|
@@ -367,7 +367,8 @@ After you build the image, run it like this as a cli
|
|
sudo docker run --rm -it --gpus all -v /dev/dri:/dev/dri -v $PWD:/rembg rembg-nvidia-cuda-cudnn-gpu i -m birefnet-general input.png output.png
|
|
sudo docker run --rm -it --gpus all -v /dev/dri:/dev/dri -v $PWD:/rembg rembg-nvidia-cuda-cudnn-gpu i -m birefnet-general input.png output.png
|
|
```
|
|
```
|
|
|
|
|
|
-Trick: Actually you can also make up a nvidia-cuda-cudnn-gpu image and install rembg[gpu, cli] in it.
|
|
|
|
|
|
+- Trick 1: Actually you can also make up a nvidia-cuda-cudnn-gpu image and install rembg[gpu, cli] in it.
|
|
|
|
+- Trick 2: Try param `-v /somewhereYouStoresModelFiles/:/root/.u2net` so to download/store model files out of docker images. You can even comment the line `RUN rembg d u2net` so when builing the image, it download will no models, so you can download the specific model you want even without the default u2net model.
|
|
|
|
|
|
## Models
|
|
## Models
|
|
|
|
|