Browse Source

added Segment Anything model class

Flippchen 2 years ago
parent
commit
83976f416b
1 changed files with 97 additions and 0 deletions
  1. 97 0
      rembg/session_sam.py

+ 97 - 0
rembg/session_sam.py

@@ -0,0 +1,97 @@
+from typing import List
+
+import numpy
+import numpy as np
+from PIL import Image
+from PIL.Image import Image as PILImage
+import onnxruntime as ort
+from matplotlib import pyplot as plt
+
+from .session_base import BaseSession
+
+
+def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int):
+    scale = long_side_length * 1.0 / max(oldh, oldw)
+    newh, neww = oldh * scale, oldw * scale
+    neww = int(neww + 0.5)
+    newh = int(newh + 0.5)
+    return (newh, neww)
+
+
+def apply_coords(coords: np.ndarray, original_size, target_length) -> np.ndarray:
+    old_h, old_w = original_size
+    new_h, new_w = get_preprocess_shape(
+        original_size[0], original_size[1], target_length
+    )
+    coords = coords.copy().astype(float)
+    coords[..., 0] = coords[..., 0] * (new_w / old_w)
+    coords[..., 1] = coords[..., 1] * (new_h / old_h)
+    return coords
+
+
+def resize_longes_side(img: PILImage, size=1024):
+    w, h = img.size
+    if h > w:
+        new_h, new_w = size, int(w * size / h)
+    else:
+        new_h, new_w = int(h * size / w), size
+
+    return img.resize((new_w, new_h))
+
+
+def pad_to_square(img: numpy.ndarray, size=1024):
+    h, w = img.shape[:2]
+    padh = size - h
+    padw = size - w
+    img = np.pad(img, ((0, padh), (0, padw), (0, 0)), mode='constant')
+    img = img.astype(np.float32)
+    return img
+
+
+class SamSession(BaseSession):
+    def __init__(self, model_name: str, encoder: ort.InferenceSession, decoder: ort.InferenceSession):
+        super().__init__(model_name, encoder)
+        self.decoder = decoder
+
+    def normalize(self, img: numpy.ndarray, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), size=(1024, 1024)):
+        pixel_mean = np.array([123.675, 116.28, 103.53]).reshape(1, 1, -1)
+        pixel_std = np.array([58.395, 57.12, 57.375]).reshape(1, 1, -1)
+        x = (img - pixel_mean) / pixel_std
+        return x
+
+    def predict(self, img: PILImage, input_point=np.array([[500, 375]]), input_label=np.array([1])) -> List[PILImage]:
+        # Preprocess image
+        image = resize_longes_side(img)
+        image = numpy.array(image)
+        image = self.normalize(image)
+        image = pad_to_square(image)
+
+        # Transpose
+        image = image.transpose(2, 0, 1)[None, :, :, :]
+        # Run encoder (Image embedding)
+        encoded = self.inner_session.run(None, {"x": image})
+        image_embedding = encoded[0]
+
+        # Add a batch index, concatenate a padding point, and transform.
+        onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[None, :, :]
+        onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[None, :].astype(np.float32)
+        onnx_coord = apply_coords(onnx_coord, img.size[::1], 1024).astype(np.float32)
+
+        # Create an empty mask input and an indicator for no mask.
+        onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)
+        onnx_has_mask_input = np.zeros(1, dtype=np.float32)
+
+        decoder_inputs = {
+            "image_embeddings": image_embedding,
+            "point_coords": onnx_coord,
+            "point_labels": onnx_label,
+            "mask_input": onnx_mask_input,
+            "has_mask_input": onnx_has_mask_input,
+            "orig_im_size": np.array(img.size[::-1], dtype=np.float32)
+        }
+
+        masks, _, low_res_logits = self.decoder.run(None, decoder_inputs)
+        masks = masks > 0.0
+        masks = [Image.fromarray((masks[i, 0] * 255).astype(np.uint8)) for i in range(masks.shape[0])]
+
+        return masks