| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- from typing import Any, Tuple, Dict, Sequence, Optional
- import torch
- import torch.nn.functional as F
- from torch import nn
- import math
- IGNORE_LABEL_ID = -100
- def s(x, epsilon=1e-30):
- return torch.where(
- x<0,
- 1/(1-x+ epsilon),
- x + 1
- )
- def log_stablemax(x, dim=-1):
- s_x = s(x)
- return torch.log(s_x/torch.sum(s_x, dim=dim, keepdim=True))
- def stablemax_cross_entropy(logits, labels, ignore_index: int = -100, valid_mask=None):
- logprobs = log_stablemax(logits.to(torch.float64), dim=-1)
- if valid_mask is None:
- valid_mask = (labels != ignore_index)
- transformed_labels = torch.where(valid_mask, labels, 0)
- prediction_logprobs = torch.gather(logprobs, index=transformed_labels.to(torch.long).unsqueeze(-1), dim=-1).squeeze(-1)
- return -torch.where(valid_mask, prediction_logprobs, 0)
- def softmax_cross_entropy(logits, labels, ignore_index: int = -100):
- # Cast logits to f32
- # Flatten logits
- return F.cross_entropy(logits.to(torch.float32).view(-1, logits.shape[-1]), labels.to(torch.long).view(-1), ignore_index=ignore_index, reduction="none").view(labels.shape)
- class ACTLossHead(nn.Module):
- def __init__(self, model: nn.Module, loss_type: str):
- super().__init__()
- self.model = model
- self.loss_fn = globals()[loss_type]
-
- def initial_carry(self, *args, **kwargs):
- return self.model.initial_carry(*args, **kwargs) # type: ignore
- def forward(
- self,
- return_keys: Sequence[str],
- # Model args
- **model_kwargs,
- ) -> Tuple[Any, torch.Tensor, Dict[str, torch.Tensor], Optional[Dict[str, torch.Tensor]], torch.Tensor]:
- # Model logits
- # B x SeqLen x D
- new_carry, outputs = self.model(**model_kwargs)
- labels = new_carry.current_data["labels"]
- with torch.no_grad():
- # Preds
- outputs["preds"] = torch.argmax(outputs["logits"], dim=-1)
- # Correctness
- mask = (labels != IGNORE_LABEL_ID)
- loss_counts = mask.sum(-1)
- loss_divisor = loss_counts.clamp_min(1).unsqueeze(-1) # Avoid NaNs in division
- is_correct = mask & (torch.argmax(outputs["logits"], dim=-1) == labels)
- seq_is_correct = is_correct.sum(-1) == loss_counts
-
- # Metrics (halted)
- valid_metrics = new_carry.halted & (loss_counts > 0)
- metrics = {
- "count": valid_metrics.sum(),
-
- "accuracy": torch.where(valid_metrics, (is_correct.to(torch.float32) / loss_divisor).sum(-1), 0).sum(),
- "exact_accuracy": (valid_metrics & seq_is_correct).sum(),
- "q_halt_accuracy": (valid_metrics & ((outputs["q_halt_logits"] >= 0) == seq_is_correct)).sum(),
- "steps": torch.where(valid_metrics, new_carry.steps, 0).sum(),
- }
- # Losses
- lm_loss = (self.loss_fn(outputs["logits"], labels, ignore_index=IGNORE_LABEL_ID, valid_mask=mask) / loss_divisor).sum()
- q_halt_loss = F.binary_cross_entropy_with_logits(outputs["q_halt_logits"], seq_is_correct.to(outputs["q_halt_logits"].dtype), reduction="sum")
- metrics.update({
- "lm_loss": lm_loss.detach(),
- "q_halt_loss": q_halt_loss.detach(),
- })
- # Q continue (bootstrapping target loss); Alexia: This fits Q-learning, but seems totally unecessary
- q_continue_loss = 0
- if "target_q_continue" in outputs:
- q_continue_loss = F.binary_cross_entropy_with_logits(outputs["q_continue_logits"], outputs["target_q_continue"], reduction="sum")
- metrics["q_continue_loss"] = q_continue_loss.detach()
- # Filter outputs for return
- detached_outputs = {k: outputs[k].detach() for k in return_keys if k in outputs}
- return new_carry, lm_loss + 0.5 * (q_halt_loss + q_continue_loss), metrics, detached_outputs, new_carry.halted.all()
|