Tensor) -> torch.Tensor:
- return F.linear(input, self.weight.to(input.dtype), bias=self.bias.to(input.dtype) if self.bias is not None else None)
- class CastedEmbedding(nn.Module):
- def __init__(self,
- num_embeddings: int,
- embedding_dim: int,
- init_std: float,
- cast_to: torch.dtype):
- super().__init__()
- self.cast_to = cast_to
- # Truncated LeCun normal init
- self.embedding_weight = nn.Parameter(
- trunc_normal_init_(torch.empty((num_embeddings, embedding_dim)), std=init_std)
- )
-
- def forward(self, input: torch.Tensor) -> torch.Tensor:
- return F.embedding(input, self.embedding_weight.to(self.cast_to))
- class RotaryEmbedding(nn.Module):
- def __init__(self, dim, max_position_embeddings, base, device=None):
- super().__init__()
- # RoPE
- inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim))
- t = torch.arange(max_position_embeddings, dtype=torch.float32, device=device)
- freqs = torch.outer(t, inv_freq)
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
- emb = torch.cat((freqs, freqs), dim=-1)
- self.cos_cached = nn.Buffer(emb.cos(), persistent=False)
- self.sin_cached = nn.Buffer(emb.sin(), persistent=False)
- def forward(self):
- return self.cos_cached, self.sin_cached
- class Attention(nn.Module):
- def __init__(self, hidden_size, head_dim, num_heads, num_key_value_heads, causal=False):
- super().__init__()
- self.hidden_size = hidden_size
- self.head_dim = head_dim
- self.output_size = head_dim * num_heads
- self.num_heads = num_heads
- self.num_key_value_heads = num_key_value_heads
- self.causal = causal
- self.qkv_proj = CastedLinear(self.hidden_size, (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, bias=False)
- self.o_proj = CastedLinear(self.output_size, self.hidden_size, bias=False)
- def forward(self, cos_sin: CosSin, hidden_states: torch.Tensor) -> torch.Tensor:
- batch_size, seq_len, _ = hidden_states.shape
- # hidden_states: [bs, seq_len, num_heads, head_dim]
- qkv = self.qkv_proj(hidden_states)
- # Split head
- qkv = qkv.view(batch_size, seq_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
- query = qkv[:, :, :self.num_heads]
- key = qkv[:, :, self.num_heads: self.num_heads + self.num_key_value_heads]
- value = qkv[:, :, self.num_heads + self.num_key_value_heads:]
- # RoPE
- if cos_sin is not None:
- cos, sin = cos_sin
- query, key = apply_rotary_pos_emb(query, key, cos, sin)
- # flash attn
- query, key, value = map(lambda t: einops.rearrange(t, 'B S H D -> B H S D'), (query, key, value)) # needed for scaled_dot_product_attention but not flash_attn_func
- attn_output = scaled_dot_product_attention(query=query, key=key, value=value, is_causal=self.causal)
- attn_output = einops.rearrange(attn_output, 'B H S D -> B S H D')
- attn_output = attn_output.reshape(batch_size, seq_len, self.output_size) # type: ignore
- return self.o_proj(attn_output)
- class LinearSwish(nn.Module):
- def __init__(self, hidden_size: int, reverse=False):
- super().__init__()
- self.linear = CastedLinear(hidden_size, hidden_size, bias=False)
- self.reverse = reverse
- def forward(self, x):
- if self.reverse:
- return F.silu(self.linear(x))
- else:
- return self.linear(F.silu(x))
- class SwiGLU(nn.Module):
- def __init__(self, hidden_size: int, expansion: float):
- super().__init__()
- inter = _find_multiple(round(expansion * hidden_size * 2 / 3), 256)
- self.gate_up_proj = CastedLinear(hidden_size, inter * 2, bias=False)
- self.down_proj = CastedLinear(inter, hidden_size, bias=False)
- def forward(self, x):
- gate, up = self.gate_up_proj(x).chunk(2, dim=-1)
- return self.down_proj(F.silu(gate) * up)
- def rms_norm(hidden_states: torch.Tensor, variance_epsilon: float) -> torch.Tensor:
- input_dtype = hidden_states.dtype
- hidden_states = hidden_states.to(torch.float32)
- variance = hidden_states.square().mean(-1, keepdim=True)
- hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon)
- return hidden_states.to(input_dtype)
|