Răsfoiți Sursa

Updated to xxhash 0.8.2.7546e25

Brucey 8 luni în urmă
părinte
comite
eb57680dac
3 a modificat fișierele cu 6500 adăugiri și 3697 ștergeri
  1. 1 1
      blitz.mod/blitz_string.c
  2. 0 2320
      blitz.mod/hash/xxh3.h
  3. 6499 1376
      blitz.mod/hash/xxhash.h

+ 1 - 1
blitz.mod/blitz_string.c

@@ -8,7 +8,7 @@
 #define XXH_IMPLEMENTATION
 #define XXH_STATIC_LINKING_ONLY
 
-#include "hash/xxh3.h"
+#include "hash/xxhash.h"
 
 static void bbStringFree( BBObject *o );
 

+ 0 - 2320
blitz.mod/hash/xxh3.h

@@ -1,2320 +0,0 @@
-/*
- * xxHash - Extremely Fast Hash algorithm
- * Development source file for `xxh3`
- * Copyright (C) 2019-2020 Yann Collet
- *
- * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- *    * Redistributions of source code must retain the above copyright
- *      notice, this list of conditions and the following disclaimer.
- *    * Redistributions in binary form must reproduce the above
- *      copyright notice, this list of conditions and the following disclaimer
- *      in the documentation and/or other materials provided with the
- *      distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * You can contact the author at:
- *   - xxHash homepage: https://www.xxhash.com
- *   - xxHash source repository: https://github.com/Cyan4973/xxHash
- */
-
-/*
- * Note: This file is separated for development purposes.
- * It will be integrated into `xxhash.h` when development stage is completed.
- *
- * Credit: most of the work on vectorial and asm variants comes from @easyaspi314
- */
-
-#ifndef XXH3_H_1397135465
-#define XXH3_H_1397135465
-
-/* ===   Dependencies   === */
-#ifndef XXHASH_H_5627135585666179
-/* special: when including `xxh3.h` directly, turn on XXH_INLINE_ALL */
-#  undef XXH_INLINE_ALL   /* avoid redefinition */
-#  define XXH_INLINE_ALL
-#endif
-#include "xxhash.h"
-
-
-/* ===   Compiler specifics   === */
-
-#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* >= C99 */
-#  define XXH_RESTRICT   restrict
-#else
-/* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
-#  define XXH_RESTRICT   /* disable */
-#endif
-
-#if (defined(__GNUC__) && (__GNUC__ >= 3))  \
-  || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
-  || defined(__clang__)
-#    define XXH_likely(x) __builtin_expect(x, 1)
-#    define XXH_unlikely(x) __builtin_expect(x, 0)
-#else
-#    define XXH_likely(x) (x)
-#    define XXH_unlikely(x) (x)
-#endif
-
-#if defined(__GNUC__)
-#  if defined(__AVX2__)
-#    include <immintrin.h>
-#  elif defined(__SSE2__)
-#    include <emmintrin.h>
-#  elif defined(__ARM_NEON__) || defined(__ARM_NEON)
-#    define inline __inline__  /* clang bug */
-#    include <arm_neon.h>
-#    undef inline
-#  endif
-#elif defined(_MSC_VER)
-#  include <intrin.h>
-#endif
-
-/*
- * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
- * remaining a true 64-bit/128-bit hash function.
- *
- * This is done by prioritizing a subset of 64-bit operations that can be
- * emulated without too many steps on the average 32-bit machine.
- *
- * For example, these two lines seem similar, and run equally fast on 64-bit:
- *
- *   xxh_u64 x;
- *   x ^= (x >> 47); // good
- *   x ^= (x >> 13); // bad
- *
- * However, to a 32-bit machine, there is a major difference.
- *
- * x ^= (x >> 47) looks like this:
- *
- *   x.lo ^= (x.hi >> (47 - 32));
- *
- * while x ^= (x >> 13) looks like this:
- *
- *   // note: funnel shifts are not usually cheap.
- *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
- *   x.hi ^= (x.hi >> 13);
- *
- * The first one is significantly faster than the second, simply because the
- * shift is larger than 32. This means:
- *  - All the bits we need are in the upper 32 bits, so we can ignore the lower
- *    32 bits in the shift.
- *  - The shift result will always fit in the lower 32 bits, and therefore,
- *    we can ignore the upper 32 bits in the xor.
- *
- * Thanks to this optimization, XXH3 only requires these features to be efficient:
- *
- *  - Usable unaligned access
- *  - A 32-bit or 64-bit ALU
- *      - If 32-bit, a decent ADC instruction
- *  - A 32 or 64-bit multiply with a 64-bit result
- *  - For the 128-bit variant, a decent byteswap helps short inputs.
- *
- * The first two are already required by XXH32, and almost all 32-bit and 64-bit
- * platforms which can run XXH32 can run XXH3 efficiently.
- *
- * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
- * notable exception.
- *
- * First of all, Thumb-1 lacks support for the UMULL instruction which
- * performs the important long multiply. This means numerous __aeabi_lmul
- * calls.
- *
- * Second of all, the 8 functional registers are just not enough.
- * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
- * Lo registers, and this shuffling results in thousands more MOVs than A32.
- *
- * A32 and T32 don't have this limitation. They can access all 14 registers,
- * do a 32->64 multiply with UMULL, and the flexible operand allowing free
- * shifts is helpful, too.
- *
- * Therefore, we do a quick sanity check.
- *
- * If compiling Thumb-1 for a target which supports ARM instructions, we will
- * emit a warning, as it is not a "sane" platform to compile for.
- *
- * Usually, if this happens, it is because of an accident and you probably need
- * to specify -march, as you likely meant to compile for a newer architecture.
- */
-#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
-#   warning "XXH3 is highly inefficient without ARM or Thumb-2."
-#endif
-
-/* ==========================================
- * Vectorization detection
- * ========================================== */
-#define XXH_SCALAR 0 /* Portable scalar version */
-#define XXH_SSE2   1 /* SSE2 for Pentium 4 and all x86_64 */
-#define XXH_AVX2   2 /* AVX2 for Haswell and Bulldozer */
-#define XXH_NEON   3 /* NEON for most ARMv7-A and all AArch64 */
-#define XXH_VSX    4 /* VSX and ZVector for POWER8/z13 */
-
-#ifndef XXH_VECTOR    /* can be defined on command line */
-#  if defined(__AVX2__)
-#    define XXH_VECTOR XXH_AVX2
-#  elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
-#    define XXH_VECTOR XXH_SSE2
-#  elif defined(__GNUC__) /* msvc support maybe later */ \
-  && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \
-  && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
-    || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
-#    define XXH_VECTOR XXH_NEON
-#  elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
-     || (defined(__s390x__) && defined(__VEC__)) \
-     && defined(__GNUC__) /* TODO: IBM XL */
-#    define XXH_VECTOR XXH_VSX
-#  else
-#    define XXH_VECTOR XXH_SCALAR
-#  endif
-#endif
-
-/*
- * Controls the alignment of the accumulator.
- * This is for compatibility with aligned vector loads, which are usually faster.
- */
-#ifndef XXH_ACC_ALIGN
-#  if XXH_VECTOR == XXH_SCALAR  /* scalar */
-#     define XXH_ACC_ALIGN 8
-#  elif XXH_VECTOR == XXH_SSE2  /* sse2 */
-#     define XXH_ACC_ALIGN 16
-#  elif XXH_VECTOR == XXH_AVX2  /* avx2 */
-#     define XXH_ACC_ALIGN 32
-#  elif XXH_VECTOR == XXH_NEON  /* neon */
-#     define XXH_ACC_ALIGN 16
-#  elif XXH_VECTOR == XXH_VSX   /* vsx */
-#     define XXH_ACC_ALIGN 16
-#  endif
-#endif
-
-/*
- * UGLY HACK:
- * GCC usually generates the best code with -O3 for xxHash.
- *
- * However, when targeting AVX2, it is overzealous in its unrolling resulting
- * in code roughly 3/4 the speed of Clang.
- *
- * There are other issues, such as GCC splitting _mm256_loadu_si256 into
- * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
- * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
- *
- * That is why when compiling the AVX2 version, it is recommended to use either
- *   -O2 -mavx2 -march=haswell
- * or
- *   -O2 -mavx2 -mno-avx256-split-unaligned-load
- * for decent performance, or to use Clang instead.
- *
- * Fortunately, we can control the first one with a pragma that forces GCC into
- * -O2, but the other one we can't control without "failed to inline always
- * inline function due to target mismatch" warnings.
- */
-#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
-  && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
-  && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
-#  pragma GCC push_options
-#  pragma GCC optimize("-O2")
-#endif
-
-
-#if XXH_VECTOR == XXH_NEON
-/*
- * NEON's setup for vmlal_u32 is a little more complicated than it is on
- * SSE2, AVX2, and VSX.
- *
- * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
- *
- * To do the same operation, the 128-bit 'Q' register needs to be split into
- * two 64-bit 'D' registers, performing this operation::
- *
- *   [                a                 |                 b                ]
- *            |              '---------. .--------'                |
- *            |                         x                          |
- *            |              .---------' '--------.                |
- *   [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[    a >> 32     |     b >> 32    ]
- *
- * Due to significant changes in aarch64, the fastest method for aarch64 is
- * completely different than the fastest method for ARMv7-A.
- *
- * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
- * D11 will modify the high half of Q5. This is similar to how modifying AH
- * will only affect bits 8-15 of AX on x86.
- *
- * VZIP takes two registers, and puts even lanes in one register and odd lanes
- * in the other.
- *
- * On ARMv7-A, this strangely modifies both parameters in place instead of
- * taking the usual 3-operand form.
- *
- * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
- * lower and upper halves of the Q register to end up with the high and low
- * halves where we want - all in one instruction.
- *
- *   vzip.32   d10, d11       @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
- *
- * Unfortunately we need inline assembly for this: Instructions modifying two
- * registers at once is not possible in GCC or Clang's IR, and they have to
- * create a copy.
- *
- * aarch64 requires a different approach.
- *
- * In order to make it easier to write a decent compiler for aarch64, many
- * quirks were removed, such as conditional execution.
- *
- * NEON was also affected by this.
- *
- * aarch64 cannot access the high bits of a Q-form register, and writes to a
- * D-form register zero the high bits, similar to how writes to W-form scalar
- * registers (or DWORD registers on x86_64) work.
- *
- * The formerly free vget_high intrinsics now require a vext (with a few
- * exceptions)
- *
- * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
- * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
- * operand.
- *
- * The equivalent of the VZIP.32 on the lower and upper halves would be this
- * mess:
- *
- *   ext     v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
- *   zip1    v1.2s, v0.2s, v2.2s     // v1 = { v0[0], v2[0] }
- *   zip2    v0.2s, v0.2s, v1.2s     // v0 = { v0[1], v2[1] }
- *
- * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
- *
- *   shrn    v1.2s, v0.2d, #32  // v1 = (uint32x2_t)(v0 >> 32);
- *   xtn     v0.2s, v0.2d       // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
- *
- * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
- */
-
-/*
- * Function-like macro:
- * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
- * {
- *     outLo = (uint32x2_t)(in & 0xFFFFFFFF);
- *     outHi = (uint32x2_t)(in >> 32);
- *     in = UNDEFINED;
- * }
- */
-# if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
-   && defined(__GNUC__) \
-   && !defined(__aarch64__) && !defined(__arm64__)
-#  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                              \
-    do {                                                                                    \
-      /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
-      /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */     \
-      /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
-      __asm__("vzip.32  %e0, %f0" : "+w" (in));                                             \
-      (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in));                                   \
-      (outHi) = vget_high_u32(vreinterpretq_u32_u64(in));                                   \
-   } while (0)
-# else
-#  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                            \
-    do {                                                                                  \
-      (outLo) = vmovn_u64    (in);                                                        \
-      (outHi) = vshrn_n_u64  ((in), 32);                                                  \
-    } while (0)
-# endif
-#endif  /* XXH_VECTOR == XXH_NEON */
-
-/*
- * VSX and Z Vector helpers.
- *
- * This is very messy, and any pull requests to clean this up are welcome.
- *
- * There are a lot of problems with supporting VSX and s390x, due to
- * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
- */
-#if XXH_VECTOR == XXH_VSX
-#  if defined(__s390x__)
-#    include <s390intrin.h>
-#  else
-#    include <altivec.h>
-#  endif
-
-#  undef vector /* Undo the pollution */
-
-typedef __vector unsigned long long xxh_u64x2;
-typedef __vector unsigned char xxh_u8x16;
-typedef __vector unsigned xxh_u32x4;
-
-# ifndef XXH_VSX_BE
-#  if defined(__BIG_ENDIAN__) \
-  || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
-#    define XXH_VSX_BE 1
-#  elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
-#    warning "-maltivec=be is not recommended. Please use native endianness."
-#    define XXH_VSX_BE 1
-#  else
-#    define XXH_VSX_BE 0
-#  endif
-# endif /* !defined(XXH_VSX_BE) */
-
-# if XXH_VSX_BE
-/* A wrapper for POWER9's vec_revb. */
-#  if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
-#    define XXH_vec_revb vec_revb
-#  else
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
-{
-    xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
-                                  0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
-    return vec_perm(val, val, vByteSwap);
-}
-#  endif
-# endif /* XXH_VSX_BE */
-
-/*
- * Performs an unaligned load and byte swaps it on big endian.
- */
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
-{
-    xxh_u64x2 ret;
-    memcpy(&ret, ptr, sizeof(xxh_u64x2));
-# if XXH_VSX_BE
-    ret = XXH_vec_revb(ret);
-# endif
-    return ret;
-}
-
-/*
- * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
- *
- * These intrinsics weren't added until GCC 8, despite existing for a while,
- * and they are endian dependent. Also, their meaning swap depending on version.
- * */
-# if defined(__s390x__)
- /* s390x is always big endian, no issue on this platform */
-#  define XXH_vec_mulo vec_mulo
-#  define XXH_vec_mule vec_mule
-# elif defined(__clang__) && __has_builtin(__builtin_altivec_vmuleuw)
-/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
-#  define XXH_vec_mulo __builtin_altivec_vmulouw
-#  define XXH_vec_mule __builtin_altivec_vmuleuw
-# else
-/* gcc needs inline assembly */
-/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
-{
-    xxh_u64x2 result;
-    __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
-    return result;
-}
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
-{
-    xxh_u64x2 result;
-    __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
-    return result;
-}
-# endif /* XXH_vec_mulo, XXH_vec_mule */
-#endif /* XXH_VECTOR == XXH_VSX */
-
-
-/* prefetch
- * can be disabled, by declaring XXH_NO_PREFETCH build macro */
-#if defined(XXH_NO_PREFETCH)
-#  define XXH_PREFETCH(ptr)  (void)(ptr)  /* disabled */
-#else
-#  if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86))  /* _mm_prefetch() is not defined outside of x86/x64 */
-#    include <mmintrin.h>   /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
-#    define XXH_PREFETCH(ptr)  _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
-#  elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
-#    define XXH_PREFETCH(ptr)  __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
-#  else
-#    define XXH_PREFETCH(ptr) (void)(ptr)  /* disabled */
-#  endif
-#endif  /* XXH_NO_PREFETCH */
-
-
-/* ==========================================
- * XXH3 default settings
- * ========================================== */
-
-#define XXH_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */
-
-#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
-#  error "default keyset is not large enough"
-#endif
-
-/* Pseudorandom secret taken directly from FARSH */
-XXH_ALIGN(64) static const xxh_u8 kSecret[XXH_SECRET_DEFAULT_SIZE] = {
-    0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
-    0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
-    0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
-    0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
-    0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
-    0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
-    0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
-    0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
-
-    0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
-    0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
-    0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
-    0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
-};
-
-/*
- * Calculates a 32-bit to 64-bit long multiply.
- *
- * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't
- * need to (but it shouldn't need to anyways, it is about 7 instructions to do
- * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we
- * use that instead of the normal method.
- *
- * If you are compiling for platforms like Thumb-1 and don't have a better option,
- * you may also want to write your own long multiply routine here.
- *
- * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
- * {
- *    return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
- * }
- */
-#if defined(_MSC_VER) && defined(_M_IX86)
-#    include <intrin.h>
-#    define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
-#else
-/*
- * Downcast + upcast is usually better than masking on older compilers like
- * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
- *
- * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
- * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
- */
-#    define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
-#endif
-
-/*
- * Calculates a 64->128-bit long multiply.
- *
- * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version.
- */
-static XXH128_hash_t
-XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
-{
-    /*
-     * GCC/Clang __uint128_t method.
-     *
-     * On most 64-bit targets, GCC and Clang define a __uint128_t type.
-     * This is usually the best way as it usually uses a native long 64-bit
-     * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
-     *
-     * Usually.
-     *
-     * Despite being a 32-bit platform, Clang (and emscripten) define this type
-     * despite not having the arithmetic for it. This results in a laggy
-     * compiler builtin call which calculates a full 128-bit multiply.
-     * In that case it is best to use the portable one.
-     * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
-     */
-#if defined(__GNUC__) && !defined(__wasm__) \
-    && defined(__SIZEOF_INT128__) \
-    || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
-
-    __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
-    XXH128_hash_t r128;
-    r128.low64  = (xxh_u64)(product);
-    r128.high64 = (xxh_u64)(product >> 64);
-    return r128;
-
-    /*
-     * MSVC for x64's _umul128 method.
-     *
-     * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
-     *
-     * This compiles to single operand MUL on x64.
-     */
-#elif defined(_M_X64) || defined(_M_IA64)
-
-#ifndef _MSC_VER
-#   pragma intrinsic(_umul128)
-#endif
-    xxh_u64 product_high;
-    xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
-    XXH128_hash_t r128;
-    r128.low64  = product_low;
-    r128.high64 = product_high;
-    return r128;
-
-#else
-    /*
-     * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
-     *
-     * This is a fast and simple grade school multiply, which is shown below
-     * with base 10 arithmetic instead of base 0x100000000.
-     *
-     *           9 3 // D2 lhs = 93
-     *         x 7 5 // D2 rhs = 75
-     *     ----------
-     *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
-     *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
-     *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
-     *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
-     *     ---------
-     *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
-     *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
-     *     ---------
-     *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
-     *
-     * The reasons for adding the products like this are:
-     *  1. It avoids manual carry tracking. Just like how
-     *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
-     *     This avoids a lot of complexity.
-     *
-     *  2. It hints for, and on Clang, compiles to, the powerful UMAAL
-     *     instruction available in ARM's Digital Signal Processing extension
-     *     in 32-bit ARMv6 and later, which is shown below:
-     *
-     *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
-     *         {
-     *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
-     *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
-     *             *RdHi = (xxh_u32)(product >> 32);
-     *         }
-     *
-     *     This instruction was designed for efficient long multiplication, and
-     *     allows this to be calculated in only 4 instructions at speeds
-     *     comparable to some 64-bit ALUs.
-     *
-     *  3. It isn't terrible on other platforms. Usually this will be a couple
-     *     of 32-bit ADD/ADCs.
-     */
-
-    /* First calculate all of the cross products. */
-    xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
-    xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32,        rhs & 0xFFFFFFFF);
-    xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
-    xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32,        rhs >> 32);
-
-    /* Now add the products together. These will never overflow. */
-    xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
-    xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32)        + hi_hi;
-    xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
-
-    XXH128_hash_t r128;
-    r128.low64  = lower;
-    r128.high64 = upper;
-    return r128;
-#endif
-}
-
-/*
- * Does a 64-bit to 128-bit multiply, then XOR folds it.
- *
- * The reason for the separate function is to prevent passing too many structs
- * around by value. This will hopefully inline the multiply, but we don't force it.
- */
-static xxh_u64
-XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
-{
-    XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
-    return product.low64 ^ product.high64;
-}
-
-/* Seems to produce slightly better code on GCC for some reason. */
-XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
-{
-    XXH_ASSERT(0 <= shift && shift < 64);
-    return v64 ^ (v64 >> shift);
-}
-
-/*
- * We don't need to (or want to) mix as much as XXH64.
- *
- * Short hashes are more evenly distributed, so it isn't necessary.
- */
-static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
-{
-    h64 = XXH_xorshift64(h64, 37);
-    h64 *= 0x165667919E3779F9ULL;
-    h64 = XXH_xorshift64(h64, 32);
-    return h64;
-}
-
-
-/* ==========================================
- * Short keys
- * ==========================================
- * One of the shortcomings of XXH32 and XXH64 was that their performance was
- * sub-optimal on short lengths. It used an iterative algorithm which strongly
- * favored lengths that were a multiple of 4 or 8.
- *
- * Instead of iterating over individual inputs, we use a set of single shot
- * functions which piece together a range of lengths and operate in constant time.
- *
- * Additionally, the number of multiplies has been significantly reduced. This
- * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
- *
- * Depending on the platform, this may or may not be faster than XXH32, but it
- * is almost guaranteed to be faster than XXH64.
- */
-
-/*
- * At very short lengths, there isn't enough input to fully hide secrets, or use
- * the entire secret.
- *
- * There is also only a limited amount of mixing we can do before significantly
- * impacting performance.
- *
- * Therefore, we use different sections of the secret and always mix two secret
- * samples with an XOR. This should have no effect on performance on the
- * seedless or withSeed variants because everything _should_ be constant folded
- * by modern compilers.
- *
- * The XOR mixing hides individual parts of the secret and increases entropy.
- *
- * This adds an extra layer of strength for custom secrets.
- */
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
-    XXH_ASSERT(input != NULL);
-    XXH_ASSERT(1 <= len && len <= 3);
-    XXH_ASSERT(secret != NULL);
-    /*
-     * len = 1: combined = { input[0], 0x01, input[0], input[0] }
-     * len = 2: combined = { input[1], 0x02, input[0], input[1] }
-     * len = 3: combined = { input[2], 0x03, input[0], input[1] }
-     */
-    {   xxh_u8 const c1 = input[0];
-        xxh_u8 const c2 = input[len >> 1];
-        xxh_u8 const c3 = input[len - 1];
-        xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2  << 24)
-                               | ((xxh_u32)c3 <<  0) | ((xxh_u32)len << 8);
-        xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
-        xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
-        xxh_u64 const mixed = keyed * PRIME64_1;
-        return XXH3_avalanche(mixed);
-    }
-}
-
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
-    XXH_ASSERT(input != NULL);
-    XXH_ASSERT(secret != NULL);
-    XXH_ASSERT(4 <= len && len < 8);
-    seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
-    {   xxh_u32 const input1 = XXH_readLE32(input);
-        xxh_u32 const input2 = XXH_readLE32(input + len - 4);
-        xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
-        xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
-        xxh_u64 x = input64 ^ bitflip;
-        /* this mix is inspired by Pelle Evensen's rrmxmx */
-        x ^= XXH_rotl64(x, 49) ^ XXH_rotl64(x, 24);
-        x *= 0x9FB21C651E98DF25ULL;
-        x ^= (x >> 35) + len ;
-        x *= 0x9FB21C651E98DF25ULL;
-        return XXH_xorshift64(x, 28);
-    }
-}
-
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
-    XXH_ASSERT(input != NULL);
-    XXH_ASSERT(secret != NULL);
-    XXH_ASSERT(8 <= len && len <= 16);
-    {   xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
-        xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
-        xxh_u64 const input_lo = XXH_readLE64(input)           ^ bitflip1;
-        xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
-        xxh_u64 const acc = len
-                          + XXH_swap64(input_lo) + input_hi
-                          + XXH3_mul128_fold64(input_lo, input_hi);
-        return XXH3_avalanche(acc);
-    }
-}
-
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
-    XXH_ASSERT(len <= 16);
-    {   if (XXH_likely(len >  8)) return XXH3_len_9to16_64b(input, len, secret, seed);
-        if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
-        if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
-        return XXH3_avalanche((PRIME64_1 + seed) ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
-    }
-}
-
-/*
- * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
- * multiplication by zero, affecting hashes of lengths 17 to 240.
- *
- * However, they are very unlikely.
- *
- * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
- * unseeded non-cryptographic hashes, it does not attempt to defend itself
- * against specially crafted inputs, only random inputs.
- *
- * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
- * cancelling out the secret is taken an arbitrary number of times (addressed
- * in XXH3_accumulate_512), this collision is very unlikely with random inputs
- * and/or proper seeding:
- *
- * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
- * function that is only called up to 16 times per hash with up to 240 bytes of
- * input.
- *
- * This is not too bad for a non-cryptographic hash function, especially with
- * only 64 bit outputs.
- *
- * The 128-bit variant (which trades some speed for strength) is NOT affected
- * by this, although it is always a good idea to use a proper seed if you care
- * about strength.
- */
-XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
-                                     const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
-{
-#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
-  && defined(__i386__) && defined(__SSE2__)  /* x86 + SSE2 */ \
-  && !defined(XXH_ENABLE_AUTOVECTORIZE)      /* Define to disable like XXH32 hack */
-    /*
-     * UGLY HACK:
-     * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
-     * slower code.
-     *
-     * By forcing seed64 into a register, we disrupt the cost model and
-     * cause it to scalarize. See `XXH32_round()`
-     *
-     * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
-     * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
-     * GCC 9.2, despite both emitting scalar code.
-     *
-     * GCC generates much better scalar code than Clang for the rest of XXH3,
-     * which is why finding a more optimal codepath is an interest.
-     */
-    __asm__ ("" : "+r" (seed64));
-#endif
-    {   xxh_u64 const input_lo = XXH_readLE64(input);
-        xxh_u64 const input_hi = XXH_readLE64(input+8);
-        return XXH3_mul128_fold64(
-            input_lo ^ (XXH_readLE64(secret)   + seed64),
-            input_hi ^ (XXH_readLE64(secret+8) - seed64)
-        );
-    }
-}
-
-/* For mid range keys, XXH3 uses a Mum-hash variant. */
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
-                     const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
-                     XXH64_hash_t seed)
-{
-    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
-    XXH_ASSERT(16 < len && len <= 128);
-
-    {   xxh_u64 acc = len * PRIME64_1;
-        if (len > 32) {
-            if (len > 64) {
-                if (len > 96) {
-                    acc += XXH3_mix16B(input+48, secret+96, seed);
-                    acc += XXH3_mix16B(input+len-64, secret+112, seed);
-                }
-                acc += XXH3_mix16B(input+32, secret+64, seed);
-                acc += XXH3_mix16B(input+len-48, secret+80, seed);
-            }
-            acc += XXH3_mix16B(input+16, secret+32, seed);
-            acc += XXH3_mix16B(input+len-32, secret+48, seed);
-        }
-        acc += XXH3_mix16B(input+0, secret+0, seed);
-        acc += XXH3_mix16B(input+len-16, secret+16, seed);
-
-        return XXH3_avalanche(acc);
-    }
-}
-
-#define XXH3_MIDSIZE_MAX 240
-
-XXH_NO_INLINE XXH64_hash_t
-XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
-                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
-                      XXH64_hash_t seed)
-{
-    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
-    XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
-
-    #define XXH3_MIDSIZE_STARTOFFSET 3
-    #define XXH3_MIDSIZE_LASTOFFSET  17
-
-    {   xxh_u64 acc = len * PRIME64_1;
-        int const nbRounds = (int)len / 16;
-        int i;
-        for (i=0; i<8; i++) {
-            acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
-        }
-        acc = XXH3_avalanche(acc);
-        XXH_ASSERT(nbRounds >= 8);
-#if defined(__clang__)                                /* Clang */ \
-    && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
-    && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
-        /*
-         * UGLY HACK:
-         * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
-         * In everywhere else, it uses scalar code.
-         *
-         * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
-         * would still be slower than UMAAL (see XXH_mult64to128).
-         *
-         * Unfortunately, Clang doesn't handle the long multiplies properly and
-         * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
-         * scalarized into an ugly mess of VMOV.32 instructions.
-         *
-         * This mess is difficult to avoid without turning autovectorization
-         * off completely, but they are usually relatively minor and/or not
-         * worth it to fix.
-         *
-         * This loop is the easiest to fix, as unlike XXH32, this pragma
-         * _actually works_ because it is a loop vectorization instead of an
-         * SLP vectorization.
-         */
-        #pragma clang loop vectorize(disable)
-#endif
-        for (i=8 ; i < nbRounds; i++) {
-            acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
-        }
-        /* last bytes */
-        acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
-        return XXH3_avalanche(acc);
-    }
-}
-
-
-/* ===    Long Keys    === */
-
-#define STRIPE_LEN 64
-#define XXH_SECRET_CONSUME_RATE 8   /* nb of secret bytes consumed at each accumulation */
-#define ACC_NB (STRIPE_LEN / sizeof(xxh_u64))
-
-typedef enum { XXH3_acc_64bits, XXH3_acc_128bits } XXH3_accWidth_e;
-
-/*
- * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
- *
- * It is a hardened version of UMAC, based off of FARSH's implementation.
- *
- * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
- * implementations, and it is ridiculously fast.
- *
- * We harden it by mixing the original input to the accumulators as well as the product.
- *
- * This means that in the (relatively likely) case of a multiply by zero, the
- * original input is preserved.
- *
- * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
- * cross-pollination, as otherwise the upper and lower halves would be
- * essentially independent.
- *
- * This doesn't matter on 64-bit hashes since they all get merged together in
- * the end, so we skip the extra step.
- *
- * Both XXH3_64bits and XXH3_128bits use this subroutine.
- */
-XXH_FORCE_INLINE void
-XXH3_accumulate_512(      void* XXH_RESTRICT acc,
-                    const void* XXH_RESTRICT input,
-                    const void* XXH_RESTRICT secret,
-                    XXH3_accWidth_e accWidth)
-{
-#if (XXH_VECTOR == XXH_AVX2)
-
-    XXH_ASSERT((((size_t)acc) & 31) == 0);
-    {   XXH_ALIGN(32) __m256i* const xacc    =       (__m256i *) acc;
-        /* Unaligned. This is mainly for pointer arithmetic, and because
-         * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason. */
-        const         __m256i* const xinput  = (const __m256i *) input;
-        /* Unaligned. This is mainly for pointer arithmetic, and because
-         * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
-        const         __m256i* const xsecret = (const __m256i *) secret;
-
-        size_t i;
-        for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
-            /* data_vec    = xinput[i]; */
-            __m256i const data_vec    = _mm256_loadu_si256    (xinput+i);
-            /* key_vec     = xsecret[i]; */
-            __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
-            /* data_key    = data_vec ^ key_vec; */
-            __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
-            /* data_key_lo = data_key >> 32; */
-            __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
-            /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
-            __m256i const product     = _mm256_mul_epu32     (data_key, data_key_lo);
-            if (accWidth == XXH3_acc_128bits) {
-                /* xacc[i] += swap(data_vec); */
-                __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
-                __m256i const sum       = _mm256_add_epi64(xacc[i], data_swap);
-                /* xacc[i] += product; */
-                xacc[i] = _mm256_add_epi64(product, sum);
-            } else {  /* XXH3_acc_64bits */
-                /* xacc[i] += data_vec; */
-                __m256i const sum = _mm256_add_epi64(xacc[i], data_vec);
-                /* xacc[i] += product; */
-                xacc[i] = _mm256_add_epi64(product, sum);
-            }
-    }   }
-
-#elif (XXH_VECTOR == XXH_SSE2)
-
-    /* SSE2 is just a half-scale version of the AVX2 version. */
-    XXH_ASSERT((((size_t)acc) & 15) == 0);
-    {   XXH_ALIGN(16) __m128i* const xacc    =       (__m128i *) acc;
-        /* Unaligned. This is mainly for pointer arithmetic, and because
-         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
-        const         __m128i* const xinput  = (const __m128i *) input;
-        /* Unaligned. This is mainly for pointer arithmetic, and because
-         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
-        const         __m128i* const xsecret = (const __m128i *) secret;
-
-        size_t i;
-        for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
-            /* data_vec    = xinput[i]; */
-            __m128i const data_vec    = _mm_loadu_si128   (xinput+i);
-            /* key_vec     = xsecret[i]; */
-            __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
-            /* data_key    = data_vec ^ key_vec; */
-            __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
-            /* data_key_lo = data_key >> 32; */
-            __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
-            /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
-            __m128i const product     = _mm_mul_epu32     (data_key, data_key_lo);
-            if (accWidth == XXH3_acc_128bits) {
-                /* xacc[i] += swap(data_vec); */
-                __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
-                __m128i const sum       = _mm_add_epi64(xacc[i], data_swap);
-                /* xacc[i] += product; */
-                xacc[i] = _mm_add_epi64(product, sum);
-            } else {  /* XXH3_acc_64bits */
-                /* xacc[i] += data_vec; */
-                __m128i const sum = _mm_add_epi64(xacc[i], data_vec);
-                /* xacc[i] += product; */
-                xacc[i] = _mm_add_epi64(product, sum);
-            }
-    }   }
-
-#elif (XXH_VECTOR == XXH_NEON)
-
-    XXH_ASSERT((((size_t)acc) & 15) == 0);
-    {
-        XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc;
-        /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
-        uint8_t const* const xinput = (const uint8_t *) input;
-        uint8_t const* const xsecret  = (const uint8_t *) secret;
-
-        size_t i;
-        for (i=0; i < STRIPE_LEN / sizeof(uint64x2_t); i++) {
-            /* data_vec = xinput[i]; */
-            uint8x16_t data_vec    = vld1q_u8(xinput  + (i * 16));
-            /* key_vec  = xsecret[i];  */
-            uint8x16_t key_vec     = vld1q_u8(xsecret + (i * 16));
-            uint64x2_t data_key;
-            uint32x2_t data_key_lo, data_key_hi;
-            if (accWidth == XXH3_acc_64bits) {
-                /* xacc[i] += data_vec; */
-                xacc[i] = vaddq_u64 (xacc[i], vreinterpretq_u64_u8(data_vec));
-            } else {  /* XXH3_acc_128bits */
-                /* xacc[i] += swap(data_vec); */
-                uint64x2_t const data64  = vreinterpretq_u64_u8(data_vec);
-                uint64x2_t const swapped = vextq_u64(data64, data64, 1);
-                xacc[i] = vaddq_u64 (xacc[i], swapped);
-            }
-            /* data_key = data_vec ^ key_vec; */
-            data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
-            /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
-             * data_key_hi = (uint32x2_t) (data_key >> 32);
-             * data_key = UNDEFINED; */
-            XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
-            /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
-            xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
-
-        }
-    }
-
-#elif (XXH_VECTOR == XXH_VSX)
-          xxh_u64x2* const xacc     =       (xxh_u64x2*) acc;    /* presumed aligned */
-    xxh_u64x2 const* const xinput   = (xxh_u64x2 const*) input;   /* no alignment restriction */
-    xxh_u64x2 const* const xsecret  = (xxh_u64x2 const*) secret;    /* no alignment restriction */
-    xxh_u64x2 const v32 = { 32, 32 };
-    size_t i;
-    for (i = 0; i < STRIPE_LEN / sizeof(xxh_u64x2); i++) {
-        /* data_vec = xinput[i]; */
-        xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
-        /* key_vec = xsecret[i]; */
-        xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i);
-        xxh_u64x2 const data_key = data_vec ^ key_vec;
-        /* shuffled = (data_key << 32) | (data_key >> 32); */
-        xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
-        /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
-        xxh_u64x2 const product  = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
-        xacc[i] += product;
-
-        if (accWidth == XXH3_acc_64bits) {
-            xacc[i] += data_vec;
-        } else {  /* XXH3_acc_128bits */
-            /* swap high and low halves */
-#ifdef __s390x__
-            xxh_u64x2 const data_swapped = vec_permi(data_vec, data_vec, 2);
-#else
-            xxh_u64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2);
-#endif
-            xacc[i] += data_swapped;
-        }
-    }
-
-#else   /* scalar variant of Accumulator - universal */
-
-    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
-    const xxh_u8* const xinput  = (const xxh_u8*) input;  /* no alignment restriction */
-    const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
-    size_t i;
-    XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
-    for (i=0; i < ACC_NB; i++) {
-        xxh_u64 const data_val = XXH_readLE64(xinput + 8*i);
-        xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8);
-
-        if (accWidth == XXH3_acc_64bits) {
-            xacc[i] += data_val;
-        } else {
-            xacc[i ^ 1] += data_val; /* swap adjacent lanes */
-        }
-        xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
-    }
-#endif
-}
-
-/*
- * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
- *
- * Multiplication isn't perfect, as explained by Google in HighwayHash:
- *
- *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
- *  // varying degrees. In descending order of goodness, bytes
- *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
- *  // As expected, the upper and lower bytes are much worse.
- *
- * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
- *
- * Since our algorithm uses a pseudorandom secret to add some variance into the
- * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
- *
- * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
- * extraction.
- *
- * Both XXH3_64bits and XXH3_128bits use this subroutine.
- */
-XXH_FORCE_INLINE void
-XXH3_scrambleAcc(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
-{
-#if (XXH_VECTOR == XXH_AVX2)
-
-    XXH_ASSERT((((size_t)acc) & 31) == 0);
-    {   XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc;
-        /* Unaligned. This is mainly for pointer arithmetic, and because
-         * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
-        const         __m256i* const xsecret = (const __m256i *) secret;
-        const __m256i prime32 = _mm256_set1_epi32((int)PRIME32_1);
-
-        size_t i;
-        for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
-            /* xacc[i] ^= (xacc[i] >> 47) */
-            __m256i const acc_vec     = xacc[i];
-            __m256i const shifted     = _mm256_srli_epi64    (acc_vec, 47);
-            __m256i const data_vec    = _mm256_xor_si256     (acc_vec, shifted);
-            /* xacc[i] ^= xsecret; */
-            __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
-            __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
-
-            /* xacc[i] *= PRIME32_1; */
-            __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
-            __m256i const prod_lo     = _mm256_mul_epu32     (data_key, prime32);
-            __m256i const prod_hi     = _mm256_mul_epu32     (data_key_hi, prime32);
-            xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
-        }
-    }
-
-#elif (XXH_VECTOR == XXH_SSE2)
-
-    XXH_ASSERT((((size_t)acc) & 15) == 0);
-    {   XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc;
-        /* Unaligned. This is mainly for pointer arithmetic, and because
-         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
-        const         __m128i* const xsecret = (const __m128i *) secret;
-        const __m128i prime32 = _mm_set1_epi32((int)PRIME32_1);
-
-        size_t i;
-        for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
-            /* xacc[i] ^= (xacc[i] >> 47) */
-            __m128i const acc_vec     = xacc[i];
-            __m128i const shifted     = _mm_srli_epi64    (acc_vec, 47);
-            __m128i const data_vec    = _mm_xor_si128     (acc_vec, shifted);
-            /* xacc[i] ^= xsecret[i]; */
-            __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
-            __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
-
-            /* xacc[i] *= PRIME32_1; */
-            __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
-            __m128i const prod_lo     = _mm_mul_epu32     (data_key, prime32);
-            __m128i const prod_hi     = _mm_mul_epu32     (data_key_hi, prime32);
-            xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
-        }
-    }
-
-#elif (XXH_VECTOR == XXH_NEON)
-
-    XXH_ASSERT((((size_t)acc) & 15) == 0);
-
-    {   uint64x2_t* xacc       = (uint64x2_t*) acc;
-        uint8_t const* xsecret = (uint8_t const*) secret;
-        uint32x2_t prime       = vdup_n_u32 (PRIME32_1);
-
-        size_t i;
-        for (i=0; i < STRIPE_LEN/sizeof(uint64x2_t); i++) {
-            /* xacc[i] ^= (xacc[i] >> 47); */
-            uint64x2_t acc_vec  = xacc[i];
-            uint64x2_t shifted  = vshrq_n_u64 (acc_vec, 47);
-            uint64x2_t data_vec = veorq_u64   (acc_vec, shifted);
-
-            /* xacc[i] ^= xsecret[i]; */
-            uint8x16_t key_vec  = vld1q_u8(xsecret + (i * 16));
-            uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec));
-
-            /* xacc[i] *= PRIME32_1 */
-            uint32x2_t data_key_lo, data_key_hi;
-            /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
-             * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
-             * xacc[i] = UNDEFINED; */
-            XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
-            {   /*
-                 * prod_hi = (data_key >> 32) * PRIME32_1;
-                 *
-                 * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
-                 * incorrectly "optimize" this:
-                 *   tmp     = vmul_u32(vmovn_u64(a), vmovn_u64(b));
-                 *   shifted = vshll_n_u32(tmp, 32);
-                 * to this:
-                 *   tmp     = "vmulq_u64"(a, b); // no such thing!
-                 *   shifted = vshlq_n_u64(tmp, 32);
-                 *
-                 * However, unlike SSE, Clang lacks a 64-bit multiply routine
-                 * for NEON, and it scalarizes two 64-bit multiplies instead.
-                 *
-                 * vmull_u32 has the same timing as vmul_u32, and it avoids
-                 * this bug completely.
-                 * See https://bugs.llvm.org/show_bug.cgi?id=39967
-                 */
-                uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
-                /* xacc[i] = prod_hi << 32; */
-                xacc[i] = vshlq_n_u64(prod_hi, 32);
-                /* xacc[i] += (prod_hi & 0xFFFFFFFF) * PRIME32_1; */
-                xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
-            }
-    }   }
-
-#elif (XXH_VECTOR == XXH_VSX)
-
-    XXH_ASSERT((((size_t)acc) & 15) == 0);
-
-    {         xxh_u64x2* const xacc    =       (xxh_u64x2*) acc;
-        const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
-        /* constants */
-        xxh_u64x2 const v32  = { 32, 32 };
-        xxh_u64x2 const v47 = { 47, 47 };
-        xxh_u32x4 const prime = { PRIME32_1, PRIME32_1, PRIME32_1, PRIME32_1 };
-        size_t i;
-        for (i = 0; i < STRIPE_LEN / sizeof(xxh_u64x2); i++) {
-            /* xacc[i] ^= (xacc[i] >> 47); */
-            xxh_u64x2 const acc_vec  = xacc[i];
-            xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
-
-            /* xacc[i] ^= xsecret[i]; */
-            xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i);
-            xxh_u64x2 const data_key = data_vec ^ key_vec;
-
-            /* xacc[i] *= PRIME32_1 */
-            /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF);  */
-            xxh_u64x2 const prod_even  = XXH_vec_mule((xxh_u32x4)data_key, prime);
-            /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */
-            xxh_u64x2 const prod_odd  = XXH_vec_mulo((xxh_u32x4)data_key, prime);
-            xacc[i] = prod_odd + (prod_even << v32);
-    }   }
-
-#else   /* scalar variant of Scrambler - universal */
-
-    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc;   /* presumed aligned */
-    const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
-    size_t i;
-    XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
-    for (i=0; i < ACC_NB; i++) {
-        xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i);
-        xxh_u64 acc64 = xacc[i];
-        acc64 = XXH_xorshift64(acc64, 47);
-        acc64 ^= key64;
-        acc64 *= PRIME32_1;
-        xacc[i] = acc64;
-    }
-
-#endif
-}
-
-#define XXH_PREFETCH_DIST 384
-
-/*
- * XXH3_accumulate()
- * Loops over XXH3_accumulate_512().
- * Assumption: nbStripes will not overflow the secret size
- */
-XXH_FORCE_INLINE void
-XXH3_accumulate(     xxh_u64* XXH_RESTRICT acc,
-                const xxh_u8* XXH_RESTRICT input,
-                const xxh_u8* XXH_RESTRICT secret,
-                      size_t nbStripes,
-                      XXH3_accWidth_e accWidth)
-{
-    size_t n;
-    for (n = 0; n < nbStripes; n++ ) {
-        const xxh_u8* const in = input + n*STRIPE_LEN;
-        XXH_PREFETCH(in + XXH_PREFETCH_DIST);
-        XXH3_accumulate_512(acc,
-                            in,
-                            secret + n*XXH_SECRET_CONSUME_RATE,
-                            accWidth);
-    }
-}
-
-XXH_FORCE_INLINE void
-XXH3_hashLong_internal_loop( xxh_u64* XXH_RESTRICT acc,
-                      const xxh_u8* XXH_RESTRICT input, size_t len,
-                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
-                            XXH3_accWidth_e accWidth)
-{
-    size_t const nb_rounds = (secretSize - STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
-    size_t const block_len = STRIPE_LEN * nb_rounds;
-    size_t const nb_blocks = len / block_len;
-
-    size_t n;
-
-    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
-
-    for (n = 0; n < nb_blocks; n++) {
-        XXH3_accumulate(acc, input + n*block_len, secret, nb_rounds, accWidth);
-        XXH3_scrambleAcc(acc, secret + secretSize - STRIPE_LEN);
-    }
-
-    /* last partial block */
-    XXH_ASSERT(len > STRIPE_LEN);
-    {   size_t const nbStripes = (len - (block_len * nb_blocks)) / STRIPE_LEN;
-        XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
-        XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, accWidth);
-
-        /* last stripe */
-        if (len & (STRIPE_LEN - 1)) {
-            const xxh_u8* const p = input + len - STRIPE_LEN;
-            /* Do not align on 8, so that the secret is different from the scrambler */
-#define XXH_SECRET_LASTACC_START 7
-            XXH3_accumulate_512(acc, p, secret + secretSize - STRIPE_LEN - XXH_SECRET_LASTACC_START, accWidth);
-    }   }
-}
-
-XXH_FORCE_INLINE xxh_u64
-XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
-{
-    return XXH3_mul128_fold64(
-               acc[0] ^ XXH_readLE64(secret),
-               acc[1] ^ XXH_readLE64(secret+8) );
-}
-
-static XXH64_hash_t
-XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
-{
-    xxh_u64 result64 = start;
-    size_t i = 0;
-
-    for (i = 0; i < 4; i++) {
-        result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
-#if defined(__clang__)                                /* Clang */ \
-    && (defined(__arm__) || defined(__thumb__))       /* ARMv7 */ \
-    && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \
-    && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
-        /*
-         * UGLY HACK:
-         * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
-         * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
-         * XXH3_64bits, len == 256, Snapdragon 835:
-         *   without hack: 2063.7 MB/s
-         *   with hack:    2560.7 MB/s
-         */
-        __asm__("" : "+r" (result64));
-#endif
-    }
-
-    return XXH3_avalanche(result64);
-}
-
-#define XXH3_INIT_ACC { PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3, \
-                        PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1 }
-
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_hashLong_64b_internal(const xxh_u8* XXH_RESTRICT input, size_t len,
-                           const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
-{
-    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXH3_INIT_ACC;
-
-    XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXH3_acc_64bits);
-
-    /* converge into final hash */
-    XXH_STATIC_ASSERT(sizeof(acc) == 64);
-    /* do not align on 8, so that the secret is different from the accumulator */
-#define XXH_SECRET_MERGEACCS_START 11
-    XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
-    return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * PRIME64_1);
-}
-
-XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
-{
-    if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
-    memcpy(dst, &v64, sizeof(v64));
-}
-
-/* XXH3_initCustomSecret() :
- * destination `customSecret` is presumed allocated and same size as `kSecret`.
- */
-XXH_FORCE_INLINE void XXH3_initCustomSecret(xxh_u8* XXH_RESTRICT customSecret, xxh_u64 seed64)
-{
-    int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
-    int i;
-    /*
-     * We need a separate pointer for the hack below.
-     * Any decent compiler will optimize this out otherwise.
-     */
-    const xxh_u8 *kSecretPtr = kSecret;
-
-    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
-
-#if defined(__clang__) && defined(__aarch64__)
-    /*
-     * UGLY HACK:
-     * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
-     * placed sequentially, in order, at the top of the unrolled loop.
-     *
-     * While MOVK is great for generating constants (2 cycles for a 64-bit
-     * constant compared to 4 cycles for LDR), long MOVK chains stall the
-     * integer pipelines:
-     *   I   L   S
-     * MOVK
-     * MOVK
-     * MOVK
-     * MOVK
-     * ADD
-     * SUB      STR
-     *          STR
-     * By forcing loads from memory (as the asm line causes Clang to assume
-     * that kSecretPtr has been changed), the pipelines are used more efficiently:
-     *   I   L   S
-     *      LDR
-     *  ADD LDR
-     *  SUB     STR
-     *          STR
-     * XXH3_64bits_withSeed, len == 256, Snapdragon 835
-     *   without hack: 2654.4 MB/s
-     *   with hack:    3202.9 MB/s
-     */
-    __asm__("" : "+r" (kSecretPtr));
-#endif
-    /*
-     * Note: in debug mode, this overrides the asm optimization
-     * and Clang will emit MOVK chains again.
-     */
-    XXH_ASSERT(kSecretPtr == kSecret);
-
-    for (i=0; i < nbRounds; i++) {
-        /*
-         * The asm hack causes Clang to assume that kSecretPtr aliases with
-         * customSecret, and on aarch64, this prevented LDP from merging two
-         * loads together for free. Putting the loads together before the stores
-         * properly generates LDP.
-         */
-        xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i)     + seed64;
-        xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
-        XXH_writeLE64(customSecret + 16*i,     lo);
-        XXH_writeLE64(customSecret + 16*i + 8, hi);
-    }
-}
-
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined. Not sure
- * why (uop cache maybe?), but the difference is large and easily measurable.
- */
-XXH_NO_INLINE XXH64_hash_t
-XXH3_hashLong_64b_defaultSecret(const xxh_u8* XXH_RESTRICT input, size_t len)
-{
-    return XXH3_hashLong_64b_internal(input, len, kSecret, sizeof(kSecret));
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined. Not sure
- * why (uop cache maybe?), but the difference is large and easily measurable.
- */
-XXH_NO_INLINE XXH64_hash_t
-XXH3_hashLong_64b_withSecret(const xxh_u8* XXH_RESTRICT input, size_t len,
-                             const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
-{
-    return XXH3_hashLong_64b_internal(input, len, secret, secretSize);
-}
-
-/*
- * XXH3_hashLong_64b_withSeed():
- * Generate a custom key based on alteration of default kSecret with the seed,
- * and then use this key for long mode hashing.
- *
- * This operation is decently fast but nonetheless costs a little bit of time.
- * Try to avoid it whenever possible (typically when seed==0).
- *
- * It's important for performance that XXH3_hashLong is not inlined. Not sure
- * why (uop cache maybe?), but the difference is large and easily measurable.
- */
-XXH_NO_INLINE XXH64_hash_t
-XXH3_hashLong_64b_withSeed(const xxh_u8* input, size_t len, XXH64_hash_t seed)
-{
-    XXH_ALIGN(8) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
-    if (seed==0) return XXH3_hashLong_64b_defaultSecret(input, len);
-    XXH3_initCustomSecret(secret, seed);
-    return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret));
-}
-
-/* ===   Public entry point   === */
-
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
-{
-    if (len <= 16)
-        return XXH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, 0);
-    if (len <= 128)
-        return XXH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
-    if (len <= XXH3_MIDSIZE_MAX)
-         return XXH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
-    return XXH3_hashLong_64b_defaultSecret((const xxh_u8*)input, len);
-}
-
-XXH_PUBLIC_API XXH64_hash_t
-XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
-{
-    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
-    /*
-     * If an action is to be taken if `secret` conditions are not respected,
-     * it should be done here.
-     * For now, it's a contract pre-condition.
-     * Adding a check and a branch here would cost performance at every hash.
-     */
-    if (len <= 16)
-        return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0);
-    if (len <= 128)
-        return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
-    if (len <= XXH3_MIDSIZE_MAX)
-        return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
-    return XXH3_hashLong_64b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize);
-}
-
-XXH_PUBLIC_API XXH64_hash_t
-XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
-{
-    if (len <= 16)
-        return XXH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, seed);
-    if (len <= 128)
-        return XXH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
-    if (len <= XXH3_MIDSIZE_MAX)
-        return XXH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
-    return XXH3_hashLong_64b_withSeed((const xxh_u8*)input, len, seed);
-}
-
-/* ===   XXH3 streaming   === */
-
-
-/*
- * Malloc's a pointer that is always aligned to align.
- *
- * This must be freed with `XXH_alignedFree()`.
- *
- * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
- * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
- * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
- *
- * This underalignment previously caused a rather obvious crash which went
- * completely unnoticed due to XXH3_createState() not actually being tested.
- * Credit to RedSpah for noticing this bug.
- *
- * The alignment is done manually: Functions like posix_memalign or _mm_malloc
- * are avoided: To maintain portability, we would have to write a fallback
- * like this anyways, and besides, testing for the existence of library
- * functions without relying on external build tools is impossible.
- *
- * The method is simple: Overallocate, manually align, and store the offset
- * to the original behind the returned pointer.
- *
- * Align must be a power of 2 and 8 <= align <= 128.
- */
-static void* XXH_alignedMalloc(size_t s, size_t align)
-{
-    XXH_ASSERT(align <= 128 && align >= 8); /* range check */
-    XXH_ASSERT((align & (align-1)) == 0);   /* power of 2 */
-    XXH_ASSERT(s != 0 && s < (s + align));  /* empty/overflow */
-    {   /* Overallocate to make room for manual realignment and an offset byte */
-        xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
-        if (base != NULL) {
-            /*
-             * Get the offset needed to align this pointer.
-             *
-             * Even if the returned pointer is aligned, there will always be
-             * at least one byte to store the offset to the original pointer.
-             */
-            size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
-            /* Add the offset for the now-aligned pointer */
-            xxh_u8* ptr = base + offset;
-
-            XXH_ASSERT((size_t)ptr % align == 0);
-
-            /* Store the offset immediately before the returned pointer. */
-            ptr[-1] = (xxh_u8)offset;
-            return ptr;
-        }
-        return NULL;
-    }
-}
-/*
- * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
- * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
- */
-static void XXH_alignedFree(void* p)
-{
-    if (p != NULL) {
-        xxh_u8* ptr = (xxh_u8*)p;
-        /* Get the offset byte we added in XXH_malloc. */
-        xxh_u8 offset = ptr[-1];
-        /* Free the original malloc'd pointer */
-        xxh_u8* base = ptr - offset;
-        XXH_free(base);
-    }
-}
-XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
-{
-    return (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
-{
-    XXH_alignedFree(statePtr);
-    return XXH_OK;
-}
-
-XXH_PUBLIC_API void
-XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
-{
-    memcpy(dst_state, src_state, sizeof(*dst_state));
-}
-
-static void
-XXH3_64bits_reset_internal(XXH3_state_t* statePtr,
-                           XXH64_hash_t seed,
-                           const xxh_u8* secret, size_t secretSize)
-{
-    XXH_ASSERT(statePtr != NULL);
-    memset(statePtr, 0, sizeof(*statePtr));
-    statePtr->acc[0] = PRIME32_3;
-    statePtr->acc[1] = PRIME64_1;
-    statePtr->acc[2] = PRIME64_2;
-    statePtr->acc[3] = PRIME64_3;
-    statePtr->acc[4] = PRIME64_4;
-    statePtr->acc[5] = PRIME32_2;
-    statePtr->acc[6] = PRIME64_5;
-    statePtr->acc[7] = PRIME32_1;
-    statePtr->seed = seed;
-    XXH_ASSERT(secret != NULL);
-    statePtr->secret = secret;
-    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
-    statePtr->secretLimit = (XXH32_hash_t)(secretSize - STRIPE_LEN);
-    statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_64bits_reset(XXH3_state_t* statePtr)
-{
-    if (statePtr == NULL) return XXH_ERROR;
-    XXH3_64bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE);
-    return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
-{
-    if (statePtr == NULL) return XXH_ERROR;
-    XXH3_64bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize);
-    if (secret == NULL) return XXH_ERROR;
-    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
-    return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
-{
-    if (statePtr == NULL) return XXH_ERROR;
-    XXH3_64bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE);
-    XXH3_initCustomSecret(statePtr->customSecret, seed);
-    statePtr->secret = statePtr->customSecret;
-    return XXH_OK;
-}
-
-XXH_FORCE_INLINE void
-XXH3_consumeStripes( xxh_u64* acc,
-                    XXH32_hash_t* nbStripesSoFarPtr, XXH32_hash_t nbStripesPerBlock,
-                    const xxh_u8* input, size_t totalStripes,
-                    const xxh_u8* secret, size_t secretLimit,
-                    XXH3_accWidth_e accWidth)
-{
-    XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
-    if (nbStripesPerBlock - *nbStripesSoFarPtr <= totalStripes) {
-        /* need a scrambling operation */
-        size_t const nbStripes = nbStripesPerBlock - *nbStripesSoFarPtr;
-        XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, accWidth);
-        XXH3_scrambleAcc(acc, secret + secretLimit);
-        XXH3_accumulate(acc, input + nbStripes * STRIPE_LEN, secret, totalStripes - nbStripes, accWidth);
-        *nbStripesSoFarPtr = (XXH32_hash_t)(totalStripes - nbStripes);
-    } else {
-        XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, totalStripes, accWidth);
-        *nbStripesSoFarPtr += (XXH32_hash_t)totalStripes;
-    }
-}
-
-/*
- * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
- */
-XXH_FORCE_INLINE XXH_errorcode
-XXH3_update(XXH3_state_t* state, const xxh_u8* input, size_t len, XXH3_accWidth_e accWidth)
-{
-    if (input==NULL)
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
-        return XXH_OK;
-#else
-        return XXH_ERROR;
-#endif
-
-    {   const xxh_u8* const bEnd = input + len;
-
-        state->totalLen += len;
-
-        if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) {  /* fill in tmp buffer */
-            XXH_memcpy(state->buffer + state->bufferedSize, input, len);
-            state->bufferedSize += (XXH32_hash_t)len;
-            return XXH_OK;
-        }
-        /* input is now > XXH3_INTERNALBUFFER_SIZE */
-
-        #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / STRIPE_LEN)
-        XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % STRIPE_LEN == 0);   /* clean multiple */
-
-        /*
-         * There is some input left inside the internal buffer.
-         * Fill it, then consume it.
-         */
-        if (state->bufferedSize) {
-            size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
-            XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
-            input += loadSize;
-            XXH3_consumeStripes(state->acc,
-                               &state->nbStripesSoFar, state->nbStripesPerBlock,
-                                state->buffer, XXH3_INTERNALBUFFER_STRIPES,
-                                state->secret, state->secretLimit,
-                                accWidth);
-            state->bufferedSize = 0;
-        }
-
-        /* Consume input by full buffer quantities */
-        if (input+XXH3_INTERNALBUFFER_SIZE <= bEnd) {
-            const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
-            do {
-                XXH3_consumeStripes(state->acc,
-                                   &state->nbStripesSoFar, state->nbStripesPerBlock,
-                                    input, XXH3_INTERNALBUFFER_STRIPES,
-                                    state->secret, state->secretLimit,
-                                    accWidth);
-                input += XXH3_INTERNALBUFFER_SIZE;
-            } while (input<=limit);
-        }
-
-        if (input < bEnd) { /* Some remaining input: buffer it */
-            XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
-            state->bufferedSize = (XXH32_hash_t)(bEnd-input);
-        }
-    }
-
-    return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
-{
-    return XXH3_update(state, (const xxh_u8*)input, len, XXH3_acc_64bits);
-}
-
-
-XXH_FORCE_INLINE void
-XXH3_digest_long (XXH64_hash_t* acc, const XXH3_state_t* state, XXH3_accWidth_e accWidth)
-{
-    /*
-     * Digest on a local copy. This way, the state remains unaltered, and it can
-     * continue ingesting more input afterwards.
-     */
-    memcpy(acc, state->acc, sizeof(state->acc));
-    if (state->bufferedSize >= STRIPE_LEN) {
-        size_t const totalNbStripes = state->bufferedSize / STRIPE_LEN;
-        XXH32_hash_t nbStripesSoFar = state->nbStripesSoFar;
-        XXH3_consumeStripes(acc,
-                           &nbStripesSoFar, state->nbStripesPerBlock,
-                            state->buffer, totalNbStripes,
-                            state->secret, state->secretLimit,
-                            accWidth);
-        if (state->bufferedSize % STRIPE_LEN) {  /* one last partial stripe */
-            XXH3_accumulate_512(acc,
-                                state->buffer + state->bufferedSize - STRIPE_LEN,
-                                state->secret + state->secretLimit - XXH_SECRET_LASTACC_START,
-                                accWidth);
-        }
-    } else {  /* bufferedSize < STRIPE_LEN */
-        if (state->bufferedSize) { /* one last stripe */
-            xxh_u8 lastStripe[STRIPE_LEN];
-            size_t const catchupSize = STRIPE_LEN - state->bufferedSize;
-            memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
-            memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
-            XXH3_accumulate_512(acc,
-                                lastStripe,
-                                state->secret + state->secretLimit - XXH_SECRET_LASTACC_START,
-                                accWidth);
-    }   }
-}
-
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
-{
-    if (state->totalLen > XXH3_MIDSIZE_MAX) {
-        XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB];
-        XXH3_digest_long(acc, state, XXH3_acc_64bits);
-        return XXH3_mergeAccs(acc,
-                              state->secret + XXH_SECRET_MERGEACCS_START,
-                              (xxh_u64)state->totalLen * PRIME64_1);
-    }
-    /* len <= XXH3_MIDSIZE_MAX: short code */
-    if (state->seed)
-        return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
-    return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
-                                  state->secret, state->secretLimit + STRIPE_LEN);
-}
-
-/* ==========================================
- * XXH3 128 bits (a.k.a XXH128)
- * ==========================================
- * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
- * even without counting the significantly larger output size.
- *
- * For example, extra steps are taken to avoid the seed-dependent collisions
- * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
- *
- * This strength naturally comes at the cost of some speed, especially on short
- * lengths. Note that longer hashes are about as fast as the 64-bit version
- * due to it using only a slight modification of the 64-bit loop.
- *
- * XXH128 is also more oriented towards 64-bit machines. It is still extremely
- * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
- */
-
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
-    /* A doubled version of 1to3_64b with different constants. */
-    XXH_ASSERT(input != NULL);
-    XXH_ASSERT(1 <= len && len <= 3);
-    XXH_ASSERT(secret != NULL);
-    /*
-     * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
-     * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
-     * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
-     */
-    {   xxh_u8 const c1 = input[0];
-        xxh_u8 const c2 = input[len >> 1];
-        xxh_u8 const c3 = input[len - 1];
-        xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
-                                | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
-        xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
-        xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
-        xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
-        xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
-        xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
-        xxh_u64 const mixedl = keyed_lo * PRIME64_1;
-        xxh_u64 const mixedh = keyed_hi * PRIME64_5;
-        XXH128_hash_t h128;
-        h128.low64  = XXH3_avalanche(mixedl);
-        h128.high64 = XXH3_avalanche(mixedh);
-        return h128;
-    }
-}
-
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
-    XXH_ASSERT(input != NULL);
-    XXH_ASSERT(secret != NULL);
-    XXH_ASSERT(4 <= len && len <= 8);
-    seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
-    {   xxh_u32 const input_lo = XXH_readLE32(input);
-        xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
-        xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
-        xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
-        xxh_u64 const keyed = input_64 ^ bitflip;
-
-        /* Shift len to the left to ensure it is even, this avoids even multiplies. */
-        XXH128_hash_t m128 = XXH_mult64to128(keyed, PRIME64_1 + (len << 2));
-
-        m128.high64 += (m128.low64 << 1);
-        m128.low64  ^= (m128.high64 >> 3);
-
-        m128.low64   = XXH_xorshift64(m128.low64, 35);
-        m128.low64  *= 0x9FB21C651E98DF25ULL;
-        m128.low64   = XXH_xorshift64(m128.low64, 28);
-        m128.high64  = XXH3_avalanche(m128.high64);
-        return m128;
-    }
-}
-
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
-    XXH_ASSERT(input != NULL);
-    XXH_ASSERT(secret != NULL);
-    XXH_ASSERT(9 <= len && len <= 16);
-    {   xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
-        xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
-        xxh_u64 const input_lo = XXH_readLE64(input);
-        xxh_u64       input_hi = XXH_readLE64(input + len - 8);
-        XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, PRIME64_1);
-        /*
-         * Put len in the middle of m128 to ensure that the length gets mixed to
-         * both the low and high bits in the 128x64 multiply below.
-         */
-        m128.low64 += (xxh_u64)(len - 1) << 54;
-        input_hi   ^= bitfliph;
-        /*
-         * Add the high 32 bits of input_hi to the high 32 bits of m128, then
-         * add the long product of the low 32 bits of input_hi and PRIME32_2 to
-         * the high 64 bits of m128.
-         *
-         * The best approach to this operation is different on 32-bit and 64-bit.
-         */
-        if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
-            /*
-             * 32-bit optimized version, which is more readable.
-             *
-             * On 32-bit, it removes an ADC and delays a dependency between the two
-             * halves of m128.high64, but it generates an extra mask on 64-bit.
-             */
-            m128.high64 += (input_hi & 0xFFFFFFFF00000000) + XXH_mult32to64((xxh_u32)input_hi, PRIME32_2);
-        } else {
-            /*
-             * 64-bit optimized (albeit more confusing) version.
-             *
-             * Uses some properties of addition and multiplication to remove the mask:
-             *
-             * Let:
-             *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
-             *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
-             *    c = PRIME32_2
-             *
-             *    a + (b * c)
-             * Inverse Property: x + y - x == y
-             *    a + (b * (1 + c - 1))
-             * Distributive Property: x * (y + z) == (x * y) + (x * z)
-             *    a + (b * 1) + (b * (c - 1))
-             * Identity Property: x * 1 == x
-             *    a + b + (b * (c - 1))
-             *
-             * Substitute a, b, and c:
-             *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (PRIME32_2 - 1))
-             *
-             * Since input_hi.hi + input_hi.lo == input_hi, we get this:
-             *    input_hi + ((xxh_u64)input_hi.lo * (PRIME32_2 - 1))
-             */
-            m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, PRIME32_2 - 1);
-        }
-        /* m128 ^= XXH_swap64(m128 >> 64); */
-        m128.low64  ^= XXH_swap64(m128.high64);
-
-        {   /* 128x64 multiply: h128 = m128 * PRIME64_2; */
-            XXH128_hash_t h128 = XXH_mult64to128(m128.low64, PRIME64_2);
-            h128.high64 += m128.high64 * PRIME64_2;
-
-            h128.low64   = XXH3_avalanche(h128.low64);
-            h128.high64  = XXH3_avalanche(h128.high64);
-            return h128;
-    }   }
-}
-
-/*
- * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
- */
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
-    XXH_ASSERT(len <= 16);
-    {   if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
-        if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
-        if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
-        {   XXH128_hash_t h128;
-            xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
-            xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
-            h128.low64 = XXH3_avalanche((PRIME64_1 + seed) ^ bitflipl);
-            h128.high64 = XXH3_avalanche((PRIME64_2 - seed) ^ bitfliph);
-            return h128;
-    }   }
-}
-
-/*
- * A bit slower than XXH3_mix16B, but handles multiply by zero better.
- */
-XXH_FORCE_INLINE XXH128_hash_t
-XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
-              const xxh_u8* secret, XXH64_hash_t seed)
-{
-    acc.low64  += XXH3_mix16B (input_1, secret+0, seed);
-    acc.low64  ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
-    acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
-    acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
-    return acc;
-}
-
-
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
-                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
-                      XXH64_hash_t seed)
-{
-    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
-    XXH_ASSERT(16 < len && len <= 128);
-
-    {   XXH128_hash_t acc;
-        acc.low64 = len * PRIME64_1;
-        acc.high64 = 0;
-        if (len > 32) {
-            if (len > 64) {
-                if (len > 96) {
-                    acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
-                }
-                acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
-            }
-            acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
-        }
-        acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
-        {   XXH128_hash_t h128;
-            h128.low64  = acc.low64 + acc.high64;
-            h128.high64 = (acc.low64    * PRIME64_1)
-                        + (acc.high64   * PRIME64_4)
-                        + ((len - seed) * PRIME64_2);
-            h128.low64  = XXH3_avalanche(h128.low64);
-            h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
-            return h128;
-        }
-    }
-}
-
-XXH_NO_INLINE XXH128_hash_t
-XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
-                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
-                       XXH64_hash_t seed)
-{
-    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
-    XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
-
-    {   XXH128_hash_t acc;
-        int const nbRounds = (int)len / 32;
-        int i;
-        acc.low64 = len * PRIME64_1;
-        acc.high64 = 0;
-        for (i=0; i<4; i++) {
-            acc = XXH128_mix32B(acc,
-                                input  + (32 * i),
-                                input  + (32 * i) + 16,
-                                secret + (32 * i),
-                                seed);
-        }
-        acc.low64 = XXH3_avalanche(acc.low64);
-        acc.high64 = XXH3_avalanche(acc.high64);
-        XXH_ASSERT(nbRounds >= 4);
-        for (i=4 ; i < nbRounds; i++) {
-            acc = XXH128_mix32B(acc,
-                                input + (32 * i),
-                                input + (32 * i) + 16,
-                                secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
-                                seed);
-        }
-        /* last bytes */
-        acc = XXH128_mix32B(acc,
-                            input + len - 16,
-                            input + len - 32,
-                            secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
-                            0ULL - seed);
-
-        {   XXH128_hash_t h128;
-            h128.low64  = acc.low64 + acc.high64;
-            h128.high64 = (acc.low64    * PRIME64_1)
-                        + (acc.high64   * PRIME64_4)
-                        + ((len - seed) * PRIME64_2);
-            h128.low64  = XXH3_avalanche(h128.low64);
-            h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
-            return h128;
-        }
-    }
-}
-
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_hashLong_128b_internal(const xxh_u8* XXH_RESTRICT input, size_t len,
-                            const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
-{
-    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXH3_INIT_ACC;
-
-    XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXH3_acc_128bits);
-
-    /* converge into final hash */
-    XXH_STATIC_ASSERT(sizeof(acc) == 64);
-    XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
-    {   XXH128_hash_t h128;
-        h128.low64  = XXH3_mergeAccs(acc,
-                                     secret + XXH_SECRET_MERGEACCS_START,
-                                     (xxh_u64)len * PRIME64_1);
-        h128.high64 = XXH3_mergeAccs(acc,
-                                     secret + secretSize
-                                            - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
-                                     ~((xxh_u64)len * PRIME64_2));
-        return h128;
-    }
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined. Not sure
- * why (uop cache maybe?), but the difference is large and easily measurable.
- */
-XXH_NO_INLINE XXH128_hash_t
-XXH3_hashLong_128b_defaultSecret(const xxh_u8* input, size_t len)
-{
-    return XXH3_hashLong_128b_internal(input, len, kSecret, sizeof(kSecret));
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined. Not sure
- * why (uop cache maybe?), but the difference is large and easily measurable.
- */
-XXH_NO_INLINE XXH128_hash_t
-XXH3_hashLong_128b_withSecret(const xxh_u8* input, size_t len,
-                              const xxh_u8* secret, size_t secretSize)
-{
-    return XXH3_hashLong_128b_internal(input, len, secret, secretSize);
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined. Not sure
- * why (uop cache maybe?), but the difference is large and easily measurable.
- */
-XXH_NO_INLINE XXH128_hash_t
-XXH3_hashLong_128b_withSeed(const xxh_u8* input, size_t len, XXH64_hash_t seed)
-{
-    XXH_ALIGN(8) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
-    if (seed == 0) return XXH3_hashLong_128b_defaultSecret(input, len);
-    XXH3_initCustomSecret(secret, seed);
-    return XXH3_hashLong_128b_internal(input, len, secret, sizeof(secret));
-}
-
-
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
-{
-    if (len <= 16)
-        return XXH3_len_0to16_128b((const xxh_u8*)input, len, kSecret, 0);
-    if (len <= 128)
-        return XXH3_len_17to128_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
-    if (len <= XXH3_MIDSIZE_MAX)
-        return XXH3_len_129to240_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
-    return XXH3_hashLong_128b_defaultSecret((const xxh_u8*)input, len);
-}
-
-XXH_PUBLIC_API XXH128_hash_t
-XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
-{
-    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
-    /*
-     * If an action is to be taken if `secret` conditions are not respected,
-     * it should be done here.
-     * For now, it's a contract pre-condition.
-     * Adding a check and a branch here would cost performance at every hash.
-     */
-    if (len <= 16)
-        return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0);
-    if (len <= 128)
-        return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
-    if (len <= XXH3_MIDSIZE_MAX)
-        return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
-    return XXH3_hashLong_128b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize);
-}
-
-XXH_PUBLIC_API XXH128_hash_t
-XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
-{
-    if (len <= 16)
-        return XXH3_len_0to16_128b((const xxh_u8*)input, len, kSecret, seed);
-    if (len <= 128)
-         return XXH3_len_17to128_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
-    if (len <= XXH3_MIDSIZE_MAX)
-         return XXH3_len_129to240_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
-    return XXH3_hashLong_128b_withSeed((const xxh_u8*)input, len, seed);
-}
-
-XXH_PUBLIC_API XXH128_hash_t
-XXH128(const void* input, size_t len, XXH64_hash_t seed)
-{
-    return XXH3_128bits_withSeed(input, len, seed);
-}
-
-
-/* ===   XXH3 128-bit streaming   === */
-
-/*
- * All the functions are actually the same as for 64-bit streaming variant.
- * The only difference is the finalizatiom routine.
- */
-
-static void
-XXH3_128bits_reset_internal(XXH3_state_t* statePtr,
-                            XXH64_hash_t seed,
-                            const xxh_u8* secret, size_t secretSize)
-{
-    XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize);
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_128bits_reset(XXH3_state_t* statePtr)
-{
-    if (statePtr == NULL) return XXH_ERROR;
-    XXH3_128bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE);
-    return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
-{
-    if (statePtr == NULL) return XXH_ERROR;
-    XXH3_128bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize);
-    if (secret == NULL) return XXH_ERROR;
-    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
-    return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
-{
-    if (statePtr == NULL) return XXH_ERROR;
-    XXH3_128bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE);
-    XXH3_initCustomSecret(statePtr->customSecret, seed);
-    statePtr->secret = statePtr->customSecret;
-    return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
-{
-    return XXH3_update(state, (const xxh_u8*)input, len, XXH3_acc_128bits);
-}
-
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
-{
-    if (state->totalLen > XXH3_MIDSIZE_MAX) {
-        XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB];
-        XXH3_digest_long(acc, state, XXH3_acc_128bits);
-        XXH_ASSERT(state->secretLimit + STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
-        {   XXH128_hash_t h128;
-            h128.low64  = XXH3_mergeAccs(acc,
-                                         state->secret + XXH_SECRET_MERGEACCS_START,
-                                         (xxh_u64)state->totalLen * PRIME64_1);
-            h128.high64 = XXH3_mergeAccs(acc,
-                                         state->secret + state->secretLimit + STRIPE_LEN
-                                                       - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
-                                         ~((xxh_u64)state->totalLen * PRIME64_2));
-            return h128;
-        }
-    }
-    /* len <= XXH3_MIDSIZE_MAX : short code */
-    if (state->seed)
-        return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
-    return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
-                                   state->secret, state->secretLimit + STRIPE_LEN);
-}
-
-/* 128-bit utility functions */
-
-#include <string.h>   /* memcmp, memcpy */
-
-/* return : 1 is equal, 0 if different */
-XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
-{
-    /* note : XXH128_hash_t is compact, it has no padding byte */
-    return !(memcmp(&h1, &h2, sizeof(h1)));
-}
-
-/* This prototype is compatible with stdlib's qsort().
- * return : >0 if *h128_1  > *h128_2
- *          <0 if *h128_1  < *h128_2
- *          =0 if *h128_1 == *h128_2  */
-XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
-{
-    XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
-    XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
-    int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
-    /* note : bets that, in most cases, hash values are different */
-    if (hcmp) return hcmp;
-    return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
-}
-
-
-/*======   Canonical representation   ======*/
-XXH_PUBLIC_API void
-XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
-{
-    XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
-    if (XXH_CPU_LITTLE_ENDIAN) {
-        hash.high64 = XXH_swap64(hash.high64);
-        hash.low64  = XXH_swap64(hash.low64);
-    }
-    memcpy(dst, &hash.high64, sizeof(hash.high64));
-    memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
-}
-
-XXH_PUBLIC_API XXH128_hash_t
-XXH128_hashFromCanonical(const XXH128_canonical_t* src)
-{
-    XXH128_hash_t h;
-    h.high64 = XXH_readBE64(src);
-    h.low64  = XXH_readBE64(src->digest + 8);
-    return h;
-}
-
-/* Pop our optimization override from above */
-#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
-  && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
-  && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
-#  pragma GCC pop_options
-#endif
-
-#endif  /* XXH3_H_1397135465 */

+ 6499 - 1376
blitz.mod/hash/xxhash.h

@@ -1,7 +1,7 @@
 /*
  * xxHash - Extremely Fast Hash algorithm
  * Header File
- * Copyright (C) 2012-2020 Yann Collet
+ * Copyright (C) 2012-2023 Yann Collet
  *
  * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
  *
@@ -33,43 +33,213 @@
  *   - xxHash source repository: https://github.com/Cyan4973/xxHash
  */
 
-/* TODO: update */
-/* Notice extracted from xxHash homepage:
-
-xxHash is an extremely fast hash algorithm, running at RAM speed limits.
-It also successfully passes all tests from the SMHasher suite.
-
-Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
-
-Name            Speed       Q.Score   Author
-xxHash          5.4 GB/s     10
-CrapWow         3.2 GB/s      2       Andrew
-MumurHash 3a    2.7 GB/s     10       Austin Appleby
-SpookyHash      2.0 GB/s     10       Bob Jenkins
-SBox            1.4 GB/s      9       Bret Mulvey
-Lookup3         1.2 GB/s      9       Bob Jenkins
-SuperFastHash   1.2 GB/s      1       Paul Hsieh
-CityHash64      1.05 GB/s    10       Pike & Alakuijala
-FNV             0.55 GB/s     5       Fowler, Noll, Vo
-CRC32           0.43 GB/s     9
-MD5-32          0.33 GB/s    10       Ronald L. Rivest
-SHA1-32         0.28 GB/s    10
-
-Q.Score is a measure of quality of the hash function.
-It depends on successfully passing SMHasher test set.
-10 is a perfect score.
-
-Note: SMHasher's CRC32 implementation is not the fastest one.
-Other speed-oriented implementations can be faster,
-especially in combination with PCLMUL instruction:
-https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
-
-A 64-bit version, named XXH64, is available since r35.
-It offers much better speed, but for 64-bit applications only.
-Name     Speed on 64 bits    Speed on 32 bits
-XXH64       13.8 GB/s            1.9 GB/s
-XXH32        6.8 GB/s            6.0 GB/s
-*/
+/*!
+ * @mainpage xxHash
+ *
+ * xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed
+ * limits.
+ *
+ * It is proposed in four flavors, in three families:
+ * 1. @ref XXH32_family
+ *   - Classic 32-bit hash function. Simple, compact, and runs on almost all
+ *     32-bit and 64-bit systems.
+ * 2. @ref XXH64_family
+ *   - Classic 64-bit adaptation of XXH32. Just as simple, and runs well on most
+ *     64-bit systems (but _not_ 32-bit systems).
+ * 3. @ref XXH3_family
+ *   - Modern 64-bit and 128-bit hash function family which features improved
+ *     strength and performance across the board, especially on smaller data.
+ *     It benefits greatly from SIMD and 64-bit without requiring it.
+ *
+ * Benchmarks
+ * ---
+ * The reference system uses an Intel i7-9700K CPU, and runs Ubuntu x64 20.04.
+ * The open source benchmark program is compiled with clang v10.0 using -O3 flag.
+ *
+ * | Hash Name            | ISA ext | Width | Large Data Speed | Small Data Velocity |
+ * | -------------------- | ------- | ----: | ---------------: | ------------------: |
+ * | XXH3_64bits()        | @b AVX2 |    64 |        59.4 GB/s |               133.1 |
+ * | MeowHash             | AES-NI  |   128 |        58.2 GB/s |                52.5 |
+ * | XXH3_128bits()       | @b AVX2 |   128 |        57.9 GB/s |               118.1 |
+ * | CLHash               | PCLMUL  |    64 |        37.1 GB/s |                58.1 |
+ * | XXH3_64bits()        | @b SSE2 |    64 |        31.5 GB/s |               133.1 |
+ * | XXH3_128bits()       | @b SSE2 |   128 |        29.6 GB/s |               118.1 |
+ * | RAM sequential read  |         |   N/A |        28.0 GB/s |                 N/A |
+ * | ahash                | AES-NI  |    64 |        22.5 GB/s |               107.2 |
+ * | City64               |         |    64 |        22.0 GB/s |                76.6 |
+ * | T1ha2                |         |    64 |        22.0 GB/s |                99.0 |
+ * | City128              |         |   128 |        21.7 GB/s |                57.7 |
+ * | FarmHash             | AES-NI  |    64 |        21.3 GB/s |                71.9 |
+ * | XXH64()              |         |    64 |        19.4 GB/s |                71.0 |
+ * | SpookyHash           |         |    64 |        19.3 GB/s |                53.2 |
+ * | Mum                  |         |    64 |        18.0 GB/s |                67.0 |
+ * | CRC32C               | SSE4.2  |    32 |        13.0 GB/s |                57.9 |
+ * | XXH32()              |         |    32 |         9.7 GB/s |                71.9 |
+ * | City32               |         |    32 |         9.1 GB/s |                66.0 |
+ * | Blake3*              | @b AVX2 |   256 |         4.4 GB/s |                 8.1 |
+ * | Murmur3              |         |    32 |         3.9 GB/s |                56.1 |
+ * | SipHash*             |         |    64 |         3.0 GB/s |                43.2 |
+ * | Blake3*              | @b SSE2 |   256 |         2.4 GB/s |                 8.1 |
+ * | HighwayHash          |         |    64 |         1.4 GB/s |                 6.0 |
+ * | FNV64                |         |    64 |         1.2 GB/s |                62.7 |
+ * | Blake2*              |         |   256 |         1.1 GB/s |                 5.1 |
+ * | SHA1*                |         |   160 |         0.8 GB/s |                 5.6 |
+ * | MD5*                 |         |   128 |         0.6 GB/s |                 7.8 |
+ * @note
+ *   - Hashes which require a specific ISA extension are noted. SSE2 is also noted,
+ *     even though it is mandatory on x64.
+ *   - Hashes with an asterisk are cryptographic. Note that MD5 is non-cryptographic
+ *     by modern standards.
+ *   - Small data velocity is a rough average of algorithm's efficiency for small
+ *     data. For more accurate information, see the wiki.
+ *   - More benchmarks and strength tests are found on the wiki:
+ *         https://github.com/Cyan4973/xxHash/wiki
+ *
+ * Usage
+ * ------
+ * All xxHash variants use a similar API. Changing the algorithm is a trivial
+ * substitution.
+ *
+ * @pre
+ *    For functions which take an input and length parameter, the following
+ *    requirements are assumed:
+ *    - The range from [`input`, `input + length`) is valid, readable memory.
+ *      - The only exception is if the `length` is `0`, `input` may be `NULL`.
+ *    - For C++, the objects must have the *TriviallyCopyable* property, as the
+ *      functions access bytes directly as if it was an array of `unsigned char`.
+ *
+ * @anchor single_shot_example
+ * **Single Shot**
+ *
+ * These functions are stateless functions which hash a contiguous block of memory,
+ * immediately returning the result. They are the easiest and usually the fastest
+ * option.
+ *
+ * XXH32(), XXH64(), XXH3_64bits(), XXH3_128bits()
+ *
+ * @code{.c}
+ *   #include <string.h>
+ *   #include "xxhash.h"
+ *
+ *   // Example for a function which hashes a null terminated string with XXH32().
+ *   XXH32_hash_t hash_string(const char* string, XXH32_hash_t seed)
+ *   {
+ *       // NULL pointers are only valid if the length is zero
+ *       size_t length = (string == NULL) ? 0 : strlen(string);
+ *       return XXH32(string, length, seed);
+ *   }
+ * @endcode
+ *
+ *
+ * @anchor streaming_example
+ * **Streaming**
+ *
+ * These groups of functions allow incremental hashing of unknown size, even
+ * more than what would fit in a size_t.
+ *
+ * XXH32_reset(), XXH64_reset(), XXH3_64bits_reset(), XXH3_128bits_reset()
+ *
+ * @code{.c}
+ *   #include <stdio.h>
+ *   #include <assert.h>
+ *   #include "xxhash.h"
+ *   // Example for a function which hashes a FILE incrementally with XXH3_64bits().
+ *   XXH64_hash_t hashFile(FILE* f)
+ *   {
+ *       // Allocate a state struct. Do not just use malloc() or new.
+ *       XXH3_state_t* state = XXH3_createState();
+ *       assert(state != NULL && "Out of memory!");
+ *       // Reset the state to start a new hashing session.
+ *       XXH3_64bits_reset(state);
+ *       char buffer[4096];
+ *       size_t count;
+ *       // Read the file in chunks
+ *       while ((count = fread(buffer, 1, sizeof(buffer), f)) != 0) {
+ *           // Run update() as many times as necessary to process the data
+ *           XXH3_64bits_update(state, buffer, count);
+ *       }
+ *       // Retrieve the finalized hash. This will not change the state.
+ *       XXH64_hash_t result = XXH3_64bits_digest(state);
+ *       // Free the state. Do not use free().
+ *       XXH3_freeState(state);
+ *       return result;
+ *   }
+ * @endcode
+ *
+ * Streaming functions generate the xxHash value from an incremental input.
+ * This method is slower than single-call functions, due to state management.
+ * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
+ *
+ * An XXH state must first be allocated using `XXH*_createState()`.
+ *
+ * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
+ *
+ * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
+ *
+ * The function returns an error code, with 0 meaning OK, and any other value
+ * meaning there is an error.
+ *
+ * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
+ * This function returns the nn-bits hash as an int or long long.
+ *
+ * It's still possible to continue inserting input into the hash state after a
+ * digest, and generate new hash values later on by invoking `XXH*_digest()`.
+ *
+ * When done, release the state using `XXH*_freeState()`.
+ *
+ *
+ * @anchor canonical_representation_example
+ * **Canonical Representation**
+ *
+ * The default return values from XXH functions are unsigned 32, 64 and 128 bit
+ * integers.
+ * This the simplest and fastest format for further post-processing.
+ *
+ * However, this leaves open the question of what is the order on the byte level,
+ * since little and big endian conventions will store the same number differently.
+ *
+ * The canonical representation settles this issue by mandating big-endian
+ * convention, the same convention as human-readable numbers (large digits first).
+ *
+ * When writing hash values to storage, sending them over a network, or printing
+ * them, it's highly recommended to use the canonical representation to ensure
+ * portability across a wider range of systems, present and future.
+ *
+ * The following functions allow transformation of hash values to and from
+ * canonical format.
+ *
+ * XXH32_canonicalFromHash(), XXH32_hashFromCanonical(),
+ * XXH64_canonicalFromHash(), XXH64_hashFromCanonical(),
+ * XXH128_canonicalFromHash(), XXH128_hashFromCanonical(),
+ *
+ * @code{.c}
+ *   #include <stdio.h>
+ *   #include "xxhash.h"
+ *
+ *   // Example for a function which prints XXH32_hash_t in human readable format
+ *   void printXxh32(XXH32_hash_t hash)
+ *   {
+ *       XXH32_canonical_t cano;
+ *       XXH32_canonicalFromHash(&cano, hash);
+ *       size_t i;
+ *       for(i = 0; i < sizeof(cano.digest); ++i) {
+ *           printf("%02x", cano.digest[i]);
+ *       }
+ *       printf("\n");
+ *   }
+ *
+ *   // Example for a function which converts XXH32_canonical_t to XXH32_hash_t
+ *   XXH32_hash_t convertCanonicalToXxh32(XXH32_canonical_t cano)
+ *   {
+ *       XXH32_hash_t hash = XXH32_hashFromCanonical(&cano);
+ *       return hash;
+ *   }
+ * @endcode
+ *
+ *
+ * @file xxhash.h
+ * xxHash prototypes and implementation
+ */
 
 #if defined (__cplusplus)
 extern "C" {
@@ -79,21 +249,80 @@ extern "C" {
  *  INLINE mode
  ******************************/
 /*!
- * XXH_INLINE_ALL (and XXH_PRIVATE_API)
+ * @defgroup public Public API
+ * Contains details on the public xxHash functions.
+ * @{
+ */
+#ifdef XXH_DOXYGEN
+/*!
+ * @brief Gives access to internal state declaration, required for static allocation.
+ *
+ * Incompatible with dynamic linking, due to risks of ABI changes.
+ *
+ * Usage:
+ * @code{.c}
+ *     #define XXH_STATIC_LINKING_ONLY
+ *     #include "xxhash.h"
+ * @endcode
+ */
+#  define XXH_STATIC_LINKING_ONLY
+/* Do not undef XXH_STATIC_LINKING_ONLY for Doxygen */
+
+/*!
+ * @brief Gives access to internal definitions.
+ *
+ * Usage:
+ * @code{.c}
+ *     #define XXH_STATIC_LINKING_ONLY
+ *     #define XXH_IMPLEMENTATION
+ *     #include "xxhash.h"
+ * @endcode
+ */
+#  define XXH_IMPLEMENTATION
+/* Do not undef XXH_IMPLEMENTATION for Doxygen */
+
+/*!
+ * @brief Exposes the implementation and marks all functions as `inline`.
+ *
  * Use these build macros to inline xxhash into the target unit.
  * Inlining improves performance on small inputs, especially when the length is
  * expressed as a compile-time constant:
  *
- *      https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
+ *  https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
  *
  * It also keeps xxHash symbols private to the unit, so they are not exported.
  *
  * Usage:
+ * @code{.c}
  *     #define XXH_INLINE_ALL
  *     #include "xxhash.h"
- *
+ * @endcode
  * Do not compile and link xxhash.o as a separate object, as it is not useful.
  */
+#  define XXH_INLINE_ALL
+#  undef XXH_INLINE_ALL
+/*!
+ * @brief Exposes the implementation without marking functions as inline.
+ */
+#  define XXH_PRIVATE_API
+#  undef XXH_PRIVATE_API
+/*!
+ * @brief Emulate a namespace by transparently prefixing all symbols.
+ *
+ * If you want to include _and expose_ xxHash functions from within your own
+ * library, but also want to avoid symbol collisions with other libraries which
+ * may also include xxHash, you can use @ref XXH_NAMESPACE to automatically prefix
+ * any public symbol from xxhash library with the value of @ref XXH_NAMESPACE
+ * (therefore, avoid empty or numeric values).
+ *
+ * Note that no change is required within the calling program as long as it
+ * includes `xxhash.h`: Regular symbol names will be automatically translated
+ * by this header.
+ */
+#  define XXH_NAMESPACE /* YOUR NAME HERE */
+#  undef XXH_NAMESPACE
+#endif
+
 #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
     && !defined(XXH_INLINE_ALL_31684351384)
    /* this section should be traversed only once */
@@ -104,7 +333,7 @@ extern "C" {
    /* make all functions private */
 #  undef XXH_PUBLIC_API
 #  if defined(__GNUC__)
-#    define XXH_PUBLIC_API static __inline __attribute__((unused))
+#    define XXH_PUBLIC_API static __inline __attribute__((__unused__))
 #  elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
 #    define XXH_PUBLIC_API static inline
 #  elif defined(_MSC_VER)
@@ -116,29 +345,80 @@ extern "C" {
 
    /*
     * This part deals with the special case where a unit wants to inline xxHash,
-    * but "xxhash.h" has previously been included without XXH_INLINE_ALL, such
-    * as part of some previously included *.h header file.
+    * but "xxhash.h" has previously been included without XXH_INLINE_ALL,
+    * such as part of some previously included *.h header file.
     * Without further action, the new include would just be ignored,
     * and functions would effectively _not_ be inlined (silent failure).
     * The following macros solve this situation by prefixing all inlined names,
     * avoiding naming collision with previous inclusions.
     */
-#  ifdef XXH_NAMESPACE
-#    error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported"
-     /*
-      * Note: Alternative: #undef all symbols (it's a pretty large list).
-      * Without #error: it compiles, but functions are actually not inlined.
-      */
-#  endif
+   /* Before that, we unconditionally #undef all symbols,
+    * in case they were already defined with XXH_NAMESPACE.
+    * They will then be redefined for XXH_INLINE_ALL
+    */
+#  undef XXH_versionNumber
+    /* XXH32 */
+#  undef XXH32
+#  undef XXH32_createState
+#  undef XXH32_freeState
+#  undef XXH32_reset
+#  undef XXH32_update
+#  undef XXH32_digest
+#  undef XXH32_copyState
+#  undef XXH32_canonicalFromHash
+#  undef XXH32_hashFromCanonical
+    /* XXH64 */
+#  undef XXH64
+#  undef XXH64_createState
+#  undef XXH64_freeState
+#  undef XXH64_reset
+#  undef XXH64_update
+#  undef XXH64_digest
+#  undef XXH64_copyState
+#  undef XXH64_canonicalFromHash
+#  undef XXH64_hashFromCanonical
+    /* XXH3_64bits */
+#  undef XXH3_64bits
+#  undef XXH3_64bits_withSecret
+#  undef XXH3_64bits_withSeed
+#  undef XXH3_64bits_withSecretandSeed
+#  undef XXH3_createState
+#  undef XXH3_freeState
+#  undef XXH3_copyState
+#  undef XXH3_64bits_reset
+#  undef XXH3_64bits_reset_withSeed
+#  undef XXH3_64bits_reset_withSecret
+#  undef XXH3_64bits_update
+#  undef XXH3_64bits_digest
+#  undef XXH3_generateSecret
+    /* XXH3_128bits */
+#  undef XXH128
+#  undef XXH3_128bits
+#  undef XXH3_128bits_withSeed
+#  undef XXH3_128bits_withSecret
+#  undef XXH3_128bits_reset
+#  undef XXH3_128bits_reset_withSeed
+#  undef XXH3_128bits_reset_withSecret
+#  undef XXH3_128bits_reset_withSecretandSeed
+#  undef XXH3_128bits_update
+#  undef XXH3_128bits_digest
+#  undef XXH128_isEqual
+#  undef XXH128_cmp
+#  undef XXH128_canonicalFromHash
+#  undef XXH128_hashFromCanonical
+    /* Finally, free the namespace itself */
+#  undef XXH_NAMESPACE
+
+    /* employ the namespace for XXH_INLINE_ALL */
 #  define XXH_NAMESPACE XXH_INLINE_
    /*
-    * Some identifiers (enums, type names) are not symbols, but they must
-    * still be renamed to avoid redeclaration.
+    * Some identifiers (enums, type names) are not symbols,
+    * but they must nonetheless be renamed to avoid redeclaration.
     * Alternative solution: do not redeclare them.
-    * However, this requires some #ifdefs, and is a more dispersed action.
-    * Meanwhile, renaming can be achieved in a single block
+    * However, this requires some #ifdefs, and has a more dispersed impact.
+    * Meanwhile, renaming can be achieved in a single place.
     */
-#  define XXH_IPREF(Id)   XXH_INLINE_ ## Id
+#  define XXH_IPREF(Id)   XXH_NAMESPACE ## Id
 #  define XXH_OK XXH_IPREF(XXH_OK)
 #  define XXH_ERROR XXH_IPREF(XXH_ERROR)
 #  define XXH_errorcode XXH_IPREF(XXH_errorcode)
@@ -157,17 +437,15 @@ extern "C" {
 #  undef XXHASH_H_STATIC_13879238742
 #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
 
-
-
 /* ****************************************************************
  *  Stable API
  *****************************************************************/
 #ifndef XXHASH_H_5627135585666179
 #define XXHASH_H_5627135585666179 1
 
-/* specific declaration modes for Windows */
+/*! @brief Marks a global symbol. */
 #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
-#  if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
+#  if defined(_WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
 #    ifdef XXH_EXPORT
 #      define XXH_PUBLIC_API __declspec(dllexport)
 #    elif XXH_IMPORT
@@ -178,23 +456,11 @@ extern "C" {
 #  endif
 #endif
 
-/*!
- * XXH_NAMESPACE, aka Namespace Emulation:
- *
- * If you want to include _and expose_ xxHash functions from within your own
- * library, but also want to avoid symbol collisions with other libraries which
- * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
- * any public symbol from xxhash library with the value of XXH_NAMESPACE
- * (therefore, avoid empty or numeric values).
- *
- * Note that no change is required within the calling program as long as it
- * includes `xxhash.h`: Regular symbol names will be automatically translated
- * by this header.
- */
 #ifdef XXH_NAMESPACE
 #  define XXH_CAT(A,B) A##B
 #  define XXH_NAME2(A,B) XXH_CAT(A,B)
 #  define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
+/* XXH32 */
 #  define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
 #  define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
 #  define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
@@ -204,6 +470,7 @@ extern "C" {
 #  define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
 #  define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
 #  define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
+/* XXH64 */
 #  define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
 #  define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
 #  define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
@@ -213,1753 +480,6609 @@ extern "C" {
 #  define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
 #  define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
 #  define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
+/* XXH3_64bits */
+#  define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
+#  define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
+#  define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
+#  define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed)
+#  define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
+#  define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
+#  define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
+#  define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
+#  define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
+#  define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
+#  define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed)
+#  define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
+#  define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
+#  define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
+#  define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed)
+/* XXH3_128bits */
+#  define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
+#  define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
+#  define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
+#  define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
+#  define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed)
+#  define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
+#  define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
+#  define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
+#  define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed)
+#  define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
+#  define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
+#  define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
+#  define XXH128_cmp     XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
+#  define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
+#  define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
+#endif
+
+
+/* *************************************
+*  Compiler specifics
+***************************************/
+
+/* specific declaration modes for Windows */
+#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
+#  if defined(_WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
+#    ifdef XXH_EXPORT
+#      define XXH_PUBLIC_API __declspec(dllexport)
+#    elif XXH_IMPORT
+#      define XXH_PUBLIC_API __declspec(dllimport)
+#    endif
+#  else
+#    define XXH_PUBLIC_API   /* do nothing */
+#  endif
 #endif
 
+#if defined (__GNUC__)
+# define XXH_CONSTF  __attribute__((__const__))
+# define XXH_PUREF   __attribute__((__pure__))
+# define XXH_MALLOCF __attribute__((__malloc__))
+#else
+# define XXH_CONSTF  /* disable */
+# define XXH_PUREF
+# define XXH_MALLOCF
+#endif
 
 /* *************************************
 *  Version
 ***************************************/
 #define XXH_VERSION_MAJOR    0
-#define XXH_VERSION_MINOR    7
-#define XXH_VERSION_RELEASE  4
+#define XXH_VERSION_MINOR    8
+#define XXH_VERSION_RELEASE  3
+/*! @brief Version number, encoded as two digits each */
 #define XXH_VERSION_NUMBER  (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
-XXH_PUBLIC_API unsigned XXH_versionNumber (void);
+
+/*!
+ * @brief Obtains the xxHash version.
+ *
+ * This is mostly useful when xxHash is compiled as a shared library,
+ * since the returned value comes from the library, as opposed to header file.
+ *
+ * @return @ref XXH_VERSION_NUMBER of the invoked library.
+ */
+XXH_PUBLIC_API XXH_CONSTF unsigned XXH_versionNumber (void);
 
 
 /* ****************************
-*  Definitions
+*  Common basic types
 ******************************/
 #include <stddef.h>   /* size_t */
-typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
+/*!
+ * @brief Exit code for the streaming API.
+ */
+typedef enum {
+    XXH_OK = 0, /*!< OK */
+    XXH_ERROR   /*!< Error */
+} XXH_errorcode;
 
 
 /*-**********************************************************************
 *  32-bit hash
 ************************************************************************/
-#if !defined (__VMS) \
+#if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
+/*!
+ * @brief An unsigned 32-bit integer.
+ *
+ * Not necessarily defined to `uint32_t` but functionally equivalent.
+ */
+typedef uint32_t XXH32_hash_t;
+
+#elif !defined (__VMS) \
   && (defined (__cplusplus) \
   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
-#   include <stdint.h>
+#   ifdef _AIX
+#     include <inttypes.h>
+#   else
+#     include <stdint.h>
+#   endif
     typedef uint32_t XXH32_hash_t;
+
 #else
 #   include <limits.h>
 #   if UINT_MAX == 0xFFFFFFFFUL
       typedef unsigned int XXH32_hash_t;
+#   elif ULONG_MAX == 0xFFFFFFFFUL
+      typedef unsigned long XXH32_hash_t;
 #   else
-#     if ULONG_MAX == 0xFFFFFFFFUL
-        typedef unsigned long XXH32_hash_t;
-#     else
-#       error "unsupported platform: need a 32-bit type"
-#     endif
+#     error "unsupported platform: need a 32-bit type"
 #   endif
 #endif
 
 /*!
- * XXH32():
- *  Calculate the 32-bit hash of sequence "length" bytes stored at memory address "input".
- *  The memory between input & input+length must be valid (allocated and read-accessible).
- *  "seed" can be used to alter the result predictably.
- *  Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
+ * @}
+ *
+ * @defgroup XXH32_family XXH32 family
+ * @ingroup public
+ * Contains functions used in the classic 32-bit xxHash algorithm.
  *
- * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems,
- * and offers true 64/128 bit hash results. It provides a superior level of
- * dispersion, and greatly reduces the risks of collisions.
+ * @note
+ *   XXH32 is useful for older platforms, with no or poor 64-bit performance.
+ *   Note that the @ref XXH3_family provides competitive speed for both 32-bit
+ *   and 64-bit systems, and offers true 64/128 bit hash results.
+ *
+ * @see @ref XXH64_family, @ref XXH3_family : Other xxHash families
+ * @see @ref XXH32_impl for implementation details
+ * @{
  */
-XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
 
-/*******   Streaming   *******/
+/*!
+ * @brief Calculates the 32-bit hash of @p input using xxHash32.
+ *
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ * @param seed The 32-bit seed to alter the hash's output predictably.
+ *
+ * @pre
+ *   The memory between @p input and @p input + @p length must be valid,
+ *   readable, contiguous memory. However, if @p length is `0`, @p input may be
+ *   `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return The calculated 32-bit xxHash32 value.
+ *
+ * @see @ref single_shot_example "Single Shot Example" for an example.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
 
-/*
- * Streaming functions generate the xxHash value from an incrememtal input.
- * This method is slower than single-call functions, due to state management.
- * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
+#ifndef XXH_NO_STREAM
+/*!
+ * @typedef struct XXH32_state_s XXH32_state_t
+ * @brief The opaque state struct for the XXH32 streaming API.
  *
- * An XXH state must first be allocated using `XXH*_createState()`.
+ * @see XXH32_state_s for details.
+ * @see @ref streaming_example "Streaming Example"
+ */
+typedef struct XXH32_state_s XXH32_state_t;
+
+/*!
+ * @brief Allocates an @ref XXH32_state_t.
  *
- * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
+ * @return An allocated pointer of @ref XXH32_state_t on success.
+ * @return `NULL` on failure.
  *
- * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
+ * @note Must be freed with XXH32_freeState().
  *
- * The function returns an error code, with 0 meaning OK, and any other value
- * meaning there is an error.
+ * @see @ref streaming_example "Streaming Example"
+ */
+XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void);
+/*!
+ * @brief Frees an @ref XXH32_state_t.
  *
- * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
- * This function returns the nn-bits hash as an int or long long.
+ * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
  *
- * It's still possible to continue inserting input into the hash state after a
- * digest, and generate new hash values later on by invoking `XXH*_digest()`.
+ * @return @ref XXH_OK.
+ *
+ * @note @p statePtr must be allocated with XXH32_createState().
+ *
+ * @see @ref streaming_example "Streaming Example"
  *
- * When done, release the state using `XXH*_freeState()`.
  */
-
-typedef struct XXH32_state_s XXH32_state_t;   /* incomplete type */
-XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
 XXH_PUBLIC_API XXH_errorcode  XXH32_freeState(XXH32_state_t* statePtr);
+/*!
+ * @brief Copies one @ref XXH32_state_t to another.
+ *
+ * @param dst_state The state to copy to.
+ * @param src_state The state to copy from.
+ * @pre
+ *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
+ */
 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
 
+/*!
+ * @brief Resets an @ref XXH32_state_t to begin a new hash.
+ *
+ * @param statePtr The state struct to reset.
+ * @param seed The 32-bit seed to alter the hash result predictably.
+ *
+ * @pre
+ *   @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note This function resets and seeds a state. Call it before @ref XXH32_update().
+ *
+ * @see @ref streaming_example "Streaming Example"
+ */
 XXH_PUBLIC_API XXH_errorcode XXH32_reset  (XXH32_state_t* statePtr, XXH32_hash_t seed);
-XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
-XXH_PUBLIC_API XXH32_hash_t  XXH32_digest (const XXH32_state_t* statePtr);
 
-/*******   Canonical representation   *******/
+/*!
+ * @brief Consumes a block of @p input to an @ref XXH32_state_t.
+ *
+ * @param statePtr The state struct to update.
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ *
+ * @pre
+ *   @p statePtr must not be `NULL`.
+ * @pre
+ *   The memory between @p input and @p input + @p length must be valid,
+ *   readable, contiguous memory. However, if @p length is `0`, @p input may be
+ *   `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note Call this to incrementally consume blocks of data.
+ *
+ * @see @ref streaming_example "Streaming Example"
+ */
+XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
 
-/*
- * The default return values from XXH functions are unsigned 32 and 64 bit
- * integers.
- * This the simplest and fastest format for further post-processing.
+/*!
+ * @brief Returns the calculated hash value from an @ref XXH32_state_t.
  *
- * However, this leaves open the question of what is the order on the byte level,
- * since little and big endian conventions will store the same number differently.
+ * @param statePtr The state struct to calculate the hash from.
  *
- * The canonical representation settles this issue by mandating big-endian
- * convention, the same convention as human-readable numbers (large digits first).
+ * @pre
+ *  @p statePtr must not be `NULL`.
  *
- * When writing hash values to storage, sending them over a network, or printing
- * them, it's highly recommended to use the canonical representation to ensure
- * portability across a wider range of systems, present and future.
+ * @return The calculated 32-bit xxHash32 value from that state.
  *
- * The following functions allow transformation of hash values to and from
- * canonical format.
+ * @note
+ *   Calling XXH32_digest() will not affect @p statePtr, so you can update,
+ *   digest, and update again.
+ *
+ * @see @ref streaming_example "Streaming Example"
  */
+XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
+#endif /* !XXH_NO_STREAM */
 
-typedef struct { unsigned char digest[4]; } XXH32_canonical_t;
-XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
-XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
+/*******   Canonical representation   *******/
 
+/*!
+ * @brief Canonical (big endian) representation of @ref XXH32_hash_t.
+ */
+typedef struct {
+    unsigned char digest[4]; /*!< Hash bytes, big endian */
+} XXH32_canonical_t;
 
-#ifndef XXH_NO_LONG_LONG
-/*-**********************************************************************
-*  64-bit hash
-************************************************************************/
-#if !defined (__VMS) \
-  && (defined (__cplusplus) \
-  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
-#   include <stdint.h>
-    typedef uint64_t XXH64_hash_t;
-#else
-    /* the following type must have a width of 64-bit */
-    typedef unsigned long long XXH64_hash_t;
-#endif
+/*!
+ * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
+ *
+ * @param dst  The @ref XXH32_canonical_t pointer to be stored to.
+ * @param hash The @ref XXH32_hash_t to be converted.
+ *
+ * @pre
+ *   @p dst must not be `NULL`.
+ *
+ * @see @ref canonical_representation_example "Canonical Representation Example"
+ */
+XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
 
 /*!
- * XXH64():
- * Returns the 64-bit hash of sequence of length @length stored at memory
- * address @input.
- * @seed can be used to alter the result predictably.
+ * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
+ *
+ * @param src The @ref XXH32_canonical_t to convert.
  *
- * This function usually runs faster on 64-bit systems, but slower on 32-bit
- * systems (see benchmark).
+ * @pre
+ *   @p src must not be `NULL`.
  *
- * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems,
- * and offers true 64/128 bit hash results. It provides a superior level of
- * dispersion, and greatly reduces the risks of collisions.
+ * @return The converted hash.
+ *
+ * @see @ref canonical_representation_example "Canonical Representation Example"
  */
-XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, XXH64_hash_t seed);
+XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
 
-/*******   Streaming   *******/
+
+/*! @cond Doxygen ignores this part */
+#ifdef __has_attribute
+# define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
+#else
+# define XXH_HAS_ATTRIBUTE(x) 0
+#endif
+/*! @endcond */
+
+/*! @cond Doxygen ignores this part */
+/*
+ * C23 __STDC_VERSION__ number hasn't been specified yet. For now
+ * leave as `201711L` (C17 + 1).
+ * TODO: Update to correct value when its been specified.
+ */
+#define XXH_C23_VN 201711L
+/*! @endcond */
+
+/*! @cond Doxygen ignores this part */
+/* C-language Attributes are added in C23. */
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) && defined(__has_c_attribute)
+# define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
+#else
+# define XXH_HAS_C_ATTRIBUTE(x) 0
+#endif
+/*! @endcond */
+
+/*! @cond Doxygen ignores this part */
+#if defined(__cplusplus) && defined(__has_cpp_attribute)
+# define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
+#else
+# define XXH_HAS_CPP_ATTRIBUTE(x) 0
+#endif
+/*! @endcond */
+
+/*! @cond Doxygen ignores this part */
+/*
+ * Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
+ * introduced in CPP17 and C23.
+ * CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
+ * C23   : https://en.cppreference.com/w/c/language/attributes/fallthrough
+ */
+#if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough)
+# define XXH_FALLTHROUGH [[fallthrough]]
+#elif XXH_HAS_ATTRIBUTE(__fallthrough__)
+# define XXH_FALLTHROUGH __attribute__ ((__fallthrough__))
+#else
+# define XXH_FALLTHROUGH /* fallthrough */
+#endif
+/*! @endcond */
+
+/*! @cond Doxygen ignores this part */
+/*
+ * Define XXH_NOESCAPE for annotated pointers in public API.
+ * https://clang.llvm.org/docs/AttributeReference.html#noescape
+ * As of writing this, only supported by clang.
+ */
+#if XXH_HAS_ATTRIBUTE(noescape)
+# define XXH_NOESCAPE __attribute__((__noescape__))
+#else
+# define XXH_NOESCAPE
+#endif
+/*! @endcond */
+
+
+/*!
+ * @}
+ * @ingroup public
+ * @{
+ */
+
+#ifndef XXH_NO_LONG_LONG
+/*-**********************************************************************
+*  64-bit hash
+************************************************************************/
+#if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
+/*!
+ * @brief An unsigned 64-bit integer.
+ *
+ * Not necessarily defined to `uint64_t` but functionally equivalent.
+ */
+typedef uint64_t XXH64_hash_t;
+#elif !defined (__VMS) \
+  && (defined (__cplusplus) \
+  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+#   ifdef _AIX
+#     include <inttypes.h>
+#   else
+#     include <stdint.h>
+#   endif
+   typedef uint64_t XXH64_hash_t;
+#else
+#  include <limits.h>
+#  if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
+     /* LP64 ABI says uint64_t is unsigned long */
+     typedef unsigned long XXH64_hash_t;
+#  else
+     /* the following type must have a width of 64-bit */
+     typedef unsigned long long XXH64_hash_t;
+#  endif
+#endif
+
+/*!
+ * @}
+ *
+ * @defgroup XXH64_family XXH64 family
+ * @ingroup public
+ * @{
+ * Contains functions used in the classic 64-bit xxHash algorithm.
+ *
+ * @note
+ *   XXH3 provides competitive speed for both 32-bit and 64-bit systems,
+ *   and offers true 64/128 bit hash results.
+ *   It provides better speed for systems with vector processing capabilities.
+ */
+
+/*!
+ * @brief Calculates the 64-bit hash of @p input using xxHash64.
+ *
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ * @param seed The 64-bit seed to alter the hash's output predictably.
+ *
+ * @pre
+ *   The memory between @p input and @p input + @p length must be valid,
+ *   readable, contiguous memory. However, if @p length is `0`, @p input may be
+ *   `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return The calculated 64-bit xxHash64 value.
+ *
+ * @see @ref single_shot_example "Single Shot Example" for an example.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
+
+/*******   Streaming   *******/
+#ifndef XXH_NO_STREAM
+/*!
+ * @brief The opaque state struct for the XXH64 streaming API.
+ *
+ * @see XXH64_state_s for details.
+ * @see @ref streaming_example "Streaming Example"
+ */
 typedef struct XXH64_state_s XXH64_state_t;   /* incomplete type */
-XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
+
+/*!
+ * @brief Allocates an @ref XXH64_state_t.
+ *
+ * @return An allocated pointer of @ref XXH64_state_t on success.
+ * @return `NULL` on failure.
+ *
+ * @note Must be freed with XXH64_freeState().
+ *
+ * @see @ref streaming_example "Streaming Example"
+ */
+XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void);
+
+/*!
+ * @brief Frees an @ref XXH64_state_t.
+ *
+ * @param statePtr A pointer to an @ref XXH64_state_t allocated with @ref XXH64_createState().
+ *
+ * @return @ref XXH_OK.
+ *
+ * @note @p statePtr must be allocated with XXH64_createState().
+ *
+ * @see @ref streaming_example "Streaming Example"
+ */
 XXH_PUBLIC_API XXH_errorcode  XXH64_freeState(XXH64_state_t* statePtr);
-XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
 
-XXH_PUBLIC_API XXH_errorcode XXH64_reset  (XXH64_state_t* statePtr, XXH64_hash_t seed);
-XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
-XXH_PUBLIC_API XXH64_hash_t  XXH64_digest (const XXH64_state_t* statePtr);
+/*!
+ * @brief Copies one @ref XXH64_state_t to another.
+ *
+ * @param dst_state The state to copy to.
+ * @param src_state The state to copy from.
+ * @pre
+ *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
+ */
+XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state);
+
+/*!
+ * @brief Resets an @ref XXH64_state_t to begin a new hash.
+ *
+ * @param statePtr The state struct to reset.
+ * @param seed The 64-bit seed to alter the hash result predictably.
+ *
+ * @pre
+ *   @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note This function resets and seeds a state. Call it before @ref XXH64_update().
+ *
+ * @see @ref streaming_example "Streaming Example"
+ */
+XXH_PUBLIC_API XXH_errorcode XXH64_reset  (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed);
+
+/*!
+ * @brief Consumes a block of @p input to an @ref XXH64_state_t.
+ *
+ * @param statePtr The state struct to update.
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ *
+ * @pre
+ *   @p statePtr must not be `NULL`.
+ * @pre
+ *   The memory between @p input and @p input + @p length must be valid,
+ *   readable, contiguous memory. However, if @p length is `0`, @p input may be
+ *   `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note Call this to incrementally consume blocks of data.
+ *
+ * @see @ref streaming_example "Streaming Example"
+ */
+XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
+
+/*!
+ * @brief Returns the calculated hash value from an @ref XXH64_state_t.
+ *
+ * @param statePtr The state struct to calculate the hash from.
+ *
+ * @pre
+ *  @p statePtr must not be `NULL`.
+ *
+ * @return The calculated 64-bit xxHash64 value from that state.
+ *
+ * @note
+ *   Calling XXH64_digest() will not affect @p statePtr, so you can update,
+ *   digest, and update again.
+ *
+ * @see @ref streaming_example "Streaming Example"
+ */
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr);
+#endif /* !XXH_NO_STREAM */
+/*******   Canonical representation   *******/
+
+/*!
+ * @brief Canonical (big endian) representation of @ref XXH64_hash_t.
+ */
+typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
+
+/*!
+ * @brief Converts an @ref XXH64_hash_t to a big endian @ref XXH64_canonical_t.
+ *
+ * @param dst The @ref XXH64_canonical_t pointer to be stored to.
+ * @param hash The @ref XXH64_hash_t to be converted.
+ *
+ * @pre
+ *   @p dst must not be `NULL`.
+ *
+ * @see @ref canonical_representation_example "Canonical Representation Example"
+ */
+XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash);
+
+/*!
+ * @brief Converts an @ref XXH64_canonical_t to a native @ref XXH64_hash_t.
+ *
+ * @param src The @ref XXH64_canonical_t to convert.
+ *
+ * @pre
+ *   @p src must not be `NULL`.
+ *
+ * @return The converted hash.
+ *
+ * @see @ref canonical_representation_example "Canonical Representation Example"
+ */
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src);
+
+#ifndef XXH_NO_XXH3
+
+/*!
+ * @}
+ * ************************************************************************
+ * @defgroup XXH3_family XXH3 family
+ * @ingroup public
+ * @{
+ *
+ * XXH3 is a more recent hash algorithm featuring:
+ *  - Improved speed for both small and large inputs
+ *  - True 64-bit and 128-bit outputs
+ *  - SIMD acceleration
+ *  - Improved 32-bit viability
+ *
+ * Speed analysis methodology is explained here:
+ *
+ *    https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
+ *
+ * Compared to XXH64, expect XXH3 to run approximately
+ * ~2x faster on large inputs and >3x faster on small ones,
+ * exact differences vary depending on platform.
+ *
+ * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
+ * but does not require it.
+ * Most 32-bit and 64-bit targets that can run XXH32 smoothly can run XXH3
+ * at competitive speeds, even without vector support. Further details are
+ * explained in the implementation.
+ *
+ * XXH3 has a fast scalar implementation, but it also includes accelerated SIMD
+ * implementations for many common platforms:
+ *   - AVX512
+ *   - AVX2
+ *   - SSE2
+ *   - ARM NEON
+ *   - WebAssembly SIMD128
+ *   - POWER8 VSX
+ *   - s390x ZVector
+ * This can be controlled via the @ref XXH_VECTOR macro, but it automatically
+ * selects the best version according to predefined macros. For the x86 family, an
+ * automatic runtime dispatcher is included separately in @ref xxh_x86dispatch.c.
+ *
+ * XXH3 implementation is portable:
+ * it has a generic C90 formulation that can be compiled on any platform,
+ * all implementations generate exactly the same hash value on all platforms.
+ * Starting from v0.8.0, it's also labelled "stable", meaning that
+ * any future version will also generate the same hash value.
+ *
+ * XXH3 offers 2 variants, _64bits and _128bits.
+ *
+ * When only 64 bits are needed, prefer invoking the _64bits variant, as it
+ * reduces the amount of mixing, resulting in faster speed on small inputs.
+ * It's also generally simpler to manipulate a scalar return type than a struct.
+ *
+ * The API supports one-shot hashing, streaming mode, and custom secrets.
+ */
+/*-**********************************************************************
+*  XXH3 64-bit variant
+************************************************************************/
+
+/*!
+ * @brief Calculates 64-bit unseeded variant of XXH3 hash of @p input.
+ *
+ * @param input  The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ *
+ * @pre
+ *   The memory between @p input and @p input + @p length must be valid,
+ *   readable, contiguous memory. However, if @p length is `0`, @p input may be
+ *   `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return The calculated 64-bit XXH3 hash value.
+ *
+ * @note
+ *   This is equivalent to @ref XXH3_64bits_withSeed() with a seed of `0`, however
+ *   it may have slightly better performance due to constant propagation of the
+ *   defaults.
+ *
+ * @see
+ *    XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants
+ * @see @ref single_shot_example "Single Shot Example" for an example.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length);
+
+/*!
+ * @brief Calculates 64-bit seeded variant of XXH3 hash of @p input.
+ *
+ * @param input  The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ * @param seed   The 64-bit seed to alter the hash result predictably.
+ *
+ * @pre
+ *   The memory between @p input and @p input + @p length must be valid,
+ *   readable, contiguous memory. However, if @p length is `0`, @p input may be
+ *   `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return The calculated 64-bit XXH3 hash value.
+ *
+ * @note
+ *    seed == 0 produces the same results as @ref XXH3_64bits().
+ *
+ * This variant generates a custom secret on the fly based on default secret
+ * altered using the @p seed value.
+ *
+ * While this operation is decently fast, note that it's not completely free.
+ *
+ * @see @ref single_shot_example "Single Shot Example" for an example.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
+
+/*!
+ * The bare minimum size for a custom secret.
+ *
+ * @see
+ *  XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
+ *  XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
+ */
+#define XXH3_SECRET_SIZE_MIN 136
+
+/*!
+ * @brief Calculates 64-bit variant of XXH3 with a custom "secret".
+ *
+ * @param data       The block of data to be hashed, at least @p len bytes in size.
+ * @param len        The length of @p data, in bytes.
+ * @param secret     The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ *
+ * @return The calculated 64-bit XXH3 hash value.
+ *
+ * @pre
+ *   The memory between @p data and @p data + @p len must be valid,
+ *   readable, contiguous memory. However, if @p length is `0`, @p data may be
+ *   `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * It's possible to provide any blob of bytes as a "secret" to generate the hash.
+ * This makes it more difficult for an external actor to prepare an intentional collision.
+ * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN).
+ * However, the quality of the secret impacts the dispersion of the hash algorithm.
+ * Therefore, the secret _must_ look like a bunch of random bytes.
+ * Avoid "trivial" or structured data such as repeated sequences or a text document.
+ * Whenever in doubt about the "randomness" of the blob of bytes,
+ * consider employing @ref XXH3_generateSecret() instead (see below).
+ * It will generate a proper high entropy secret derived from the blob of bytes.
+ * Another advantage of using XXH3_generateSecret() is that
+ * it guarantees that all bits within the initial blob of bytes
+ * will impact every bit of the output.
+ * This is not necessarily the case when using the blob of bytes directly
+ * because, when hashing _small_ inputs, only a portion of the secret is employed.
+ *
+ * @see @ref single_shot_example "Single Shot Example" for an example.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
+
+
+/*******   Streaming   *******/
+#ifndef XXH_NO_STREAM
+/*
+ * Streaming requires state maintenance.
+ * This operation costs memory and CPU.
+ * As a consequence, streaming is slower than one-shot hashing.
+ * For better performance, prefer one-shot functions whenever applicable.
+ */
+
+/*!
+ * @brief The opaque state struct for the XXH3 streaming API.
+ *
+ * @see XXH3_state_s for details.
+ * @see @ref streaming_example "Streaming Example"
+ */
+typedef struct XXH3_state_s XXH3_state_t;
+XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void);
+XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
+
+/*!
+ * @brief Copies one @ref XXH3_state_t to another.
+ *
+ * @param dst_state The state to copy to.
+ * @param src_state The state to copy from.
+ * @pre
+ *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
+ */
+XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state);
+
+/*!
+ * @brief Resets an @ref XXH3_state_t to begin a new hash.
+ *
+ * @param statePtr The state struct to reset.
+ *
+ * @pre
+ *   @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note
+ *   - This function resets `statePtr` and generate a secret with default parameters.
+ *   - Call this function before @ref XXH3_64bits_update().
+ *   - Digest will be equivalent to `XXH3_64bits()`.
+ *
+ * @see @ref streaming_example "Streaming Example"
+ *
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
+
+/*!
+ * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
+ *
+ * @param statePtr The state struct to reset.
+ * @param seed     The 64-bit seed to alter the hash result predictably.
+ *
+ * @pre
+ *   @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note
+ *   - This function resets `statePtr` and generate a secret from `seed`.
+ *   - Call this function before @ref XXH3_64bits_update().
+ *   - Digest will be equivalent to `XXH3_64bits_withSeed()`.
+ *
+ * @see @ref streaming_example "Streaming Example"
+ *
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
+
+/*!
+ * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
+ *
+ * @param statePtr The state struct to reset.
+ * @param secret     The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ *
+ * @pre
+ *   @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note
+ *   `secret` is referenced, it _must outlive_ the hash streaming session.
+ *
+ * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN,
+ * and the quality of produced hash values depends on secret's entropy
+ * (secret's content should look like a bunch of random bytes).
+ * When in doubt about the randomness of a candidate `secret`,
+ * consider employing `XXH3_generateSecret()` instead (see below).
+ *
+ * @see @ref streaming_example "Streaming Example"
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
+
+/*!
+ * @brief Consumes a block of @p input to an @ref XXH3_state_t.
+ *
+ * @param statePtr The state struct to update.
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ *
+ * @pre
+ *   @p statePtr must not be `NULL`.
+ * @pre
+ *   The memory between @p input and @p input + @p length must be valid,
+ *   readable, contiguous memory. However, if @p length is `0`, @p input may be
+ *   `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note Call this to incrementally consume blocks of data.
+ *
+ * @see @ref streaming_example "Streaming Example"
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
+
+/*!
+ * @brief Returns the calculated XXH3 64-bit hash value from an @ref XXH3_state_t.
+ *
+ * @param statePtr The state struct to calculate the hash from.
+ *
+ * @pre
+ *  @p statePtr must not be `NULL`.
+ *
+ * @return The calculated XXH3 64-bit hash value from that state.
+ *
+ * @note
+ *   Calling XXH3_64bits_digest() will not affect @p statePtr, so you can update,
+ *   digest, and update again.
+ *
+ * @see @ref streaming_example "Streaming Example"
+ */
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t  XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
+#endif /* !XXH_NO_STREAM */
+
+/* note : canonical representation of XXH3 is the same as XXH64
+ * since they both produce XXH64_hash_t values */
+
+
+/*-**********************************************************************
+*  XXH3 128-bit variant
+************************************************************************/
+
+/*!
+ * @brief The return value from 128-bit hashes.
+ *
+ * Stored in little endian order, although the fields themselves are in native
+ * endianness.
+ */
+typedef struct {
+    XXH64_hash_t low64;   /*!< `value & 0xFFFFFFFFFFFFFFFF` */
+    XXH64_hash_t high64;  /*!< `value >> 64` */
+} XXH128_hash_t;
+
+/*!
+ * @brief Calculates 128-bit unseeded variant of XXH3 of @p data.
+ *
+ * @param data The block of data to be hashed, at least @p length bytes in size.
+ * @param len  The length of @p data, in bytes.
+ *
+ * @return The calculated 128-bit variant of XXH3 value.
+ *
+ * The 128-bit variant of XXH3 has more strength, but it has a bit of overhead
+ * for shorter inputs.
+ *
+ * This is equivalent to @ref XXH3_128bits_withSeed() with a seed of `0`, however
+ * it may have slightly better performance due to constant propagation of the
+ * defaults.
+ *
+ * @see XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants
+ * @see @ref single_shot_example "Single Shot Example" for an example.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len);
+/*! @brief Calculates 128-bit seeded variant of XXH3 hash of @p data.
+ *
+ * @param data The block of data to be hashed, at least @p length bytes in size.
+ * @param len  The length of @p data, in bytes.
+ * @param seed The 64-bit seed to alter the hash result predictably.
+ *
+ * @return The calculated 128-bit variant of XXH3 value.
+ *
+ * @note
+ *    seed == 0 produces the same results as @ref XXH3_64bits().
+ *
+ * This variant generates a custom secret on the fly based on default secret
+ * altered using the @p seed value.
+ *
+ * While this operation is decently fast, note that it's not completely free.
+ *
+ * @see XXH3_128bits(), XXH3_128bits_withSecret(): other seeding variants
+ * @see @ref single_shot_example "Single Shot Example" for an example.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
+/*!
+ * @brief Calculates 128-bit variant of XXH3 with a custom "secret".
+ *
+ * @param data       The block of data to be hashed, at least @p len bytes in size.
+ * @param len        The length of @p data, in bytes.
+ * @param secret     The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ *
+ * @return The calculated 128-bit variant of XXH3 value.
+ *
+ * It's possible to provide any blob of bytes as a "secret" to generate the hash.
+ * This makes it more difficult for an external actor to prepare an intentional collision.
+ * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN).
+ * However, the quality of the secret impacts the dispersion of the hash algorithm.
+ * Therefore, the secret _must_ look like a bunch of random bytes.
+ * Avoid "trivial" or structured data such as repeated sequences or a text document.
+ * Whenever in doubt about the "randomness" of the blob of bytes,
+ * consider employing @ref XXH3_generateSecret() instead (see below).
+ * It will generate a proper high entropy secret derived from the blob of bytes.
+ * Another advantage of using XXH3_generateSecret() is that
+ * it guarantees that all bits within the initial blob of bytes
+ * will impact every bit of the output.
+ * This is not necessarily the case when using the blob of bytes directly
+ * because, when hashing _small_ inputs, only a portion of the secret is employed.
+ *
+ * @see @ref single_shot_example "Single Shot Example" for an example.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
+
+/*******   Streaming   *******/
+#ifndef XXH_NO_STREAM
+/*
+ * Streaming requires state maintenance.
+ * This operation costs memory and CPU.
+ * As a consequence, streaming is slower than one-shot hashing.
+ * For better performance, prefer one-shot functions whenever applicable.
+ *
+ * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
+ * Use already declared XXH3_createState() and XXH3_freeState().
+ *
+ * All reset and streaming functions have same meaning as their 64-bit counterpart.
+ */
+
+/*!
+ * @brief Resets an @ref XXH3_state_t to begin a new hash.
+ *
+ * @param statePtr The state struct to reset.
+ *
+ * @pre
+ *   @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note
+ *   - This function resets `statePtr` and generate a secret with default parameters.
+ *   - Call it before @ref XXH3_128bits_update().
+ *   - Digest will be equivalent to `XXH3_128bits()`.
+ *
+ * @see @ref streaming_example "Streaming Example"
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
+
+/*!
+ * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
+ *
+ * @param statePtr The state struct to reset.
+ * @param seed     The 64-bit seed to alter the hash result predictably.
+ *
+ * @pre
+ *   @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note
+ *   - This function resets `statePtr` and generate a secret from `seed`.
+ *   - Call it before @ref XXH3_128bits_update().
+ *   - Digest will be equivalent to `XXH3_128bits_withSeed()`.
+ *
+ * @see @ref streaming_example "Streaming Example"
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
+/*!
+ * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
+ *
+ * @param statePtr   The state struct to reset.
+ * @param secret     The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ *
+ * @pre
+ *   @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * `secret` is referenced, it _must outlive_ the hash streaming session.
+ * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN,
+ * and the quality of produced hash values depends on secret's entropy
+ * (secret's content should look like a bunch of random bytes).
+ * When in doubt about the randomness of a candidate `secret`,
+ * consider employing `XXH3_generateSecret()` instead (see below).
+ *
+ * @see @ref streaming_example "Streaming Example"
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
+
+/*!
+ * @brief Consumes a block of @p input to an @ref XXH3_state_t.
+ *
+ * Call this to incrementally consume blocks of data.
+ *
+ * @param statePtr The state struct to update.
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ *
+ * @pre
+ *   @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note
+ *   The memory between @p input and @p input + @p length must be valid,
+ *   readable, contiguous memory. However, if @p length is `0`, @p input may be
+ *   `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
+
+/*!
+ * @brief Returns the calculated XXH3 128-bit hash value from an @ref XXH3_state_t.
+ *
+ * @param statePtr The state struct to calculate the hash from.
+ *
+ * @pre
+ *  @p statePtr must not be `NULL`.
+ *
+ * @return The calculated XXH3 128-bit hash value from that state.
+ *
+ * @note
+ *   Calling XXH3_128bits_digest() will not affect @p statePtr, so you can update,
+ *   digest, and update again.
+ *
+ */
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
+#endif /* !XXH_NO_STREAM */
+
+/* Following helper functions make it possible to compare XXH128_hast_t values.
+ * Since XXH128_hash_t is a structure, this capability is not offered by the language.
+ * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
+
+/*!
+ * @brief Check equality of two XXH128_hash_t values
+ *
+ * @param h1 The 128-bit hash value.
+ * @param h2 Another 128-bit hash value.
+ *
+ * @return `1` if `h1` and `h2` are equal.
+ * @return `0` if they are not.
+ */
+XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
+
+/*!
+ * @brief Compares two @ref XXH128_hash_t
+ *
+ * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
+ *
+ * @param h128_1 Left-hand side value
+ * @param h128_2 Right-hand side value
+ *
+ * @return >0 if @p h128_1  > @p h128_2
+ * @return =0 if @p h128_1 == @p h128_2
+ * @return <0 if @p h128_1  < @p h128_2
+ */
+XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2);
+
+
+/*******   Canonical representation   *******/
+typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
+
+
+/*!
+ * @brief Converts an @ref XXH128_hash_t to a big endian @ref XXH128_canonical_t.
+ *
+ * @param dst  The @ref XXH128_canonical_t pointer to be stored to.
+ * @param hash The @ref XXH128_hash_t to be converted.
+ *
+ * @pre
+ *   @p dst must not be `NULL`.
+ * @see @ref canonical_representation_example "Canonical Representation Example"
+ */
+XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash);
+
+/*!
+ * @brief Converts an @ref XXH128_canonical_t to a native @ref XXH128_hash_t.
+ *
+ * @param src The @ref XXH128_canonical_t to convert.
+ *
+ * @pre
+ *   @p src must not be `NULL`.
+ *
+ * @return The converted hash.
+ * @see @ref canonical_representation_example "Canonical Representation Example"
+ */
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src);
+
+
+#endif  /* !XXH_NO_XXH3 */
+#endif  /* XXH_NO_LONG_LONG */
+
+/*!
+ * @}
+ */
+#endif /* XXHASH_H_5627135585666179 */
+
+
+
+#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
+#define XXHASH_H_STATIC_13879238742
+/* ****************************************************************************
+ * This section contains declarations which are not guaranteed to remain stable.
+ * They may change in future versions, becoming incompatible with a different
+ * version of the library.
+ * These declarations should only be used with static linking.
+ * Never use them in association with dynamic linking!
+ ***************************************************************************** */
+
+/*
+ * These definitions are only present to allow static allocation
+ * of XXH states, on stack or in a struct, for example.
+ * Never **ever** access their members directly.
+ */
+
+/*!
+ * @internal
+ * @brief Structure for XXH32 streaming API.
+ *
+ * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
+ * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
+ * an opaque type. This allows fields to safely be changed.
+ *
+ * Typedef'd to @ref XXH32_state_t.
+ * Do not access the members of this struct directly.
+ * @see XXH64_state_s, XXH3_state_s
+ */
+struct XXH32_state_s {
+   XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
+   XXH32_hash_t large_len;    /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
+   XXH32_hash_t v[4];         /*!< Accumulator lanes */
+   XXH32_hash_t mem32[4];     /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */
+   XXH32_hash_t memsize;      /*!< Amount of data in @ref mem32 */
+   XXH32_hash_t reserved;     /*!< Reserved field. Do not read nor write to it. */
+};   /* typedef'd to XXH32_state_t */
+
+
+#ifndef XXH_NO_LONG_LONG  /* defined when there is no 64-bit support */
+
+/*!
+ * @internal
+ * @brief Structure for XXH64 streaming API.
+ *
+ * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
+ * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
+ * an opaque type. This allows fields to safely be changed.
+ *
+ * Typedef'd to @ref XXH64_state_t.
+ * Do not access the members of this struct directly.
+ * @see XXH32_state_s, XXH3_state_s
+ */
+struct XXH64_state_s {
+   XXH64_hash_t total_len;    /*!< Total length hashed. This is always 64-bit. */
+   XXH64_hash_t v[4];         /*!< Accumulator lanes */
+   XXH64_hash_t mem64[4];     /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
+   XXH32_hash_t memsize;      /*!< Amount of data in @ref mem64 */
+   XXH32_hash_t reserved32;   /*!< Reserved field, needed for padding anyways*/
+   XXH64_hash_t reserved64;   /*!< Reserved field. Do not read or write to it. */
+};   /* typedef'd to XXH64_state_t */
+
+#ifndef XXH_NO_XXH3
+
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
+#  define XXH_ALIGN(n)      _Alignas(n)
+#elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */
+/* In C++ alignas() is a keyword */
+#  define XXH_ALIGN(n)      alignas(n)
+#elif defined(__GNUC__)
+#  define XXH_ALIGN(n)      __attribute__ ((aligned(n)))
+#elif defined(_MSC_VER)
+#  define XXH_ALIGN(n)      __declspec(align(n))
+#else
+#  define XXH_ALIGN(n)   /* disabled */
+#endif
+
+/* Old GCC versions only accept the attribute after the type in structures. */
+#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L))   /* C11+ */ \
+    && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \
+    && defined(__GNUC__)
+#   define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
+#else
+#   define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
+#endif
+
+/*!
+ * @brief The size of the internal XXH3 buffer.
+ *
+ * This is the optimal update size for incremental hashing.
+ *
+ * @see XXH3_64b_update(), XXH3_128b_update().
+ */
+#define XXH3_INTERNALBUFFER_SIZE 256
+
+/*!
+ * @internal
+ * @brief Default size of the secret buffer (and @ref XXH3_kSecret).
+ *
+ * This is the size used in @ref XXH3_kSecret and the seeded functions.
+ *
+ * Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
+ */
+#define XXH3_SECRET_DEFAULT_SIZE 192
+
+/*!
+ * @internal
+ * @brief Structure for XXH3 streaming API.
+ *
+ * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
+ * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined.
+ * Otherwise it is an opaque type.
+ * Never use this definition in combination with dynamic library.
+ * This allows fields to safely be changed in the future.
+ *
+ * @note ** This structure has a strict alignment requirement of 64 bytes!! **
+ * Do not allocate this with `malloc()` or `new`,
+ * it will not be sufficiently aligned.
+ * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation.
+ *
+ * Typedef'd to @ref XXH3_state_t.
+ * Do never access the members of this struct directly.
+ *
+ * @see XXH3_INITSTATE() for stack initialization.
+ * @see XXH3_createState(), XXH3_freeState().
+ * @see XXH32_state_s, XXH64_state_s
+ */
+struct XXH3_state_s {
+   XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
+       /*!< The 8 accumulators. See @ref XXH32_state_s::v and @ref XXH64_state_s::v */
+   XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
+       /*!< Used to store a custom secret generated from a seed. */
+   XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
+       /*!< The internal buffer. @see XXH32_state_s::mem32 */
+   XXH32_hash_t bufferedSize;
+       /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
+   XXH32_hash_t useSeed;
+       /*!< Reserved field. Needed for padding on 64-bit. */
+   size_t nbStripesSoFar;
+       /*!< Number or stripes processed. */
+   XXH64_hash_t totalLen;
+       /*!< Total length hashed. 64-bit even on 32-bit targets. */
+   size_t nbStripesPerBlock;
+       /*!< Number of stripes per block. */
+   size_t secretLimit;
+       /*!< Size of @ref customSecret or @ref extSecret */
+   XXH64_hash_t seed;
+       /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
+   XXH64_hash_t reserved64;
+       /*!< Reserved field. */
+   const unsigned char* extSecret;
+       /*!< Reference to an external secret for the _withSecret variants, NULL
+        *   for other variants. */
+   /* note: there may be some padding at the end due to alignment on 64 bytes */
+}; /* typedef'd to XXH3_state_t */
+
+#undef XXH_ALIGN_MEMBER
+
+/*!
+ * @brief Initializes a stack-allocated `XXH3_state_s`.
+ *
+ * When the @ref XXH3_state_t structure is merely emplaced on stack,
+ * it should be initialized with XXH3_INITSTATE() or a memset()
+ * in case its first reset uses XXH3_NNbits_reset_withSeed().
+ * This init can be omitted if the first reset uses default or _withSecret mode.
+ * This operation isn't necessary when the state is created with XXH3_createState().
+ * Note that this doesn't prepare the state for a streaming operation,
+ * it's still necessary to use XXH3_NNbits_reset*() afterwards.
+ */
+#define XXH3_INITSTATE(XXH3_state_ptr)                       \
+    do {                                                     \
+        XXH3_state_t* tmp_xxh3_state_ptr = (XXH3_state_ptr); \
+        tmp_xxh3_state_ptr->seed = 0;                        \
+        tmp_xxh3_state_ptr->extSecret = NULL;                \
+    } while(0)
+
+
+/*!
+ * @brief Calculates the 128-bit hash of @p data using XXH3.
+ *
+ * @param data The block of data to be hashed, at least @p len bytes in size.
+ * @param len  The length of @p data, in bytes.
+ * @param seed The 64-bit seed to alter the hash's output predictably.
+ *
+ * @pre
+ *   The memory between @p data and @p data + @p len must be valid,
+ *   readable, contiguous memory. However, if @p len is `0`, @p data may be
+ *   `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return The calculated 128-bit XXH3 value.
+ *
+ * @see @ref single_shot_example "Single Shot Example" for an example.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
+
+
+/* ===   Experimental API   === */
+/* Symbols defined below must be considered tied to a specific library version. */
+
+/*!
+ * @brief Derive a high-entropy secret from any user-defined content, named customSeed.
+ *
+ * @param secretBuffer    A writable buffer for derived high-entropy secret data.
+ * @param secretSize      Size of secretBuffer, in bytes.  Must be >= XXH3_SECRET_SIZE_MIN.
+ * @param customSeed      A user-defined content.
+ * @param customSeedSize  Size of customSeed, in bytes.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * The generated secret can be used in combination with `*_withSecret()` functions.
+ * The `_withSecret()` variants are useful to provide a higher level of protection
+ * than 64-bit seed, as it becomes much more difficult for an external actor to
+ * guess how to impact the calculation logic.
+ *
+ * The function accepts as input a custom seed of any length and any content,
+ * and derives from it a high-entropy secret of length @p secretSize into an
+ * already allocated buffer @p secretBuffer.
+ *
+ * The generated secret can then be used with any `*_withSecret()` variant.
+ * The functions @ref XXH3_128bits_withSecret(), @ref XXH3_64bits_withSecret(),
+ * @ref XXH3_128bits_reset_withSecret() and @ref XXH3_64bits_reset_withSecret()
+ * are part of this list. They all accept a `secret` parameter
+ * which must be large enough for implementation reasons (>= @ref XXH3_SECRET_SIZE_MIN)
+ * _and_ feature very high entropy (consist of random-looking bytes).
+ * These conditions can be a high bar to meet, so @ref XXH3_generateSecret() can
+ * be employed to ensure proper quality.
+ *
+ * @p customSeed can be anything. It can have any size, even small ones,
+ * and its content can be anything, even "poor entropy" sources such as a bunch
+ * of zeroes. The resulting `secret` will nonetheless provide all required qualities.
+ *
+ * @pre
+ *   - @p secretSize must be >= @ref XXH3_SECRET_SIZE_MIN
+ *   - When @p customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
+ *
+ * Example code:
+ * @code{.c}
+ *    #include <stdio.h>
+ *    #include <stdlib.h>
+ *    #include <string.h>
+ *    #define XXH_STATIC_LINKING_ONLY // expose unstable API
+ *    #include "xxhash.h"
+ *    // Hashes argv[2] using the entropy from argv[1].
+ *    int main(int argc, char* argv[])
+ *    {
+ *        char secret[XXH3_SECRET_SIZE_MIN];
+ *        if (argv != 3) { return 1; }
+ *        XXH3_generateSecret(secret, sizeof(secret), argv[1], strlen(argv[1]));
+ *        XXH64_hash_t h = XXH3_64bits_withSecret(
+ *             argv[2], strlen(argv[2]),
+ *             secret, sizeof(secret)
+ *        );
+ *        printf("%016llx\n", (unsigned long long) h);
+ *    }
+ * @endcode
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize);
+
+/*!
+ * @brief Generate the same secret as the _withSeed() variants.
+ *
+ * @param secretBuffer A writable buffer of @ref XXH3_SECRET_DEFAULT_SIZE bytes
+ * @param seed         The 64-bit seed to alter the hash result predictably.
+ *
+ * The generated secret can be used in combination with
+ *`*_withSecret()` and `_withSecretandSeed()` variants.
+ *
+ * Example C++ `std::string` hash class:
+ * @code{.cpp}
+ *    #include <string>
+ *    #define XXH_STATIC_LINKING_ONLY // expose unstable API
+ *    #include "xxhash.h"
+ *    // Slow, seeds each time
+ *    class HashSlow {
+ *        XXH64_hash_t seed;
+ *    public:
+ *        HashSlow(XXH64_hash_t s) : seed{s} {}
+ *        size_t operator()(const std::string& x) const {
+ *            return size_t{XXH3_64bits_withSeed(x.c_str(), x.length(), seed)};
+ *        }
+ *    };
+ *    // Fast, caches the seeded secret for future uses.
+ *    class HashFast {
+ *        unsigned char secret[XXH3_SECRET_DEFAULT_SIZE];
+ *    public:
+ *        HashFast(XXH64_hash_t s) {
+ *            XXH3_generateSecret_fromSeed(secret, seed);
+ *        }
+ *        size_t operator()(const std::string& x) const {
+ *            return size_t{
+ *                XXH3_64bits_withSecret(x.c_str(), x.length(), secret, sizeof(secret))
+ *            };
+ *        }
+ *    };
+ * @endcode
+ */
+XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed);
+
+/*!
+ * @brief Maximum size of "short" key in bytes.
+ */
+#define XXH3_MIDSIZE_MAX 240
+
+/*!
+ * @brief Calculates 64/128-bit seeded variant of XXH3 hash of @p data.
+ *
+ * @param data       The block of data to be hashed, at least @p len bytes in size.
+ * @param len        The length of @p data, in bytes.
+ * @param secret     The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ * @param seed       The 64-bit seed to alter the hash result predictably.
+ *
+ * These variants generate hash values using either:
+ * - @p seed for "short" keys (< @ref XXH3_MIDSIZE_MAX = 240 bytes)
+ * - @p secret for "large" keys (>= @ref XXH3_MIDSIZE_MAX).
+ *
+ * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
+ * `_withSeed()` has to generate the secret on the fly for "large" keys.
+ * It's fast, but can be perceptible for "not so large" keys (< 1 KB).
+ * `_withSecret()` has to generate the masks on the fly for "small" keys,
+ * which requires more instructions than _withSeed() variants.
+ * Therefore, _withSecretandSeed variant combines the best of both worlds.
+ *
+ * When @p secret has been generated by XXH3_generateSecret_fromSeed(),
+ * this variant produces *exactly* the same results as `_withSeed()` variant,
+ * hence offering only a pure speed benefit on "large" input,
+ * by skipping the need to regenerate the secret for every large input.
+ *
+ * Another usage scenario is to hash the secret to a 64-bit hash value,
+ * for example with XXH3_64bits(), which then becomes the seed,
+ * and then employ both the seed and the secret in _withSecretandSeed().
+ * On top of speed, an added benefit is that each bit in the secret
+ * has a 50% chance to swap each bit in the output, via its impact to the seed.
+ *
+ * This is not guaranteed when using the secret directly in "small data" scenarios,
+ * because only portions of the secret are employed for small data.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t
+XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len,
+                              XXH_NOESCAPE const void* secret, size_t secretSize,
+                              XXH64_hash_t seed);
+
+/*!
+ * @brief Calculates 128-bit seeded variant of XXH3 hash of @p data.
+ *
+ * @param data       The memory segment to be hashed, at least @p len bytes in size.
+ * @param length     The length of @p data, in bytes.
+ * @param secret     The secret used to alter hash result predictably.
+ * @param secretSize The length of @p secret, in bytes (must be >= XXH3_SECRET_SIZE_MIN)
+ * @param seed64     The 64-bit seed to alter the hash result predictably.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @see XXH3_64bits_withSecretandSeed(): contract is the same.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t
+XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length,
+                               XXH_NOESCAPE const void* secret, size_t secretSize,
+                               XXH64_hash_t seed64);
+
+#ifndef XXH_NO_STREAM
+/*!
+ * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
+ *
+ * @param statePtr   A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
+ * @param secret     The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ * @param seed64     The 64-bit seed to alter the hash result predictably.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @see XXH3_64bits_withSecretandSeed(). Contract is identical.
+ */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
+                                    XXH_NOESCAPE const void* secret, size_t secretSize,
+                                    XXH64_hash_t seed64);
+
+/*!
+ * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
+ *
+ * @param statePtr   A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
+ * @param secret     The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ * @param seed64     The 64-bit seed to alter the hash result predictably.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @see XXH3_64bits_withSecretandSeed(). Contract is identical.
+ *
+ * Note: there was a bug in an earlier version of this function (<= v0.8.2)
+ * that would make it generate an incorrect hash value
+ * when @p seed == 0 and @p length < XXH3_MIDSIZE_MAX
+ * and @p secret is different from XXH3_generateSecret_fromSeed().
+ * As stated in the contract, the correct hash result must be
+ * the same as XXH3_128bits_withSeed() when @p length <= XXH3_MIDSIZE_MAX.
+ * Results generated by this older version are wrong, hence not comparable.
+ */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
+                                     XXH_NOESCAPE const void* secret, size_t secretSize,
+                                     XXH64_hash_t seed64);
+
+#endif /* !XXH_NO_STREAM */
+
+#endif  /* !XXH_NO_XXH3 */
+#endif  /* XXH_NO_LONG_LONG */
+#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
+#  define XXH_IMPLEMENTATION
+#endif
+
+#endif  /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
+
+
+/* ======================================================================== */
+/* ======================================================================== */
+/* ======================================================================== */
+
+
+/*-**********************************************************************
+ * xxHash implementation
+ *-**********************************************************************
+ * xxHash's implementation used to be hosted inside xxhash.c.
+ *
+ * However, inlining requires implementation to be visible to the compiler,
+ * hence be included alongside the header.
+ * Previously, implementation was hosted inside xxhash.c,
+ * which was then #included when inlining was activated.
+ * This construction created issues with a few build and install systems,
+ * as it required xxhash.c to be stored in /include directory.
+ *
+ * xxHash implementation is now directly integrated within xxhash.h.
+ * As a consequence, xxhash.c is no longer needed in /include.
+ *
+ * xxhash.c is still available and is still useful.
+ * In a "normal" setup, when xxhash is not inlined,
+ * xxhash.h only exposes the prototypes and public symbols,
+ * while xxhash.c can be built into an object file xxhash.o
+ * which can then be linked into the final binary.
+ ************************************************************************/
+
+#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
+   || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
+#  define XXH_IMPLEM_13a8737387
+
+/* *************************************
+*  Tuning parameters
+***************************************/
+
+/*!
+ * @defgroup tuning Tuning parameters
+ * @{
+ *
+ * Various macros to control xxHash's behavior.
+ */
+#ifdef XXH_DOXYGEN
+/*!
+ * @brief Define this to disable 64-bit code.
+ *
+ * Useful if only using the @ref XXH32_family and you have a strict C90 compiler.
+ */
+#  define XXH_NO_LONG_LONG
+#  undef XXH_NO_LONG_LONG /* don't actually */
+/*!
+ * @brief Controls how unaligned memory is accessed.
+ *
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is
+ * safe and portable.
+ *
+ * Unfortunately, on some target/compiler combinations, the generated assembly
+ * is sub-optimal.
+ *
+ * The below switch allow selection of a different access method
+ * in the search for improved performance.
+ *
+ * @par Possible options:
+ *
+ *  - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
+ *   @par
+ *     Use `memcpy()`. Safe and portable. Note that most modern compilers will
+ *     eliminate the function call and treat it as an unaligned access.
+ *
+ *  - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((aligned(1)))`
+ *   @par
+ *     Depends on compiler extensions and is therefore not portable.
+ *     This method is safe _if_ your compiler supports it,
+ *     and *generally* as fast or faster than `memcpy`.
+ *
+ *  - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
+ *  @par
+ *     Casts directly and dereferences. This method doesn't depend on the
+ *     compiler, but it violates the C standard as it directly dereferences an
+ *     unaligned pointer. It can generate buggy code on targets which do not
+ *     support unaligned memory accesses, but in some circumstances, it's the
+ *     only known way to get the most performance.
+ *
+ *  - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
+ *  @par
+ *     Also portable. This can generate the best code on old compilers which don't
+ *     inline small `memcpy()` calls, and it might also be faster on big-endian
+ *     systems which lack a native byteswap instruction. However, some compilers
+ *     will emit literal byteshifts even if the target supports unaligned access.
+ *
+ *
+ * @warning
+ *   Methods 1 and 2 rely on implementation-defined behavior. Use these with
+ *   care, as what works on one compiler/platform/optimization level may cause
+ *   another to read garbage data or even crash.
+ *
+ * See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
+ *
+ * Prefer these methods in priority order (0 > 3 > 1 > 2)
+ */
+#  define XXH_FORCE_MEMORY_ACCESS 0
+
+/*!
+ * @def XXH_SIZE_OPT
+ * @brief Controls how much xxHash optimizes for size.
+ *
+ * xxHash, when compiled, tends to result in a rather large binary size. This
+ * is mostly due to heavy usage to forced inlining and constant folding of the
+ * @ref XXH3_family to increase performance.
+ *
+ * However, some developers prefer size over speed. This option can
+ * significantly reduce the size of the generated code. When using the `-Os`
+ * or `-Oz` options on GCC or Clang, this is defined to 1 by default,
+ * otherwise it is defined to 0.
+ *
+ * Most of these size optimizations can be controlled manually.
+ *
+ * This is a number from 0-2.
+ *  - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed
+ *    comes first.
+ *  - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more
+ *    conservative and disables hacks that increase code size. It implies the
+ *    options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0,
+ *    and @ref XXH3_NEON_LANES == 8 if they are not already defined.
+ *  - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible.
+ *    Performance may cry. For example, the single shot functions just use the
+ *    streaming API.
+ */
+#  define XXH_SIZE_OPT 0
+
+/*!
+ * @def XXH_FORCE_ALIGN_CHECK
+ * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
+ * and XXH64() only).
+ *
+ * This is an important performance trick for architectures without decent
+ * unaligned memory access performance.
+ *
+ * It checks for input alignment, and when conditions are met, uses a "fast
+ * path" employing direct 32-bit/64-bit reads, resulting in _dramatically
+ * faster_ read speed.
+ *
+ * The check costs one initial branch per hash, which is generally negligible,
+ * but not zero.
+ *
+ * Moreover, it's not useful to generate an additional code path if memory
+ * access uses the same instruction for both aligned and unaligned
+ * addresses (e.g. x86 and aarch64).
+ *
+ * In these cases, the alignment check can be removed by setting this macro to 0.
+ * Then the code will always use unaligned memory access.
+ * Align check is automatically disabled on x86, x64, ARM64, and some ARM chips
+ * which are platforms known to offer good unaligned memory accesses performance.
+ *
+ * It is also disabled by default when @ref XXH_SIZE_OPT >= 1.
+ *
+ * This option does not affect XXH3 (only XXH32 and XXH64).
+ */
+#  define XXH_FORCE_ALIGN_CHECK 0
+
+/*!
+ * @def XXH_NO_INLINE_HINTS
+ * @brief When non-zero, sets all functions to `static`.
+ *
+ * By default, xxHash tries to force the compiler to inline almost all internal
+ * functions.
+ *
+ * This can usually improve performance due to reduced jumping and improved
+ * constant folding, but significantly increases the size of the binary which
+ * might not be favorable.
+ *
+ * Additionally, sometimes the forced inlining can be detrimental to performance,
+ * depending on the architecture.
+ *
+ * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
+ * compiler full control on whether to inline or not.
+ *
+ * When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if
+ * @ref XXH_SIZE_OPT >= 1, this will automatically be defined.
+ */
+#  define XXH_NO_INLINE_HINTS 0
+
+/*!
+ * @def XXH3_INLINE_SECRET
+ * @brief Determines whether to inline the XXH3 withSecret code.
+ *
+ * When the secret size is known, the compiler can improve the performance
+ * of XXH3_64bits_withSecret() and XXH3_128bits_withSecret().
+ *
+ * However, if the secret size is not known, it doesn't have any benefit. This
+ * happens when xxHash is compiled into a global symbol. Therefore, if
+ * @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0.
+ *
+ * Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers
+ * that are *sometimes* force inline on -Og, and it is impossible to automatically
+ * detect this optimization level.
+ */
+#  define XXH3_INLINE_SECRET 0
+
+/*!
+ * @def XXH32_ENDJMP
+ * @brief Whether to use a jump for `XXH32_finalize`.
+ *
+ * For performance, `XXH32_finalize` uses multiple branches in the finalizer.
+ * This is generally preferable for performance,
+ * but depending on exact architecture, a jmp may be preferable.
+ *
+ * This setting is only possibly making a difference for very small inputs.
+ */
+#  define XXH32_ENDJMP 0
+
+/*!
+ * @internal
+ * @brief Redefines old internal names.
+ *
+ * For compatibility with code that uses xxHash's internals before the names
+ * were changed to improve namespacing. There is no other reason to use this.
+ */
+#  define XXH_OLD_NAMES
+#  undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
+
+/*!
+ * @def XXH_NO_STREAM
+ * @brief Disables the streaming API.
+ *
+ * When xxHash is not inlined and the streaming functions are not used, disabling
+ * the streaming functions can improve code size significantly, especially with
+ * the @ref XXH3_family which tends to make constant folded copies of itself.
+ */
+#  define XXH_NO_STREAM
+#  undef XXH_NO_STREAM /* don't actually */
+#endif /* XXH_DOXYGEN */
+/*!
+ * @}
+ */
+
+#ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
+   /* prefer __packed__ structures (method 1) for GCC
+    * < ARMv7 with unaligned access (e.g. Raspbian armhf) still uses byte shifting, so we use memcpy
+    * which for some reason does unaligned loads. */
+#  if defined(__GNUC__) && !(defined(__ARM_ARCH) && __ARM_ARCH < 7 && defined(__ARM_FEATURE_UNALIGNED))
+#    define XXH_FORCE_MEMORY_ACCESS 1
+#  endif
+#endif
+
+#ifndef XXH_SIZE_OPT
+   /* default to 1 for -Os or -Oz */
+#  if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__)
+#    define XXH_SIZE_OPT 1
+#  else
+#    define XXH_SIZE_OPT 0
+#  endif
+#endif
+
+#ifndef XXH_FORCE_ALIGN_CHECK  /* can be defined externally */
+   /* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */
+#  if XXH_SIZE_OPT >= 1 || \
+      defined(__i386)  || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \
+   || defined(_M_IX86) || defined(_M_X64)     || defined(_M_ARM64)    || defined(_M_ARM) /* visual */
+#    define XXH_FORCE_ALIGN_CHECK 0
+#  else
+#    define XXH_FORCE_ALIGN_CHECK 1
+#  endif
+#endif
+
+#ifndef XXH_NO_INLINE_HINTS
+#  if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__)  /* -O0, -fno-inline */
+#    define XXH_NO_INLINE_HINTS 1
+#  else
+#    define XXH_NO_INLINE_HINTS 0
+#  endif
+#endif
+
+#ifndef XXH3_INLINE_SECRET
+#  if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \
+     || !defined(XXH_INLINE_ALL)
+#    define XXH3_INLINE_SECRET 0
+#  else
+#    define XXH3_INLINE_SECRET 1
+#  endif
+#endif
+
+#ifndef XXH32_ENDJMP
+/* generally preferable for performance */
+#  define XXH32_ENDJMP 0
+#endif
+
+/*!
+ * @defgroup impl Implementation
+ * @{
+ */
+
+
+/* *************************************
+*  Includes & Memory related functions
+***************************************/
+#if defined(XXH_NO_STREAM)
+/* nothing */
+#elif defined(XXH_NO_STDLIB)
+
+/* When requesting to disable any mention of stdlib,
+ * the library loses the ability to invoked malloc / free.
+ * In practice, it means that functions like `XXH*_createState()`
+ * will always fail, and return NULL.
+ * This flag is useful in situations where
+ * xxhash.h is integrated into some kernel, embedded or limited environment
+ * without access to dynamic allocation.
+ */
+
+static XXH_CONSTF void* XXH_malloc(size_t s) { (void)s; return NULL; }
+static void XXH_free(void* p) { (void)p; }
+
+#else
+
+/*
+ * Modify the local functions below should you wish to use
+ * different memory routines for malloc() and free()
+ */
+#include <stdlib.h>
+
+/*!
+ * @internal
+ * @brief Modify this function to use a different routine than malloc().
+ */
+static XXH_MALLOCF void* XXH_malloc(size_t s) { return malloc(s); }
+
+/*!
+ * @internal
+ * @brief Modify this function to use a different routine than free().
+ */
+static void XXH_free(void* p) { free(p); }
+
+#endif  /* XXH_NO_STDLIB */
+
+#include <string.h>
+
+/*!
+ * @internal
+ * @brief Modify this function to use a different routine than memcpy().
+ */
+static void* XXH_memcpy(void* dest, const void* src, size_t size)
+{
+    return memcpy(dest,src,size);
+}
+
+#include <limits.h>   /* ULLONG_MAX */
+
+
+/* *************************************
+*  Compiler Specific Options
+***************************************/
+#ifdef _MSC_VER /* Visual Studio warning fix */
+#  pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+#endif
+
+#if XXH_NO_INLINE_HINTS  /* disable inlining hints */
+#  if defined(__GNUC__) || defined(__clang__)
+#    define XXH_FORCE_INLINE static __attribute__((__unused__))
+#  else
+#    define XXH_FORCE_INLINE static
+#  endif
+#  define XXH_NO_INLINE static
+/* enable inlining hints */
+#elif defined(__GNUC__) || defined(__clang__)
+#  define XXH_FORCE_INLINE static __inline__ __attribute__((__always_inline__, __unused__))
+#  define XXH_NO_INLINE static __attribute__((__noinline__))
+#elif defined(_MSC_VER)  /* Visual Studio */
+#  define XXH_FORCE_INLINE static __forceinline
+#  define XXH_NO_INLINE static __declspec(noinline)
+#elif defined (__cplusplus) \
+  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L))   /* C99 */
+#  define XXH_FORCE_INLINE static inline
+#  define XXH_NO_INLINE static
+#else
+#  define XXH_FORCE_INLINE static
+#  define XXH_NO_INLINE static
+#endif
+
+#if XXH3_INLINE_SECRET
+#  define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE
+#else
+#  define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE
+#endif
+
+
+/* *************************************
+*  Debug
+***************************************/
+/*!
+ * @ingroup tuning
+ * @def XXH_DEBUGLEVEL
+ * @brief Sets the debugging level.
+ *
+ * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
+ * compiler's command line options. The value must be a number.
+ */
+#ifndef XXH_DEBUGLEVEL
+#  ifdef DEBUGLEVEL /* backwards compat */
+#    define XXH_DEBUGLEVEL DEBUGLEVEL
+#  else
+#    define XXH_DEBUGLEVEL 0
+#  endif
+#endif
+
+#if (XXH_DEBUGLEVEL>=1)
+#  include <assert.h>   /* note: can still be disabled with NDEBUG */
+#  define XXH_ASSERT(c)   assert(c)
+#else
+#  if defined(__INTEL_COMPILER)
+#    define XXH_ASSERT(c)   XXH_ASSUME((unsigned char) (c))
+#  else
+#    define XXH_ASSERT(c)   XXH_ASSUME(c)
+#  endif
+#endif
+
+/* note: use after variable declarations */
+#ifndef XXH_STATIC_ASSERT
+#  if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)    /* C11 */
+#    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0)
+#  elif defined(__cplusplus) && (__cplusplus >= 201103L)            /* C++11 */
+#    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
+#  else
+#    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0)
+#  endif
+#  define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c)
+#endif
+
+/*!
+ * @internal
+ * @def XXH_COMPILER_GUARD(var)
+ * @brief Used to prevent unwanted optimizations for @p var.
+ *
+ * It uses an empty GCC inline assembly statement with a register constraint
+ * which forces @p var into a general purpose register (eg eax, ebx, ecx
+ * on x86) and marks it as modified.
+ *
+ * This is used in a few places to avoid unwanted autovectorization (e.g.
+ * XXH32_round()). All vectorization we want is explicit via intrinsics,
+ * and _usually_ isn't wanted elsewhere.
+ *
+ * We also use it to prevent unwanted constant folding for AArch64 in
+ * XXH3_initCustomSecret_scalar().
+ */
+#if defined(__GNUC__) || defined(__clang__)
+#  define XXH_COMPILER_GUARD(var) __asm__("" : "+r" (var))
+#else
+#  define XXH_COMPILER_GUARD(var) ((void)0)
+#endif
+
+/* Specifically for NEON vectors which use the "w" constraint, on
+ * Clang. */
+#if defined(__clang__) && defined(__ARM_ARCH) && !defined(__wasm__)
+#  define XXH_COMPILER_GUARD_CLANG_NEON(var) __asm__("" : "+w" (var))
+#else
+#  define XXH_COMPILER_GUARD_CLANG_NEON(var) ((void)0)
+#endif
+
+/* *************************************
+*  Basic Types
+***************************************/
+#if !defined (__VMS) \
+ && (defined (__cplusplus) \
+ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+#   ifdef _AIX
+#     include <inttypes.h>
+#   else
+#     include <stdint.h>
+#   endif
+    typedef uint8_t xxh_u8;
+#else
+    typedef unsigned char xxh_u8;
+#endif
+typedef XXH32_hash_t xxh_u32;
+
+#ifdef XXH_OLD_NAMES
+#  warning "XXH_OLD_NAMES is planned to be removed starting v0.9. If the program depends on it, consider moving away from it by employing newer type names directly"
+#  define BYTE xxh_u8
+#  define U8   xxh_u8
+#  define U32  xxh_u32
+#endif
+
+/* ***   Memory access   *** */
+
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_read32(const void* ptr)
+ * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
+ *
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
+ *
+ * @param ptr The pointer to read from.
+ * @return The 32-bit native endian integer from the bytes at @p ptr.
+ */
+
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_readLE32(const void* ptr)
+ * @brief Reads an unaligned 32-bit little endian integer from @p ptr.
+ *
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
+ *
+ * @param ptr The pointer to read from.
+ * @return The 32-bit little endian integer from the bytes at @p ptr.
+ */
+
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_readBE32(const void* ptr)
+ * @brief Reads an unaligned 32-bit big endian integer from @p ptr.
+ *
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
+ *
+ * @param ptr The pointer to read from.
+ * @return The 32-bit big endian integer from the bytes at @p ptr.
+ */
+
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
+ * @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
+ *
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
+ * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
+ * always @ref XXH_alignment::XXH_unaligned.
+ *
+ * @param ptr The pointer to read from.
+ * @param align Whether @p ptr is aligned.
+ * @pre
+ *   If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
+ *   aligned.
+ * @return The 32-bit little endian integer from the bytes at @p ptr.
+ */
+
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
+/*
+ * Manual byteshift. Best for old compilers which don't inline memcpy.
+ * We actually directly use XXH_readLE32 and XXH_readBE32.
+ */
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
+
+/*
+ * Force direct memory access. Only works on CPU which support unaligned memory
+ * access in hardware.
+ */
+static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
+
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
+
+/*
+ * __attribute__((aligned(1))) is supported by gcc and clang. Originally the
+ * documentation claimed that it only increased the alignment, but actually it
+ * can decrease it on gcc, clang, and icc:
+ * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
+ * https://gcc.godbolt.org/z/xYez1j67Y.
+ */
+#ifdef XXH_OLD_NAMES
+typedef union { xxh_u32 u32; } __attribute__((__packed__)) unalign;
+#endif
+static xxh_u32 XXH_read32(const void* ptr)
+{
+    typedef __attribute__((__aligned__(1))) xxh_u32 xxh_unalign32;
+    return *((const xxh_unalign32*)ptr);
+}
+
+#else
+
+/*
+ * Portable and safe solution. Generally efficient.
+ * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
+ */
+static xxh_u32 XXH_read32(const void* memPtr)
+{
+    xxh_u32 val;
+    XXH_memcpy(&val, memPtr, sizeof(val));
+    return val;
+}
+
+#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
+
+
+/* ***   Endianness   *** */
+
+/*!
+ * @ingroup tuning
+ * @def XXH_CPU_LITTLE_ENDIAN
+ * @brief Whether the target is little endian.
+ *
+ * Defined to 1 if the target is little endian, or 0 if it is big endian.
+ * It can be defined externally, for example on the compiler command line.
+ *
+ * If it is not defined,
+ * a runtime check (which is usually constant folded) is used instead.
+ *
+ * @note
+ *   This is not necessarily defined to an integer constant.
+ *
+ * @see XXH_isLittleEndian() for the runtime check.
+ */
+#ifndef XXH_CPU_LITTLE_ENDIAN
+/*
+ * Try to detect endianness automatically, to avoid the nonstandard behavior
+ * in `XXH_isLittleEndian()`
+ */
+#  if defined(_WIN32) /* Windows is always little endian */ \
+     || defined(__LITTLE_ENDIAN__) \
+     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
+#    define XXH_CPU_LITTLE_ENDIAN 1
+#  elif defined(__BIG_ENDIAN__) \
+     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
+#    define XXH_CPU_LITTLE_ENDIAN 0
+#  else
+/*!
+ * @internal
+ * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
+ *
+ * Most compilers will constant fold this.
+ */
+static int XXH_isLittleEndian(void)
+{
+    /*
+     * Portable and well-defined behavior.
+     * Don't use static: it is detrimental to performance.
+     */
+    const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
+    return one.c[0];
+}
+#   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian()
+#  endif
+#endif
+
+
+
+
+/* ****************************************
+*  Compiler-specific Functions and Macros
+******************************************/
+#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
+
+#ifdef __has_builtin
+#  define XXH_HAS_BUILTIN(x) __has_builtin(x)
+#else
+#  define XXH_HAS_BUILTIN(x) 0
+#endif
+
+
+
+/*
+ * C23 and future versions have standard "unreachable()".
+ * Once it has been implemented reliably we can add it as an
+ * additional case:
+ *
+ * ```
+ * #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN)
+ * #  include <stddef.h>
+ * #  ifdef unreachable
+ * #    define XXH_UNREACHABLE() unreachable()
+ * #  endif
+ * #endif
+ * ```
+ *
+ * Note C++23 also has std::unreachable() which can be detected
+ * as follows:
+ * ```
+ * #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L)
+ * #  include <utility>
+ * #  define XXH_UNREACHABLE() std::unreachable()
+ * #endif
+ * ```
+ * NB: `__cpp_lib_unreachable` is defined in the `<version>` header.
+ * We don't use that as including `<utility>` in `extern "C"` blocks
+ * doesn't work on GCC12
+ */
+
+#if XXH_HAS_BUILTIN(__builtin_unreachable)
+#  define XXH_UNREACHABLE() __builtin_unreachable()
+
+#elif defined(_MSC_VER)
+#  define XXH_UNREACHABLE() __assume(0)
+
+#else
+#  define XXH_UNREACHABLE()
+#endif
+
+#if XXH_HAS_BUILTIN(__builtin_assume)
+#  define XXH_ASSUME(c) __builtin_assume(c)
+#else
+#  define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); }
+#endif
+
+/*!
+ * @internal
+ * @def XXH_rotl32(x,r)
+ * @brief 32-bit rotate left.
+ *
+ * @param x The 32-bit integer to be rotated.
+ * @param r The number of bits to rotate.
+ * @pre
+ *   @p r > 0 && @p r < 32
+ * @note
+ *   @p x and @p r may be evaluated multiple times.
+ * @return The rotated result.
+ */
+#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
+                               && XXH_HAS_BUILTIN(__builtin_rotateleft64)
+#  define XXH_rotl32 __builtin_rotateleft32
+#  define XXH_rotl64 __builtin_rotateleft64
+/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
+#elif defined(_MSC_VER)
+#  define XXH_rotl32(x,r) _rotl(x,r)
+#  define XXH_rotl64(x,r) _rotl64(x,r)
+#else
+#  define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
+#  define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
+#endif
+
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_swap32(xxh_u32 x)
+ * @brief A 32-bit byteswap.
+ *
+ * @param x The 32-bit integer to byteswap.
+ * @return @p x, byteswapped.
+ */
+#if defined(_MSC_VER)     /* Visual Studio */
+#  define XXH_swap32 _byteswap_ulong
+#elif XXH_GCC_VERSION >= 403
+#  define XXH_swap32 __builtin_bswap32
+#else
+static xxh_u32 XXH_swap32 (xxh_u32 x)
+{
+    return  ((x << 24) & 0xff000000 ) |
+            ((x <<  8) & 0x00ff0000 ) |
+            ((x >>  8) & 0x0000ff00 ) |
+            ((x >> 24) & 0x000000ff );
+}
+#endif
+
+
+/* ***************************
+*  Memory reads
+*****************************/
+
+/*!
+ * @internal
+ * @brief Enum to indicate whether a pointer is aligned.
+ */
+typedef enum {
+    XXH_aligned,  /*!< Aligned */
+    XXH_unaligned /*!< Possibly unaligned */
+} XXH_alignment;
+
+/*
+ * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
+ *
+ * This is ideal for older compilers which don't inline memcpy.
+ */
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
+
+XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
+{
+    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
+    return bytePtr[0]
+         | ((xxh_u32)bytePtr[1] << 8)
+         | ((xxh_u32)bytePtr[2] << 16)
+         | ((xxh_u32)bytePtr[3] << 24);
+}
+
+XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
+{
+    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
+    return bytePtr[3]
+         | ((xxh_u32)bytePtr[2] << 8)
+         | ((xxh_u32)bytePtr[1] << 16)
+         | ((xxh_u32)bytePtr[0] << 24);
+}
+
+#else
+XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
+{
+    return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
+}
+
+static xxh_u32 XXH_readBE32(const void* ptr)
+{
+    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
+}
+#endif
+
+XXH_FORCE_INLINE xxh_u32
+XXH_readLE32_align(const void* ptr, XXH_alignment align)
+{
+    if (align==XXH_unaligned) {
+        return XXH_readLE32(ptr);
+    } else {
+        return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
+    }
+}
+
+
+/* *************************************
+*  Misc
+***************************************/
+/*! @ingroup public */
+XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
+
+
+/* *******************************************************************
+*  32-bit hash functions
+*********************************************************************/
+/*!
+ * @}
+ * @defgroup XXH32_impl XXH32 implementation
+ * @ingroup impl
+ *
+ * Details on the XXH32 implementation.
+ * @{
+ */
+ /* #define instead of static const, to be used as initializers */
+#define XXH_PRIME32_1  0x9E3779B1U  /*!< 0b10011110001101110111100110110001 */
+#define XXH_PRIME32_2  0x85EBCA77U  /*!< 0b10000101111010111100101001110111 */
+#define XXH_PRIME32_3  0xC2B2AE3DU  /*!< 0b11000010101100101010111000111101 */
+#define XXH_PRIME32_4  0x27D4EB2FU  /*!< 0b00100111110101001110101100101111 */
+#define XXH_PRIME32_5  0x165667B1U  /*!< 0b00010110010101100110011110110001 */
+
+#ifdef XXH_OLD_NAMES
+#  define PRIME32_1 XXH_PRIME32_1
+#  define PRIME32_2 XXH_PRIME32_2
+#  define PRIME32_3 XXH_PRIME32_3
+#  define PRIME32_4 XXH_PRIME32_4
+#  define PRIME32_5 XXH_PRIME32_5
+#endif
+
+/*!
+ * @internal
+ * @brief Normal stripe processing routine.
+ *
+ * This shuffles the bits so that any bit from @p input impacts several bits in
+ * @p acc.
+ *
+ * @param acc The accumulator lane.
+ * @param input The stripe of input to mix.
+ * @return The mixed accumulator lane.
+ */
+static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
+{
+    acc += input * XXH_PRIME32_2;
+    acc  = XXH_rotl32(acc, 13);
+    acc *= XXH_PRIME32_1;
+#if (defined(__SSE4_1__) || defined(__aarch64__) || defined(__wasm_simd128__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
+    /*
+     * UGLY HACK:
+     * A compiler fence is used to prevent GCC and Clang from
+     * autovectorizing the XXH32 loop (pragmas and attributes don't work for some
+     * reason) without globally disabling SSE4.1.
+     *
+     * The reason we want to avoid vectorization is because despite working on
+     * 4 integers at a time, there are multiple factors slowing XXH32 down on
+     * SSE4:
+     * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
+     *   newer chips!) making it slightly slower to multiply four integers at
+     *   once compared to four integers independently. Even when pmulld was
+     *   fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
+     *   just to multiply unless doing a long operation.
+     *
+     * - Four instructions are required to rotate,
+     *      movqda tmp,  v // not required with VEX encoding
+     *      pslld  tmp, 13 // tmp <<= 13
+     *      psrld  v,   19 // x >>= 19
+     *      por    v,  tmp // x |= tmp
+     *   compared to one for scalar:
+     *      roll   v, 13    // reliably fast across the board
+     *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason
+     *
+     * - Instruction level parallelism is actually more beneficial here because
+     *   the SIMD actually serializes this operation: While v1 is rotating, v2
+     *   can load data, while v3 can multiply. SSE forces them to operate
+     *   together.
+     *
+     * This is also enabled on AArch64, as Clang is *very aggressive* in vectorizing
+     * the loop. NEON is only faster on the A53, and with the newer cores, it is less
+     * than half the speed.
+     *
+     * Additionally, this is used on WASM SIMD128 because it JITs to the same
+     * SIMD instructions and has the same issue.
+     */
+    XXH_COMPILER_GUARD(acc);
+#endif
+    return acc;
+}
+
+/*!
+ * @internal
+ * @brief Mixes all bits to finalize the hash.
+ *
+ * The final mix ensures that all input bits have a chance to impact any bit in
+ * the output digest, resulting in an unbiased distribution.
+ *
+ * @param hash The hash to avalanche.
+ * @return The avalanched hash.
+ */
+static xxh_u32 XXH32_avalanche(xxh_u32 hash)
+{
+    hash ^= hash >> 15;
+    hash *= XXH_PRIME32_2;
+    hash ^= hash >> 13;
+    hash *= XXH_PRIME32_3;
+    hash ^= hash >> 16;
+    return hash;
+}
+
+#define XXH_get32bits(p) XXH_readLE32_align(p, align)
+
+/*!
+ * @internal
+ * @brief Processes the last 0-15 bytes of @p ptr.
+ *
+ * There may be up to 15 bytes remaining to consume from the input.
+ * This final stage will digest them to ensure that all input bytes are present
+ * in the final mix.
+ *
+ * @param hash The hash to finalize.
+ * @param ptr The pointer to the remaining input.
+ * @param len The remaining length, modulo 16.
+ * @param align Whether @p ptr is aligned.
+ * @return The finalized hash.
+ * @see XXH64_finalize().
+ */
+static XXH_PUREF xxh_u32
+XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
+{
+#define XXH_PROCESS1 do {                             \
+    hash += (*ptr++) * XXH_PRIME32_5;                 \
+    hash = XXH_rotl32(hash, 11) * XXH_PRIME32_1;      \
+} while (0)
+
+#define XXH_PROCESS4 do {                             \
+    hash += XXH_get32bits(ptr) * XXH_PRIME32_3;       \
+    ptr += 4;                                         \
+    hash  = XXH_rotl32(hash, 17) * XXH_PRIME32_4;     \
+} while (0)
+
+    if (ptr==NULL) XXH_ASSERT(len == 0);
+
+    /* Compact rerolled version; generally faster */
+    if (!XXH32_ENDJMP) {
+        len &= 15;
+        while (len >= 4) {
+            XXH_PROCESS4;
+            len -= 4;
+        }
+        while (len > 0) {
+            XXH_PROCESS1;
+            --len;
+        }
+        return XXH32_avalanche(hash);
+    } else {
+         switch(len&15) /* or switch(bEnd - p) */ {
+           case 12:      XXH_PROCESS4;
+                         XXH_FALLTHROUGH;  /* fallthrough */
+           case 8:       XXH_PROCESS4;
+                         XXH_FALLTHROUGH;  /* fallthrough */
+           case 4:       XXH_PROCESS4;
+                         return XXH32_avalanche(hash);
+
+           case 13:      XXH_PROCESS4;
+                         XXH_FALLTHROUGH;  /* fallthrough */
+           case 9:       XXH_PROCESS4;
+                         XXH_FALLTHROUGH;  /* fallthrough */
+           case 5:       XXH_PROCESS4;
+                         XXH_PROCESS1;
+                         return XXH32_avalanche(hash);
+
+           case 14:      XXH_PROCESS4;
+                         XXH_FALLTHROUGH;  /* fallthrough */
+           case 10:      XXH_PROCESS4;
+                         XXH_FALLTHROUGH;  /* fallthrough */
+           case 6:       XXH_PROCESS4;
+                         XXH_PROCESS1;
+                         XXH_PROCESS1;
+                         return XXH32_avalanche(hash);
+
+           case 15:      XXH_PROCESS4;
+                         XXH_FALLTHROUGH;  /* fallthrough */
+           case 11:      XXH_PROCESS4;
+                         XXH_FALLTHROUGH;  /* fallthrough */
+           case 7:       XXH_PROCESS4;
+                         XXH_FALLTHROUGH;  /* fallthrough */
+           case 3:       XXH_PROCESS1;
+                         XXH_FALLTHROUGH;  /* fallthrough */
+           case 2:       XXH_PROCESS1;
+                         XXH_FALLTHROUGH;  /* fallthrough */
+           case 1:       XXH_PROCESS1;
+                         XXH_FALLTHROUGH;  /* fallthrough */
+           case 0:       return XXH32_avalanche(hash);
+        }
+        XXH_ASSERT(0);
+        return hash;   /* reaching this point is deemed impossible */
+    }
+}
+
+#ifdef XXH_OLD_NAMES
+#  define PROCESS1 XXH_PROCESS1
+#  define PROCESS4 XXH_PROCESS4
+#else
+#  undef XXH_PROCESS1
+#  undef XXH_PROCESS4
+#endif
+
+/*!
+ * @internal
+ * @brief The implementation for @ref XXH32().
+ *
+ * @param input , len , seed Directly passed from @ref XXH32().
+ * @param align Whether @p input is aligned.
+ * @return The calculated hash.
+ */
+XXH_FORCE_INLINE XXH_PUREF xxh_u32
+XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
+{
+    xxh_u32 h32;
+
+    if (input==NULL) XXH_ASSERT(len == 0);
+
+    if (len>=16) {
+        const xxh_u8* const bEnd = input + len;
+        const xxh_u8* const limit = bEnd - 15;
+        xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
+        xxh_u32 v2 = seed + XXH_PRIME32_2;
+        xxh_u32 v3 = seed + 0;
+        xxh_u32 v4 = seed - XXH_PRIME32_1;
+
+        do {
+            v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
+            v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
+            v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
+            v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
+        } while (input < limit);
+
+        h32 = XXH_rotl32(v1, 1)  + XXH_rotl32(v2, 7)
+            + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
+    } else {
+        h32  = seed + XXH_PRIME32_5;
+    }
+
+    h32 += (xxh_u32)len;
+
+    return XXH32_finalize(h32, input, len&15, align);
+}
+
+/*! @ingroup XXH32_family */
+XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
+{
+#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
+    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
+    XXH32_state_t state;
+    XXH32_reset(&state, seed);
+    XXH32_update(&state, (const xxh_u8*)input, len);
+    return XXH32_digest(&state);
+#else
+    if (XXH_FORCE_ALIGN_CHECK) {
+        if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
+            return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
+    }   }
+
+    return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
+#endif
+}
+
+
+
+/*******   Hash streaming   *******/
+#ifndef XXH_NO_STREAM
+/*! @ingroup XXH32_family */
+XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
+{
+    return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
+}
+/*! @ingroup XXH32_family */
+XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
+{
+    XXH_free(statePtr);
+    return XXH_OK;
+}
+
+/*! @ingroup XXH32_family */
+XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
+{
+    XXH_memcpy(dstState, srcState, sizeof(*dstState));
+}
+
+/*! @ingroup XXH32_family */
+XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
+{
+    XXH_ASSERT(statePtr != NULL);
+    memset(statePtr, 0, sizeof(*statePtr));
+    statePtr->v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
+    statePtr->v[1] = seed + XXH_PRIME32_2;
+    statePtr->v[2] = seed + 0;
+    statePtr->v[3] = seed - XXH_PRIME32_1;
+    return XXH_OK;
+}
+
+
+/*! @ingroup XXH32_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH32_update(XXH32_state_t* state, const void* input, size_t len)
+{
+    if (input==NULL) {
+        XXH_ASSERT(len == 0);
+        return XXH_OK;
+    }
+
+    {   const xxh_u8* p = (const xxh_u8*)input;
+        const xxh_u8* const bEnd = p + len;
+
+        state->total_len_32 += (XXH32_hash_t)len;
+        state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
+
+        if (state->memsize + len < 16)  {   /* fill in tmp buffer */
+            XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
+            state->memsize += (XXH32_hash_t)len;
+            return XXH_OK;
+        }
+
+        if (state->memsize) {   /* some data left from previous update */
+            XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
+            {   const xxh_u32* p32 = state->mem32;
+                state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++;
+                state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++;
+                state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++;
+                state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32));
+            }
+            p += 16-state->memsize;
+            state->memsize = 0;
+        }
+
+        if (p <= bEnd-16) {
+            const xxh_u8* const limit = bEnd - 16;
+
+            do {
+                state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4;
+                state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4;
+                state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4;
+                state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4;
+            } while (p<=limit);
+
+        }
+
+        if (p < bEnd) {
+            XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
+            state->memsize = (unsigned)(bEnd-p);
+        }
+    }
+
+    return XXH_OK;
+}
+
+
+/*! @ingroup XXH32_family */
+XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
+{
+    xxh_u32 h32;
+
+    if (state->large_len) {
+        h32 = XXH_rotl32(state->v[0], 1)
+            + XXH_rotl32(state->v[1], 7)
+            + XXH_rotl32(state->v[2], 12)
+            + XXH_rotl32(state->v[3], 18);
+    } else {
+        h32 = state->v[2] /* == seed */ + XXH_PRIME32_5;
+    }
+
+    h32 += state->total_len_32;
+
+    return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
+}
+#endif /* !XXH_NO_STREAM */
+
+/*******   Canonical representation   *******/
+
+/*! @ingroup XXH32_family */
+XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
+{
+    XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
+    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
+    XXH_memcpy(dst, &hash, sizeof(*dst));
+}
+/*! @ingroup XXH32_family */
+XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
+{
+    return XXH_readBE32(src);
+}
+
+
+#ifndef XXH_NO_LONG_LONG
+
+/* *******************************************************************
+*  64-bit hash functions
+*********************************************************************/
+/*!
+ * @}
+ * @ingroup impl
+ * @{
+ */
+/*******   Memory access   *******/
+
+typedef XXH64_hash_t xxh_u64;
+
+#ifdef XXH_OLD_NAMES
+#  define U64 xxh_u64
+#endif
+
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
+/*
+ * Manual byteshift. Best for old compilers which don't inline memcpy.
+ * We actually directly use XXH_readLE64 and XXH_readBE64.
+ */
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
+
+/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
+static xxh_u64 XXH_read64(const void* memPtr)
+{
+    return *(const xxh_u64*) memPtr;
+}
+
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
+
+/*
+ * __attribute__((aligned(1))) is supported by gcc and clang. Originally the
+ * documentation claimed that it only increased the alignment, but actually it
+ * can decrease it on gcc, clang, and icc:
+ * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
+ * https://gcc.godbolt.org/z/xYez1j67Y.
+ */
+#ifdef XXH_OLD_NAMES
+typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((__packed__)) unalign64;
+#endif
+static xxh_u64 XXH_read64(const void* ptr)
+{
+    typedef __attribute__((__aligned__(1))) xxh_u64 xxh_unalign64;
+    return *((const xxh_unalign64*)ptr);
+}
+
+#else
+
+/*
+ * Portable and safe solution. Generally efficient.
+ * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
+ */
+static xxh_u64 XXH_read64(const void* memPtr)
+{
+    xxh_u64 val;
+    XXH_memcpy(&val, memPtr, sizeof(val));
+    return val;
+}
+
+#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
+
+#if defined(_MSC_VER)     /* Visual Studio */
+#  define XXH_swap64 _byteswap_uint64
+#elif XXH_GCC_VERSION >= 403
+#  define XXH_swap64 __builtin_bswap64
+#else
+static xxh_u64 XXH_swap64(xxh_u64 x)
+{
+    return  ((x << 56) & 0xff00000000000000ULL) |
+            ((x << 40) & 0x00ff000000000000ULL) |
+            ((x << 24) & 0x0000ff0000000000ULL) |
+            ((x << 8)  & 0x000000ff00000000ULL) |
+            ((x >> 8)  & 0x00000000ff000000ULL) |
+            ((x >> 24) & 0x0000000000ff0000ULL) |
+            ((x >> 40) & 0x000000000000ff00ULL) |
+            ((x >> 56) & 0x00000000000000ffULL);
+}
+#endif
+
+
+/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
+
+XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
+{
+    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
+    return bytePtr[0]
+         | ((xxh_u64)bytePtr[1] << 8)
+         | ((xxh_u64)bytePtr[2] << 16)
+         | ((xxh_u64)bytePtr[3] << 24)
+         | ((xxh_u64)bytePtr[4] << 32)
+         | ((xxh_u64)bytePtr[5] << 40)
+         | ((xxh_u64)bytePtr[6] << 48)
+         | ((xxh_u64)bytePtr[7] << 56);
+}
+
+XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
+{
+    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
+    return bytePtr[7]
+         | ((xxh_u64)bytePtr[6] << 8)
+         | ((xxh_u64)bytePtr[5] << 16)
+         | ((xxh_u64)bytePtr[4] << 24)
+         | ((xxh_u64)bytePtr[3] << 32)
+         | ((xxh_u64)bytePtr[2] << 40)
+         | ((xxh_u64)bytePtr[1] << 48)
+         | ((xxh_u64)bytePtr[0] << 56);
+}
+
+#else
+XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
+{
+    return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
+}
+
+static xxh_u64 XXH_readBE64(const void* ptr)
+{
+    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
+}
+#endif
+
+XXH_FORCE_INLINE xxh_u64
+XXH_readLE64_align(const void* ptr, XXH_alignment align)
+{
+    if (align==XXH_unaligned)
+        return XXH_readLE64(ptr);
+    else
+        return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
+}
+
+
+/*******   xxh64   *******/
+/*!
+ * @}
+ * @defgroup XXH64_impl XXH64 implementation
+ * @ingroup impl
+ *
+ * Details on the XXH64 implementation.
+ * @{
+ */
+/* #define rather that static const, to be used as initializers */
+#define XXH_PRIME64_1  0x9E3779B185EBCA87ULL  /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
+#define XXH_PRIME64_2  0xC2B2AE3D27D4EB4FULL  /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
+#define XXH_PRIME64_3  0x165667B19E3779F9ULL  /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
+#define XXH_PRIME64_4  0x85EBCA77C2B2AE63ULL  /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
+#define XXH_PRIME64_5  0x27D4EB2F165667C5ULL  /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
+
+#ifdef XXH_OLD_NAMES
+#  define PRIME64_1 XXH_PRIME64_1
+#  define PRIME64_2 XXH_PRIME64_2
+#  define PRIME64_3 XXH_PRIME64_3
+#  define PRIME64_4 XXH_PRIME64_4
+#  define PRIME64_5 XXH_PRIME64_5
+#endif
+
+/*! @copydoc XXH32_round */
+static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
+{
+    acc += input * XXH_PRIME64_2;
+    acc  = XXH_rotl64(acc, 31);
+    acc *= XXH_PRIME64_1;
+#if (defined(__AVX512F__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
+    /*
+     * DISABLE AUTOVECTORIZATION:
+     * A compiler fence is used to prevent GCC and Clang from
+     * autovectorizing the XXH64 loop (pragmas and attributes don't work for some
+     * reason) without globally disabling AVX512.
+     *
+     * Autovectorization of XXH64 tends to be detrimental,
+     * though the exact outcome may change depending on exact cpu and compiler version.
+     * For information, it has been reported as detrimental for Skylake-X,
+     * but possibly beneficial for Zen4.
+     *
+     * The default is to disable auto-vectorization,
+     * but you can select to enable it instead using `XXH_ENABLE_AUTOVECTORIZE` build variable.
+     */
+    XXH_COMPILER_GUARD(acc);
+#endif
+    return acc;
+}
+
+static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
+{
+    val  = XXH64_round(0, val);
+    acc ^= val;
+    acc  = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
+    return acc;
+}
+
+/*! @copydoc XXH32_avalanche */
+static xxh_u64 XXH64_avalanche(xxh_u64 hash)
+{
+    hash ^= hash >> 33;
+    hash *= XXH_PRIME64_2;
+    hash ^= hash >> 29;
+    hash *= XXH_PRIME64_3;
+    hash ^= hash >> 32;
+    return hash;
+}
+
+
+#define XXH_get64bits(p) XXH_readLE64_align(p, align)
+
+/*!
+ * @internal
+ * @brief Processes the last 0-31 bytes of @p ptr.
+ *
+ * There may be up to 31 bytes remaining to consume from the input.
+ * This final stage will digest them to ensure that all input bytes are present
+ * in the final mix.
+ *
+ * @param hash The hash to finalize.
+ * @param ptr The pointer to the remaining input.
+ * @param len The remaining length, modulo 32.
+ * @param align Whether @p ptr is aligned.
+ * @return The finalized hash
+ * @see XXH32_finalize().
+ */
+static XXH_PUREF xxh_u64
+XXH64_finalize(xxh_u64 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
+{
+    if (ptr==NULL) XXH_ASSERT(len == 0);
+    len &= 31;
+    while (len >= 8) {
+        xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
+        ptr += 8;
+        hash ^= k1;
+        hash  = XXH_rotl64(hash,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
+        len -= 8;
+    }
+    if (len >= 4) {
+        hash ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
+        ptr += 4;
+        hash = XXH_rotl64(hash, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
+        len -= 4;
+    }
+    while (len > 0) {
+        hash ^= (*ptr++) * XXH_PRIME64_5;
+        hash = XXH_rotl64(hash, 11) * XXH_PRIME64_1;
+        --len;
+    }
+    return  XXH64_avalanche(hash);
+}
+
+#ifdef XXH_OLD_NAMES
+#  define PROCESS1_64 XXH_PROCESS1_64
+#  define PROCESS4_64 XXH_PROCESS4_64
+#  define PROCESS8_64 XXH_PROCESS8_64
+#else
+#  undef XXH_PROCESS1_64
+#  undef XXH_PROCESS4_64
+#  undef XXH_PROCESS8_64
+#endif
+
+/*!
+ * @internal
+ * @brief The implementation for @ref XXH64().
+ *
+ * @param input , len , seed Directly passed from @ref XXH64().
+ * @param align Whether @p input is aligned.
+ * @return The calculated hash.
+ */
+XXH_FORCE_INLINE XXH_PUREF xxh_u64
+XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
+{
+    xxh_u64 h64;
+    if (input==NULL) XXH_ASSERT(len == 0);
+
+    if (len>=32) {
+        const xxh_u8* const bEnd = input + len;
+        const xxh_u8* const limit = bEnd - 31;
+        xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
+        xxh_u64 v2 = seed + XXH_PRIME64_2;
+        xxh_u64 v3 = seed + 0;
+        xxh_u64 v4 = seed - XXH_PRIME64_1;
+
+        do {
+            v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
+            v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
+            v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
+            v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
+        } while (input<limit);
+
+        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
+        h64 = XXH64_mergeRound(h64, v1);
+        h64 = XXH64_mergeRound(h64, v2);
+        h64 = XXH64_mergeRound(h64, v3);
+        h64 = XXH64_mergeRound(h64, v4);
+
+    } else {
+        h64  = seed + XXH_PRIME64_5;
+    }
+
+    h64 += (xxh_u64) len;
+
+    return XXH64_finalize(h64, input, len, align);
+}
+
+
+/*! @ingroup XXH64_family */
+XXH_PUBLIC_API XXH64_hash_t XXH64 (XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
+{
+#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
+    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
+    XXH64_state_t state;
+    XXH64_reset(&state, seed);
+    XXH64_update(&state, (const xxh_u8*)input, len);
+    return XXH64_digest(&state);
+#else
+    if (XXH_FORCE_ALIGN_CHECK) {
+        if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
+            return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
+    }   }
+
+    return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
+
+#endif
+}
+
+/*******   Hash Streaming   *******/
+#ifndef XXH_NO_STREAM
+/*! @ingroup XXH64_family*/
+XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
+{
+    return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
+}
+/*! @ingroup XXH64_family */
+XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
+{
+    XXH_free(statePtr);
+    return XXH_OK;
+}
+
+/*! @ingroup XXH64_family */
+XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState)
+{
+    XXH_memcpy(dstState, srcState, sizeof(*dstState));
+}
 
-/*******   Canonical representation   *******/
-typedef struct { unsigned char digest[8]; } XXH64_canonical_t;
-XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
-XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
+/*! @ingroup XXH64_family */
+XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed)
+{
+    XXH_ASSERT(statePtr != NULL);
+    memset(statePtr, 0, sizeof(*statePtr));
+    statePtr->v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
+    statePtr->v[1] = seed + XXH_PRIME64_2;
+    statePtr->v[2] = seed + 0;
+    statePtr->v[3] = seed - XXH_PRIME64_1;
+    return XXH_OK;
+}
 
+/*! @ingroup XXH64_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len)
+{
+    if (input==NULL) {
+        XXH_ASSERT(len == 0);
+        return XXH_OK;
+    }
 
-#endif  /* XXH_NO_LONG_LONG */
+    {   const xxh_u8* p = (const xxh_u8*)input;
+        const xxh_u8* const bEnd = p + len;
 
-#endif /* XXHASH_H_5627135585666179 */
+        state->total_len += len;
 
+        if (state->memsize + len < 32) {  /* fill in tmp buffer */
+            XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
+            state->memsize += (xxh_u32)len;
+            return XXH_OK;
+        }
 
+        if (state->memsize) {   /* tmp buffer is full */
+            XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
+            state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0));
+            state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1));
+            state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2));
+            state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3));
+            p += 32 - state->memsize;
+            state->memsize = 0;
+        }
 
-#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
-#define XXHASH_H_STATIC_13879238742
-/* ****************************************************************************
- * This section contains declarations which are not guaranteed to remain stable.
- * They may change in future versions, becoming incompatible with a different
- * version of the library.
- * These declarations should only be used with static linking.
- * Never use them in association with dynamic linking!
- ***************************************************************************** */
+        if (p+32 <= bEnd) {
+            const xxh_u8* const limit = bEnd - 32;
 
-/*
- * These definitions are only present to allow static allocation of an XXH
- * state, for example, on the stack or in a struct.
- * Never **ever** access members directly.
- */
+            do {
+                state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8;
+                state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8;
+                state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8;
+                state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8;
+            } while (p<=limit);
 
-struct XXH32_state_s {
-   XXH32_hash_t total_len_32;
-   XXH32_hash_t large_len;
-   XXH32_hash_t v1;
-   XXH32_hash_t v2;
-   XXH32_hash_t v3;
-   XXH32_hash_t v4;
-   XXH32_hash_t mem32[4];
-   XXH32_hash_t memsize;
-   XXH32_hash_t reserved;   /* never read nor write, might be removed in a future version */
-};   /* typedef'd to XXH32_state_t */
+        }
 
+        if (p < bEnd) {
+            XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
+            state->memsize = (unsigned)(bEnd-p);
+        }
+    }
 
-#ifndef XXH_NO_LONG_LONG  /* defined when there is no 64-bit support */
+    return XXH_OK;
+}
 
-struct XXH64_state_s {
-   XXH64_hash_t total_len;
-   XXH64_hash_t v1;
-   XXH64_hash_t v2;
-   XXH64_hash_t v3;
-   XXH64_hash_t v4;
-   XXH64_hash_t mem64[4];
-   XXH32_hash_t memsize;
-   XXH32_hash_t reserved32;  /* required for padding anyway */
-   XXH64_hash_t reserved64;  /* never read nor write, might be removed in a future version */
-};   /* typedef'd to XXH64_state_t */
 
+/*! @ingroup XXH64_family */
+XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state)
+{
+    xxh_u64 h64;
 
-/*-**********************************************************************
+    if (state->total_len >= 32) {
+        h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18);
+        h64 = XXH64_mergeRound(h64, state->v[0]);
+        h64 = XXH64_mergeRound(h64, state->v[1]);
+        h64 = XXH64_mergeRound(h64, state->v[2]);
+        h64 = XXH64_mergeRound(h64, state->v[3]);
+    } else {
+        h64  = state->v[2] /*seed*/ + XXH_PRIME64_5;
+    }
+
+    h64 += (xxh_u64) state->total_len;
+
+    return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
+}
+#endif /* !XXH_NO_STREAM */
+
+/******* Canonical representation   *******/
+
+/*! @ingroup XXH64_family */
+XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash)
+{
+    XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
+    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
+    XXH_memcpy(dst, &hash, sizeof(*dst));
+}
+
+/*! @ingroup XXH64_family */
+XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src)
+{
+    return XXH_readBE64(src);
+}
+
+#ifndef XXH_NO_XXH3
+
+/* *********************************************************************
 *  XXH3
-*  New experimental hash
-************************************************************************/
+*  New generation hash designed for speed on small keys and vectorization
+************************************************************************ */
+/*!
+ * @}
+ * @defgroup XXH3_impl XXH3 implementation
+ * @ingroup impl
+ * @{
+ */
 
-/* ************************************************************************
- * XXH3 is a new hash algorithm featuring:
- *  - Improved speed for both small and large inputs
- *  - True 64-bit and 128-bit outputs
- *  - SIMD acceleration
- *  - Improved 32-bit viability
+/* ===   Compiler specifics   === */
+
+#if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
+#  define XXH_RESTRICT   /* disable */
+#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* >= C99 */
+#  define XXH_RESTRICT   restrict
+#elif (defined (__GNUC__) && ((__GNUC__ > 3) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))) \
+   || (defined (__clang__)) \
+   || (defined (_MSC_VER) && (_MSC_VER >= 1400)) \
+   || (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300))
+/*
+ * There are a LOT more compilers that recognize __restrict but this
+ * covers the major ones.
+ */
+#  define XXH_RESTRICT   __restrict
+#else
+#  define XXH_RESTRICT   /* disable */
+#endif
+
+#if (defined(__GNUC__) && (__GNUC__ >= 3))  \
+  || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
+  || defined(__clang__)
+#    define XXH_likely(x) __builtin_expect(x, 1)
+#    define XXH_unlikely(x) __builtin_expect(x, 0)
+#else
+#    define XXH_likely(x) (x)
+#    define XXH_unlikely(x) (x)
+#endif
+
+#ifndef XXH_HAS_INCLUDE
+#  ifdef __has_include
+/*
+ * Not defined as XXH_HAS_INCLUDE(x) (function-like) because
+ * this causes segfaults in Apple Clang 4.2 (on Mac OS X 10.7 Lion)
+ */
+#    define XXH_HAS_INCLUDE __has_include
+#  else
+#    define XXH_HAS_INCLUDE(x) 0
+#  endif
+#endif
+
+#if defined(__GNUC__) || defined(__clang__)
+#  if defined(__ARM_FEATURE_SVE)
+#    include <arm_sve.h>
+#  endif
+#  if defined(__ARM_NEON__) || defined(__ARM_NEON) \
+   || (defined(_M_ARM) && _M_ARM >= 7) \
+   || defined(_M_ARM64) || defined(_M_ARM64EC) \
+   || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* WASM SIMD128 via SIMDe */
+#    define inline __inline__  /* circumvent a clang bug */
+#    include <arm_neon.h>
+#    undef inline
+#  elif defined(__AVX2__)
+#    include <immintrin.h>
+#  elif defined(__SSE2__)
+#    include <emmintrin.h>
+#  endif
+#endif
+
+#if defined(_MSC_VER)
+#  include <intrin.h>
+#endif
+
+/*
+ * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
+ * remaining a true 64-bit/128-bit hash function.
  *
- * Speed analysis methodology is explained here:
+ * This is done by prioritizing a subset of 64-bit operations that can be
+ * emulated without too many steps on the average 32-bit machine.
  *
- *    https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
+ * For example, these two lines seem similar, and run equally fast on 64-bit:
  *
- * In general, expect XXH3 to run about ~2x faster on large inputs and >3x
- * faster on small ones compared to XXH64, though exact differences depend on
- * the platform.
+ *   xxh_u64 x;
+ *   x ^= (x >> 47); // good
+ *   x ^= (x >> 13); // bad
  *
- * The algorithm is portable: Like XXH32 and XXH64, it generates the same hash
- * on all platforms.
+ * However, to a 32-bit machine, there is a major difference.
  *
- * It benefits greatly from SIMD and 64-bit arithmetic, but does not require it.
+ * x ^= (x >> 47) looks like this:
  *
- * Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run
- * XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are
- * explained in the implementation.
+ *   x.lo ^= (x.hi >> (47 - 32));
  *
- * Optimized implementations are provided for AVX2, SSE2, NEON, POWER8, ZVector,
- * and scalar targets. This can be controlled with the XXH_VECTOR macro.
+ * while x ^= (x >> 13) looks like this:
  *
- * XXH3 offers 2 variants, _64bits and _128bits.
- * When only 64 bits are needed, prefer calling the _64bits variant, as it
- * reduces the amount of mixing, resulting in faster speed on small inputs.
+ *   // note: funnel shifts are not usually cheap.
+ *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
+ *   x.hi ^= (x.hi >> 13);
  *
- * It's also generally simpler to manipulate a scalar return type than a struct.
+ * The first one is significantly faster than the second, simply because the
+ * shift is larger than 32. This means:
+ *  - All the bits we need are in the upper 32 bits, so we can ignore the lower
+ *    32 bits in the shift.
+ *  - The shift result will always fit in the lower 32 bits, and therefore,
+ *    we can ignore the upper 32 bits in the xor.
  *
- * The 128-bit version adds additional strength, but it is slightly slower.
+ * Thanks to this optimization, XXH3 only requires these features to be efficient:
  *
- * The XXH3 algorithm is still in development.
- * The results it produces may still change in future versions.
+ *  - Usable unaligned access
+ *  - A 32-bit or 64-bit ALU
+ *      - If 32-bit, a decent ADC instruction
+ *  - A 32 or 64-bit multiply with a 64-bit result
+ *  - For the 128-bit variant, a decent byteswap helps short inputs.
  *
- * Results produced by v0.7.x are not comparable with results from v0.7.y.
- * However, the API is completely stable, and it can safely be used for
- * ephemeral data (local sessions).
+ * The first two are already required by XXH32, and almost all 32-bit and 64-bit
+ * platforms which can run XXH32 can run XXH3 efficiently.
  *
- * Avoid storing values in long-term storage until the algorithm is finalized.
+ * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
+ * notable exception.
  *
- * Since v0.7.3, XXH3 has reached "release candidate" status, meaning that, if
- * everything remains fine, its current format will be "frozen" and become the
- * final one.
+ * First of all, Thumb-1 lacks support for the UMULL instruction which
+ * performs the important long multiply. This means numerous __aeabi_lmul
+ * calls.
  *
- * After which, return values of XXH3 and XXH128 will no longer change in
- * future versions.
+ * Second of all, the 8 functional registers are just not enough.
+ * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
+ * Lo registers, and this shuffling results in thousands more MOVs than A32.
  *
- * XXH3's return values will be officially finalized upon reaching v0.8.0.
+ * A32 and T32 don't have this limitation. They can access all 14 registers,
+ * do a 32->64 multiply with UMULL, and the flexible operand allowing free
+ * shifts is helpful, too.
  *
- * The API supports one-shot hashing, streaming mode, and custom secrets.
+ * Therefore, we do a quick sanity check.
+ *
+ * If compiling Thumb-1 for a target which supports ARM instructions, we will
+ * emit a warning, as it is not a "sane" platform to compile for.
+ *
+ * Usually, if this happens, it is because of an accident and you probably need
+ * to specify -march, as you likely meant to compile for a newer architecture.
+ *
+ * Credit: large sections of the vectorial and asm source code paths
+ *         have been contributed by @easyaspi314
  */
+#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
+#   warning "XXH3 is highly inefficient without ARM or Thumb-2."
+#endif
 
-#ifdef XXH_NAMESPACE
-#  define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
-#  define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
-#  define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
+/* ==========================================
+ * Vectorization detection
+ * ========================================== */
 
-#  define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
-#  define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
-#  define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
+#ifdef XXH_DOXYGEN
+/*!
+ * @ingroup tuning
+ * @brief Overrides the vectorization implementation chosen for XXH3.
+ *
+ * Can be defined to 0 to disable SIMD or any of the values mentioned in
+ * @ref XXH_VECTOR_TYPE.
+ *
+ * If this is not defined, it uses predefined macros to determine the best
+ * implementation.
+ */
+#  define XXH_VECTOR XXH_SCALAR
+/*!
+ * @ingroup tuning
+ * @brief Possible values for @ref XXH_VECTOR.
+ *
+ * Note that these are actually implemented as macros.
+ *
+ * If this is not defined, it is detected automatically.
+ * internal macro XXH_X86DISPATCH overrides this.
+ */
+enum XXH_VECTOR_TYPE /* fake enum */ {
+    XXH_SCALAR = 0,  /*!< Portable scalar version */
+    XXH_SSE2   = 1,  /*!<
+                      * SSE2 for Pentium 4, Opteron, all x86_64.
+                      *
+                      * @note SSE2 is also guaranteed on Windows 10, macOS, and
+                      * Android x86.
+                      */
+    XXH_AVX2   = 2,  /*!< AVX2 for Haswell and Bulldozer */
+    XXH_AVX512 = 3,  /*!< AVX512 for Skylake and Icelake */
+    XXH_NEON   = 4,  /*!<
+                       * NEON for most ARMv7-A, all AArch64, and WASM SIMD128
+                       * via the SIMDeverywhere polyfill provided with the
+                       * Emscripten SDK.
+                       */
+    XXH_VSX    = 5,  /*!< VSX and ZVector for POWER8/z13 (64-bit) */
+    XXH_SVE    = 6,  /*!< SVE for some ARMv8-A and ARMv9-A */
+};
+/*!
+ * @ingroup tuning
+ * @brief Selects the minimum alignment for XXH3's accumulators.
+ *
+ * When using SIMD, this should match the alignment required for said vector
+ * type, so, for example, 32 for AVX2.
+ *
+ * Default: Auto detected.
+ */
+#  define XXH_ACC_ALIGN 8
+#endif
 
-#  define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
-#  define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
-#  define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
-#  define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
-#  define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
+/* Actual definition */
+#ifndef XXH_DOXYGEN
+#  define XXH_SCALAR 0
+#  define XXH_SSE2   1
+#  define XXH_AVX2   2
+#  define XXH_AVX512 3
+#  define XXH_NEON   4
+#  define XXH_VSX    5
+#  define XXH_SVE    6
+#endif
+
+#ifndef XXH_VECTOR    /* can be defined on command line */
+#  if defined(__ARM_FEATURE_SVE)
+#    define XXH_VECTOR XXH_SVE
+#  elif ( \
+        defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
+     || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \
+     || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* wasm simd128 via SIMDe */ \
+   ) && ( \
+        defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
+    || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
+   )
+#    define XXH_VECTOR XXH_NEON
+#  elif defined(__AVX512F__)
+#    define XXH_VECTOR XXH_AVX512
+#  elif defined(__AVX2__)
+#    define XXH_VECTOR XXH_AVX2
+#  elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
+#    define XXH_VECTOR XXH_SSE2
+#  elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
+     || (defined(__s390x__) && defined(__VEC__)) \
+     && defined(__GNUC__) /* TODO: IBM XL */
+#    define XXH_VECTOR XXH_VSX
+#  else
+#    define XXH_VECTOR XXH_SCALAR
+#  endif
 #endif
 
-/* XXH3_64bits():
- * default 64-bit variant, using default secret and default seed of 0.
- * It's the fastest variant. */
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
+/* __ARM_FEATURE_SVE is only supported by GCC & Clang. */
+#if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE)
+#  ifdef _MSC_VER
+#    pragma warning(once : 4606)
+#  else
+#    warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead."
+#  endif
+#  undef XXH_VECTOR
+#  define XXH_VECTOR XXH_SCALAR
+#endif
 
 /*
- * XXH3_64bits_withSecret():
- * It's possible to provide any blob of bytes as a "secret" to generate the hash.
- * This makes it more difficult for an external actor to prepare an intentional
- * collision.
- * The secret *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
- * It should consist of random bytes.
- * Avoid trivial sequences, such as repeating sequences and especially '\0',
- * as this can cancel out itself.
- * Failure to respect these conditions will result in a poor quality hash.
+ * Controls the alignment of the accumulator,
+ * for compatibility with aligned vector loads, which are usually faster.
  */
-#define XXH3_SECRET_SIZE_MIN 136
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
+#ifndef XXH_ACC_ALIGN
+#  if defined(XXH_X86DISPATCH)
+#     define XXH_ACC_ALIGN 64  /* for compatibility with avx512 */
+#  elif XXH_VECTOR == XXH_SCALAR  /* scalar */
+#     define XXH_ACC_ALIGN 8
+#  elif XXH_VECTOR == XXH_SSE2  /* sse2 */
+#     define XXH_ACC_ALIGN 16
+#  elif XXH_VECTOR == XXH_AVX2  /* avx2 */
+#     define XXH_ACC_ALIGN 32
+#  elif XXH_VECTOR == XXH_NEON  /* neon */
+#     define XXH_ACC_ALIGN 16
+#  elif XXH_VECTOR == XXH_VSX   /* vsx */
+#     define XXH_ACC_ALIGN 16
+#  elif XXH_VECTOR == XXH_AVX512  /* avx512 */
+#     define XXH_ACC_ALIGN 64
+#  elif XXH_VECTOR == XXH_SVE   /* sve */
+#     define XXH_ACC_ALIGN 64
+#  endif
+#endif
+
+#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
+    || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
+#  define XXH_SEC_ALIGN XXH_ACC_ALIGN
+#elif XXH_VECTOR == XXH_SVE
+#  define XXH_SEC_ALIGN XXH_ACC_ALIGN
+#else
+#  define XXH_SEC_ALIGN 8
+#endif
+
+#if defined(__GNUC__) || defined(__clang__)
+#  define XXH_ALIASING __attribute__((__may_alias__))
+#else
+#  define XXH_ALIASING /* nothing */
+#endif
 
 /*
- * XXH3_64bits_withSeed():
- * This variant generates a custom secret on the fly based on the default
- * secret, altered using the `seed` value.
- * While this operation is decently fast, note that it's not completely free.
- * Note: seed==0 produces the same results as XXH3_64bits().
+ * UGLY HACK:
+ * GCC usually generates the best code with -O3 for xxHash.
+ *
+ * However, when targeting AVX2, it is overzealous in its unrolling resulting
+ * in code roughly 3/4 the speed of Clang.
+ *
+ * There are other issues, such as GCC splitting _mm256_loadu_si256 into
+ * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
+ * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
+ *
+ * That is why when compiling the AVX2 version, it is recommended to use either
+ *   -O2 -mavx2 -march=haswell
+ * or
+ *   -O2 -mavx2 -mno-avx256-split-unaligned-load
+ * for decent performance, or to use Clang instead.
+ *
+ * Fortunately, we can control the first one with a pragma that forces GCC into
+ * -O2, but the other one we can't control without "failed to inline always
+ * inline function due to target mismatch" warnings.
  */
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
+#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
+  && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
+  && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
+#  pragma GCC push_options
+#  pragma GCC optimize("-O2")
+#endif
 
+#if XXH_VECTOR == XXH_NEON
 
-/* streaming 64-bit */
+/*
+ * UGLY HACK: While AArch64 GCC on Linux does not seem to care, on macOS, GCC -O3
+ * optimizes out the entire hashLong loop because of the aliasing violation.
+ *
+ * However, GCC is also inefficient at load-store optimization with vld1q/vst1q,
+ * so the only option is to mark it as aliasing.
+ */
+typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING;
 
-#if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)   /* C11+ */
-#  include <stdalign.h>
-#  define XXH_ALIGN(n)      alignas(n)
-#elif defined(__GNUC__)
-#  define XXH_ALIGN(n)      __attribute__ ((aligned(n)))
-#elif defined(_MSC_VER)
-#  define XXH_ALIGN(n)      __declspec(align(n))
+/*!
+ * @internal
+ * @brief `vld1q_u64` but faster and alignment-safe.
+ *
+ * On AArch64, unaligned access is always safe, but on ARMv7-a, it is only
+ * *conditionally* safe (`vld1` has an alignment bit like `movdq[ua]` in x86).
+ *
+ * GCC for AArch64 sees `vld1q_u8` as an intrinsic instead of a load, so it
+ * prohibits load-store optimizations. Therefore, a direct dereference is used.
+ *
+ * Otherwise, `vld1q_u8` is used with `vreinterpretq_u8_u64` to do a safe
+ * unaligned load.
+ */
+#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__)
+XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */
+{
+    return *(xxh_aliasing_uint64x2_t const *)ptr;
+}
 #else
-#  define XXH_ALIGN(n)   /* disabled */
+XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr)
+{
+    return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr));
+}
 #endif
 
-/* Old GCC versions only accept the attribute after the type in structures. */
-#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L))   /* C11+ */ \
-    && defined(__GNUC__)
-#   define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
+/*!
+ * @internal
+ * @brief `vmlal_u32` on low and high halves of a vector.
+ *
+ * This is a workaround for AArch64 GCC < 11 which implemented arm_neon.h with
+ * inline assembly and were therefore incapable of merging the `vget_{low, high}_u32`
+ * with `vmlal_u32`.
+ */
+#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 11
+XXH_FORCE_INLINE uint64x2_t
+XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
+{
+    /* Inline assembly is the only way */
+    __asm__("umlal   %0.2d, %1.2s, %2.2s" : "+w" (acc) : "w" (lhs), "w" (rhs));
+    return acc;
+}
+XXH_FORCE_INLINE uint64x2_t
+XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
+{
+    /* This intrinsic works as expected */
+    return vmlal_high_u32(acc, lhs, rhs);
+}
 #else
-#   define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
+/* Portable intrinsic versions */
+XXH_FORCE_INLINE uint64x2_t
+XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
+{
+    return vmlal_u32(acc, vget_low_u32(lhs), vget_low_u32(rhs));
+}
+/*! @copydoc XXH_vmlal_low_u32
+ * Assume the compiler converts this to vmlal_high_u32 on aarch64 */
+XXH_FORCE_INLINE uint64x2_t
+XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
+{
+    return vmlal_u32(acc, vget_high_u32(lhs), vget_high_u32(rhs));
+}
 #endif
 
-typedef struct XXH3_state_s XXH3_state_t;
-
-#define XXH3_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */
-#define XXH3_INTERNALBUFFER_SIZE 256
-struct XXH3_state_s {
-   XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
-  /* used to store a custom secret generated from the seed. Makes state larger.
-   * Design might change */
-   XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
-   XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
-   XXH32_hash_t bufferedSize;
-   XXH32_hash_t nbStripesPerBlock;
-   XXH32_hash_t nbStripesSoFar;
-   XXH32_hash_t secretLimit;
-   XXH32_hash_t reserved32;
-   XXH32_hash_t reserved32_2;
-   XXH64_hash_t totalLen;
-   XXH64_hash_t seed;
-   XXH64_hash_t reserved64;
-   /* note: there is some padding after due to alignment on 64 bytes */
-   const unsigned char* secret;
-};   /* typedef'd to XXH3_state_t */
-
-#undef XXH_ALIGN_MEMBER
+/*!
+ * @ingroup tuning
+ * @brief Controls the NEON to scalar ratio for XXH3
+ *
+ * This can be set to 2, 4, 6, or 8.
+ *
+ * ARM Cortex CPUs are _very_ sensitive to how their pipelines are used.
+ *
+ * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but only 2 of those
+ * can be NEON. If you are only using NEON instructions, you are only using 2/3 of the CPU
+ * bandwidth.
+ *
+ * This is even more noticeable on the more advanced cores like the Cortex-A76 which
+ * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once.
+ *
+ * Therefore, to make the most out of the pipeline, it is beneficial to run 6 NEON lanes
+ * and 2 scalar lanes, which is chosen by default.
+ *
+ * This does not apply to Apple processors or 32-bit processors, which run better with
+ * full NEON. These will default to 8. Additionally, size-optimized builds run 8 lanes.
+ *
+ * This change benefits CPUs with large micro-op buffers without negatively affecting
+ * most other CPUs:
+ *
+ *  | Chipset               | Dispatch type       | NEON only | 6:2 hybrid | Diff. |
+ *  |:----------------------|:--------------------|----------:|-----------:|------:|
+ *  | Snapdragon 730 (A76)  | 2 NEON/8 micro-ops  |  8.8 GB/s |  10.1 GB/s |  ~16% |
+ *  | Snapdragon 835 (A73)  | 2 NEON/3 micro-ops  |  5.1 GB/s |   5.3 GB/s |   ~5% |
+ *  | Marvell PXA1928 (A53) | In-order dual-issue |  1.9 GB/s |   1.9 GB/s |    0% |
+ *  | Apple M1              | 4 NEON/8 micro-ops  | 37.3 GB/s |  36.1 GB/s |  ~-3% |
+ *
+ * It also seems to fix some bad codegen on GCC, making it almost as fast as clang.
+ *
+ * When using WASM SIMD128, if this is 2 or 6, SIMDe will scalarize 2 of the lanes meaning
+ * it effectively becomes worse 4.
+ *
+ * @see XXH3_accumulate_512_neon()
+ */
+# ifndef XXH3_NEON_LANES
+#  if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \
+   && !defined(__APPLE__) && XXH_SIZE_OPT <= 0
+#   define XXH3_NEON_LANES 6
+#  else
+#   define XXH3_NEON_LANES XXH_ACC_NB
+#  endif
+# endif
+#endif  /* XXH_VECTOR == XXH_NEON */
 
 /*
- * Streaming requires state maintenance.
- * This operation costs memory and CPU.
- * As a consequence, streaming is slower than one-shot hashing.
- * For better performance, prefer one-shot functions whenever possible.
+ * VSX and Z Vector helpers.
+ *
+ * This is very messy, and any pull requests to clean this up are welcome.
+ *
+ * There are a lot of problems with supporting VSX and s390x, due to
+ * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
  */
-XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
-XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
-XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
+#if XXH_VECTOR == XXH_VSX
+/* Annoyingly, these headers _may_ define three macros: `bool`, `vector`,
+ * and `pixel`. This is a problem for obvious reasons.
+ *
+ * These keywords are unnecessary; the spec literally says they are
+ * equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd
+ * after including the header.
+ *
+ * We use pragma push_macro/pop_macro to keep the namespace clean. */
+#  pragma push_macro("bool")
+#  pragma push_macro("vector")
+#  pragma push_macro("pixel")
+/* silence potential macro redefined warnings */
+#  undef bool
+#  undef vector
+#  undef pixel
+
+#  if defined(__s390x__)
+#    include <s390intrin.h>
+#  else
+#    include <altivec.h>
+#  endif
+
+/* Restore the original macro values, if applicable. */
+#  pragma pop_macro("pixel")
+#  pragma pop_macro("vector")
+#  pragma pop_macro("bool")
 
+typedef __vector unsigned long long xxh_u64x2;
+typedef __vector unsigned char xxh_u8x16;
+typedef __vector unsigned xxh_u32x4;
 
 /*
- * XXH3_64bits_reset():
- * Initialize with the default parameters.
- * The result will be equivalent to `XXH3_64bits()`.
+ * UGLY HACK: Similar to aarch64 macOS GCC, s390x GCC has the same aliasing issue.
  */
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
-/*
- * XXH3_64bits_reset_withSeed():
- * Generate a custom secret from `seed`, and store it into `statePtr`.
- * digest will be equivalent to `XXH3_64bits_withSeed()`.
+typedef xxh_u64x2 xxh_aliasing_u64x2 XXH_ALIASING;
+
+# ifndef XXH_VSX_BE
+#  if defined(__BIG_ENDIAN__) \
+  || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
+#    define XXH_VSX_BE 1
+#  elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
+#    warning "-maltivec=be is not recommended. Please use native endianness."
+#    define XXH_VSX_BE 1
+#  else
+#    define XXH_VSX_BE 0
+#  endif
+# endif /* !defined(XXH_VSX_BE) */
+
+# if XXH_VSX_BE
+#  if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
+#    define XXH_vec_revb vec_revb
+#  else
+/*!
+ * A polyfill for POWER9's vec_revb().
  */
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
-/*
- * XXH3_64bits_reset_withSecret():
- * `secret` is referenced, and must outlive the hash streaming session, so
- * be careful when using stack arrays.
- * `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`.
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
+{
+    xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
+                                  0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
+    return vec_perm(val, val, vByteSwap);
+}
+#  endif
+# endif /* XXH_VSX_BE */
+
+/*!
+ * Performs an unaligned vector load and byte swaps it on big endian.
  */
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
+{
+    xxh_u64x2 ret;
+    XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2));
+# if XXH_VSX_BE
+    ret = XXH_vec_revb(ret);
+# endif
+    return ret;
+}
 
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
-XXH_PUBLIC_API XXH64_hash_t  XXH3_64bits_digest (const XXH3_state_t* statePtr);
+/*
+ * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
+ *
+ * These intrinsics weren't added until GCC 8, despite existing for a while,
+ * and they are endian dependent. Also, their meaning swap depending on version.
+ * */
+# if defined(__s390x__)
+ /* s390x is always big endian, no issue on this platform */
+#  define XXH_vec_mulo vec_mulo
+#  define XXH_vec_mule vec_mule
+# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__)
+/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
+ /* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */
+#  define XXH_vec_mulo __builtin_altivec_vmulouw
+#  define XXH_vec_mule __builtin_altivec_vmuleuw
+# else
+/* gcc needs inline assembly */
+/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
+{
+    xxh_u64x2 result;
+    __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
+    return result;
+}
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
+{
+    xxh_u64x2 result;
+    __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
+    return result;
+}
+# endif /* XXH_vec_mulo, XXH_vec_mule */
+#endif /* XXH_VECTOR == XXH_VSX */
+
+#if XXH_VECTOR == XXH_SVE
+#define ACCRND(acc, offset) \
+do { \
+    svuint64_t input_vec = svld1_u64(mask, xinput + offset);         \
+    svuint64_t secret_vec = svld1_u64(mask, xsecret + offset);       \
+    svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec);     \
+    svuint64_t swapped = svtbl_u64(input_vec, kSwap);                \
+    svuint64_t mixed_lo = svextw_u64_x(mask, mixed);                 \
+    svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32);            \
+    svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \
+    acc = svadd_u64_x(mask, acc, mul);                               \
+} while (0)
+#endif /* XXH_VECTOR == XXH_SVE */
 
+/* prefetch
+ * can be disabled, by declaring XXH_NO_PREFETCH build macro */
+#if defined(XXH_NO_PREFETCH)
+#  define XXH_PREFETCH(ptr)  (void)(ptr)  /* disabled */
+#else
+#  if XXH_SIZE_OPT >= 1
+#    define XXH_PREFETCH(ptr) (void)(ptr)
+#  elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))  /* _mm_prefetch() not defined outside of x86/x64 */
+#    include <mmintrin.h>   /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
+#    define XXH_PREFETCH(ptr)  _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
+#  elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
+#    define XXH_PREFETCH(ptr)  __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
+#  else
+#    define XXH_PREFETCH(ptr) (void)(ptr)  /* disabled */
+#  endif
+#endif  /* XXH_NO_PREFETCH */
 
-/* 128-bit */
 
-#ifdef XXH_NAMESPACE
-#  define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
-#  define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
-#  define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
-#  define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
+/* ==========================================
+ * XXH3 default settings
+ * ========================================== */
 
-#  define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
-#  define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
-#  define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
-#  define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
-#  define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
+#define XXH_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */
 
-#  define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
-#  define XXH128_cmp     XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
-#  define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
-#  define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
+#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
+#  error "default keyset is not large enough"
 #endif
 
-typedef struct {
-    XXH64_hash_t low64;
-    XXH64_hash_t high64;
-} XXH128_hash_t;
-
-XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);  /* == XXH128() */
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
-
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
-
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
-
-
-/* Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
+/*! Pseudorandom secret taken directly from FARSH. */
+XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
+    0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
+    0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
+    0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
+    0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
+    0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
+    0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
+    0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
+    0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
+    0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
+    0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
+    0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
+    0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
+};
+
+static const xxh_u64 PRIME_MX1 = 0x165667919E3779F9ULL;  /*!< 0b0001011001010110011001111001000110011110001101110111100111111001 */
+static const xxh_u64 PRIME_MX2 = 0x9FB21C651E98DF25ULL;  /*!< 0b1001111110110010000111000110010100011110100110001101111100100101 */
+
+#ifdef XXH_OLD_NAMES
+#  define kSecret XXH3_kSecret
+#endif
 
+#ifdef XXH_DOXYGEN
 /*!
- * XXH128_isEqual():
- * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
+ * @brief Calculates a 32-bit to 64-bit long multiply.
+ *
+ * Implemented as a macro.
+ *
+ * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
+ * need to (but it shouldn't need to anyways, it is about 7 instructions to do
+ * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
+ * use that instead of the normal method.
+ *
+ * If you are compiling for platforms like Thumb-1 and don't have a better option,
+ * you may also want to write your own long multiply routine here.
+ *
+ * @param x, y Numbers to be multiplied
+ * @return 64-bit product of the low 32 bits of @p x and @p y.
+ */
+XXH_FORCE_INLINE xxh_u64
+XXH_mult32to64(xxh_u64 x, xxh_u64 y)
+{
+   return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
+}
+#elif defined(_MSC_VER) && defined(_M_IX86)
+#    define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
+#else
+/*
+ * Downcast + upcast is usually better than masking on older compilers like
+ * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
+ *
+ * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
+ * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
  */
-XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
+#    define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
+#endif
 
 /*!
- * XXH128_cmp():
+ * @brief Calculates a 64->128-bit long multiply.
  *
- * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
+ * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
+ * version.
  *
- * return: >0 if *h128_1  > *h128_2
- *         <0 if *h128_1  < *h128_2
- *         =0 if *h128_1 == *h128_2
+ * @param lhs , rhs The 64-bit integers to be multiplied
+ * @return The 128-bit result represented in an @ref XXH128_hash_t.
  */
-XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
-
-
-/*******   Canonical representation   *******/
-typedef struct { unsigned char digest[16]; } XXH128_canonical_t;
-XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
-XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
+static XXH128_hash_t
+XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
+{
+    /*
+     * GCC/Clang __uint128_t method.
+     *
+     * On most 64-bit targets, GCC and Clang define a __uint128_t type.
+     * This is usually the best way as it usually uses a native long 64-bit
+     * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
+     *
+     * Usually.
+     *
+     * Despite being a 32-bit platform, Clang (and emscripten) define this type
+     * despite not having the arithmetic for it. This results in a laggy
+     * compiler builtin call which calculates a full 128-bit multiply.
+     * In that case it is best to use the portable one.
+     * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
+     */
+#if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \
+    && defined(__SIZEOF_INT128__) \
+    || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
 
+    __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
+    XXH128_hash_t r128;
+    r128.low64  = (xxh_u64)(product);
+    r128.high64 = (xxh_u64)(product >> 64);
+    return r128;
 
-#endif  /* XXH_NO_LONG_LONG */
+    /*
+     * MSVC for x64's _umul128 method.
+     *
+     * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
+     *
+     * This compiles to single operand MUL on x64.
+     */
+#elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC)
 
-#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
-#  define XXH_IMPLEMENTATION
+#ifndef _MSC_VER
+#   pragma intrinsic(_umul128)
 #endif
+    xxh_u64 product_high;
+    xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
+    XXH128_hash_t r128;
+    r128.low64  = product_low;
+    r128.high64 = product_high;
+    return r128;
 
-#endif  /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
+    /*
+     * MSVC for ARM64's __umulh method.
+     *
+     * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
+     */
+#elif defined(_M_ARM64) || defined(_M_ARM64EC)
 
+#ifndef _MSC_VER
+#   pragma intrinsic(__umulh)
+#endif
+    XXH128_hash_t r128;
+    r128.low64  = lhs * rhs;
+    r128.high64 = __umulh(lhs, rhs);
+    return r128;
 
-/* ======================================================================== */
-/* ======================================================================== */
-/* ======================================================================== */
+#else
+    /*
+     * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
+     *
+     * This is a fast and simple grade school multiply, which is shown below
+     * with base 10 arithmetic instead of base 0x100000000.
+     *
+     *           9 3 // D2 lhs = 93
+     *         x 7 5 // D2 rhs = 75
+     *     ----------
+     *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
+     *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
+     *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
+     *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
+     *     ---------
+     *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
+     *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
+     *     ---------
+     *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
+     *
+     * The reasons for adding the products like this are:
+     *  1. It avoids manual carry tracking. Just like how
+     *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
+     *     This avoids a lot of complexity.
+     *
+     *  2. It hints for, and on Clang, compiles to, the powerful UMAAL
+     *     instruction available in ARM's Digital Signal Processing extension
+     *     in 32-bit ARMv6 and later, which is shown below:
+     *
+     *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
+     *         {
+     *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
+     *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
+     *             *RdHi = (xxh_u32)(product >> 32);
+     *         }
+     *
+     *     This instruction was designed for efficient long multiplication, and
+     *     allows this to be calculated in only 4 instructions at speeds
+     *     comparable to some 64-bit ALUs.
+     *
+     *  3. It isn't terrible on other platforms. Usually this will be a couple
+     *     of 32-bit ADD/ADCs.
+     */
 
+    /* First calculate all of the cross products. */
+    xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
+    xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32,        rhs & 0xFFFFFFFF);
+    xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
+    xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32,        rhs >> 32);
+
+    /* Now add the products together. These will never overflow. */
+    xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
+    xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32)        + hi_hi;
+    xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
+
+    XXH128_hash_t r128;
+    r128.low64  = lower;
+    r128.high64 = upper;
+    return r128;
+#endif
+}
 
-/*-**********************************************************************
- * xxHash implementation
- *-**********************************************************************
- * xxHash's implementation used to be found in xxhash.c.
- *
- * However, code inlining requires the implementation to be visible to the
- * compiler, usually within the header.
+/*!
+ * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
  *
- * As a workaround, xxhash.c used to be included within xxhash.h. This caused
- * some issues with some build systems, especially ones which treat .c files
- * as source files.
+ * The reason for the separate function is to prevent passing too many structs
+ * around by value. This will hopefully inline the multiply, but we don't force it.
  *
- * Therefore, the implementation is now directly integrated within xxhash.h.
- * Another small advantage is that xxhash.c is no longer needed in /include.
- ************************************************************************/
+ * @param lhs , rhs The 64-bit integers to multiply
+ * @return The low 64 bits of the product XOR'd by the high 64 bits.
+ * @see XXH_mult64to128()
+ */
+static xxh_u64
+XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
+{
+    XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
+    return product.low64 ^ product.high64;
+}
 
-#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
-   || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
-#  define XXH_IMPLEM_13a8737387
+/*! Seems to produce slightly better code on GCC for some reason. */
+XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
+{
+    XXH_ASSERT(0 <= shift && shift < 64);
+    return v64 ^ (v64 >> shift);
+}
 
-/* *************************************
-*  Tuning parameters
-***************************************/
-/*!
- * XXH_FORCE_MEMORY_ACCESS:
- * By default, access to unaligned memory is controlled by `memcpy()`, which is
- * safe and portable.
- *
- * Unfortunately, on some target/compiler combinations, the generated assembly
- * is sub-optimal.
- *
- * The below switch allow to select a different access method for improved
- * performance.
- * Method 0 (default):
- *     Use `memcpy()`. Safe and portable.
- * Method 1:
- *     `__attribute__((packed))` statement. It depends on compiler extensions
- *     and is therefore not portable.
- *     This method is safe if your compiler supports it, and *generally* as
- *     fast or faster than `memcpy`.
- * Method 2:
- *     Direct access via cast. This method doesn't depend on the compiler but
- *     violates the C standard.
- *     It can generate buggy code on targets which do not support unaligned
- *     memory accesses.
- *     But in some circumstances, it's the only known way to get the most
- *     performance (ie GCC + ARMv6)
- * Method 3:
- *     Byteshift. This can generate the best code on old compilers which don't
- *     inline small `memcpy()` calls, and it might also be faster on big-endian
- *     systems which lack a native byteswap instruction.
- * See https://stackoverflow.com/a/32095106/646947 for details.
- * Prefer these methods in priority order (0 > 1 > 2 > 3)
+/*
+ * This is a fast avalanche stage,
+ * suitable when input bits are already partially mixed
  */
-#ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
-#  if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6)
-#    define XXH_FORCE_MEMORY_ACCESS 2
-#  elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
-  (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7)))
-#    define XXH_FORCE_MEMORY_ACCESS 1
-#  endif
-#endif
+static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
+{
+    h64 = XXH_xorshift64(h64, 37);
+    h64 *= PRIME_MX1;
+    h64 = XXH_xorshift64(h64, 32);
+    return h64;
+}
 
-/*!
- *XXH_ACCEPT_NULL_INPUT_POINTER:
- * If the input pointer is NULL, xxHash's default behavior is to dereference it,
- * triggering a segfault.
- * When this macro is enabled, xxHash actively checks the input for a null pointer.
- * If it is, the result for null input pointers is the same as a zero-length input.
+/*
+ * This is a stronger avalanche,
+ * inspired by Pelle Evensen's rrmxmx
+ * preferable when input has not been previously mixed
  */
-#ifndef XXH_ACCEPT_NULL_INPUT_POINTER   /* can be defined externally */
-#  define XXH_ACCEPT_NULL_INPUT_POINTER 0
-#endif
+static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
+{
+    /* this mix is inspired by Pelle Evensen's rrmxmx */
+    h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
+    h64 *= PRIME_MX2;
+    h64 ^= (h64 >> 35) + len ;
+    h64 *= PRIME_MX2;
+    return XXH_xorshift64(h64, 28);
+}
 
-/*!
- * XXH_FORCE_ALIGN_CHECK:
- * This is a minor performance trick, only useful with lots of very small keys.
- * It means: check for aligned/unaligned input.
- * The check costs one initial branch per hash;
- * Set it to 0 when the input is guaranteed to be aligned or when alignment
- * doesn't matter for performance.
+
+/* ==========================================
+ * Short keys
+ * ==========================================
+ * One of the shortcomings of XXH32 and XXH64 was that their performance was
+ * sub-optimal on short lengths. It used an iterative algorithm which strongly
+ * favored lengths that were a multiple of 4 or 8.
  *
- * This option does not affect XXH3.
+ * Instead of iterating over individual inputs, we use a set of single shot
+ * functions which piece together a range of lengths and operate in constant time.
+ *
+ * Additionally, the number of multiplies has been significantly reduced. This
+ * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
+ *
+ * Depending on the platform, this may or may not be faster than XXH32, but it
+ * is almost guaranteed to be faster than XXH64.
  */
-#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
-#  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
-#    define XXH_FORCE_ALIGN_CHECK 0
-#  else
-#    define XXH_FORCE_ALIGN_CHECK 1
-#  endif
-#endif
 
-/*!
- * XXH_NO_INLINE_HINTS:
- *
- * By default, xxHash tries to force the compiler to inline almost all internal
- * functions.
+/*
+ * At very short lengths, there isn't enough input to fully hide secrets, or use
+ * the entire secret.
  *
- * This can usually improve performance due to reduced jumping and improved
- * constant folding, but significantly increases the size of the binary which
- * might not be favorable.
+ * There is also only a limited amount of mixing we can do before significantly
+ * impacting performance.
  *
- * Additionally, sometimes the forced inlining can be detrimental to performance,
- * depending on the architecture.
+ * Therefore, we use different sections of the secret and always mix two secret
+ * samples with an XOR. This should have no effect on performance on the
+ * seedless or withSeed variants because everything _should_ be constant folded
+ * by modern compilers.
  *
- * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
- * compiler full control on whether to inline or not.
+ * The XOR mixing hides individual parts of the secret and increases entropy.
  *
- * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
- * -fno-inline with GCC or Clang, this will automatically be defined.
+ * This adds an extra layer of strength for custom secrets.
  */
-#ifndef XXH_NO_INLINE_HINTS
-#  if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
-   || defined(__NO_INLINE__)     /* -O0, -fno-inline */
-#    define XXH_NO_INLINE_HINTS 1
-#  else
-#    define XXH_NO_INLINE_HINTS 0
-#  endif
-#endif
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
+XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+    XXH_ASSERT(input != NULL);
+    XXH_ASSERT(1 <= len && len <= 3);
+    XXH_ASSERT(secret != NULL);
+    /*
+     * len = 1: combined = { input[0], 0x01, input[0], input[0] }
+     * len = 2: combined = { input[1], 0x02, input[0], input[1] }
+     * len = 3: combined = { input[2], 0x03, input[0], input[1] }
+     */
+    {   xxh_u8  const c1 = input[0];
+        xxh_u8  const c2 = input[len >> 1];
+        xxh_u8  const c3 = input[len - 1];
+        xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2  << 24)
+                               | ((xxh_u32)c3 <<  0) | ((xxh_u32)len << 8);
+        xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
+        xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
+        return XXH64_avalanche(keyed);
+    }
+}
 
-/*!
- * XXH_REROLL:
- * Whether to reroll XXH32_finalize, and XXH64_finalize,
- * instead of using an unrolled jump table/if statement loop.
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
+XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+    XXH_ASSERT(input != NULL);
+    XXH_ASSERT(secret != NULL);
+    XXH_ASSERT(4 <= len && len <= 8);
+    seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
+    {   xxh_u32 const input1 = XXH_readLE32(input);
+        xxh_u32 const input2 = XXH_readLE32(input + len - 4);
+        xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
+        xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
+        xxh_u64 const keyed = input64 ^ bitflip;
+        return XXH3_rrmxmx(keyed, len);
+    }
+}
+
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
+XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+    XXH_ASSERT(input != NULL);
+    XXH_ASSERT(secret != NULL);
+    XXH_ASSERT(9 <= len && len <= 16);
+    {   xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
+        xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
+        xxh_u64 const input_lo = XXH_readLE64(input)           ^ bitflip1;
+        xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
+        xxh_u64 const acc = len
+                          + XXH_swap64(input_lo) + input_hi
+                          + XXH3_mul128_fold64(input_lo, input_hi);
+        return XXH3_avalanche(acc);
+    }
+}
+
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
+XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+    XXH_ASSERT(len <= 16);
+    {   if (XXH_likely(len >  8)) return XXH3_len_9to16_64b(input, len, secret, seed);
+        if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
+        if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
+        return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
+    }
+}
+
+/*
+ * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
+ * multiplication by zero, affecting hashes of lengths 17 to 240.
+ *
+ * However, they are very unlikely.
+ *
+ * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
+ * unseeded non-cryptographic hashes, it does not attempt to defend itself
+ * against specially crafted inputs, only random inputs.
+ *
+ * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
+ * cancelling out the secret is taken an arbitrary number of times (addressed
+ * in XXH3_accumulate_512), this collision is very unlikely with random inputs
+ * and/or proper seeding:
+ *
+ * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
+ * function that is only called up to 16 times per hash with up to 240 bytes of
+ * input.
  *
- * This is automatically defined on -Os/-Oz on GCC and Clang.
+ * This is not too bad for a non-cryptographic hash function, especially with
+ * only 64 bit outputs.
+ *
+ * The 128-bit variant (which trades some speed for strength) is NOT affected
+ * by this, although it is always a good idea to use a proper seed if you care
+ * about strength.
  */
-#ifndef XXH_REROLL
-#  if defined(__OPTIMIZE_SIZE__)
-#    define XXH_REROLL 1
-#  else
-#    define XXH_REROLL 0
-#  endif
+XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
+                                     const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
+{
+#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
+  && defined(__i386__) && defined(__SSE2__)  /* x86 + SSE2 */ \
+  && !defined(XXH_ENABLE_AUTOVECTORIZE)      /* Define to disable like XXH32 hack */
+    /*
+     * UGLY HACK:
+     * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
+     * slower code.
+     *
+     * By forcing seed64 into a register, we disrupt the cost model and
+     * cause it to scalarize. See `XXH32_round()`
+     *
+     * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
+     * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
+     * GCC 9.2, despite both emitting scalar code.
+     *
+     * GCC generates much better scalar code than Clang for the rest of XXH3,
+     * which is why finding a more optimal codepath is an interest.
+     */
+    XXH_COMPILER_GUARD(seed64);
 #endif
+    {   xxh_u64 const input_lo = XXH_readLE64(input);
+        xxh_u64 const input_hi = XXH_readLE64(input+8);
+        return XXH3_mul128_fold64(
+            input_lo ^ (XXH_readLE64(secret)   + seed64),
+            input_hi ^ (XXH_readLE64(secret+8) - seed64)
+        );
+    }
+}
 
+/* For mid range keys, XXH3 uses a Mum-hash variant. */
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
+XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
+                     const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+                     XXH64_hash_t seed)
+{
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
+    XXH_ASSERT(16 < len && len <= 128);
 
-/* *************************************
-*  Includes & Memory related functions
-***************************************/
-/*!
- * Modify the local functions below should you wish to use some other memory
- * routines for malloc() and free()
- */
-#include <stdlib.h>
-
-static void* XXH_malloc(size_t s) { return malloc(s); }
-static void XXH_free(void* p) { free(p); }
+    {   xxh_u64 acc = len * XXH_PRIME64_1;
+#if XXH_SIZE_OPT >= 1
+        /* Smaller and cleaner, but slightly slower. */
+        unsigned int i = (unsigned int)(len - 1) / 32;
+        do {
+            acc += XXH3_mix16B(input+16 * i, secret+32*i, seed);
+            acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed);
+        } while (i-- != 0);
+#else
+        if (len > 32) {
+            if (len > 64) {
+                if (len > 96) {
+                    acc += XXH3_mix16B(input+48, secret+96, seed);
+                    acc += XXH3_mix16B(input+len-64, secret+112, seed);
+                }
+                acc += XXH3_mix16B(input+32, secret+64, seed);
+                acc += XXH3_mix16B(input+len-48, secret+80, seed);
+            }
+            acc += XXH3_mix16B(input+16, secret+32, seed);
+            acc += XXH3_mix16B(input+len-32, secret+48, seed);
+        }
+        acc += XXH3_mix16B(input+0, secret+0, seed);
+        acc += XXH3_mix16B(input+len-16, secret+16, seed);
+#endif
+        return XXH3_avalanche(acc);
+    }
+}
 
-/*! and for memcpy() */
-#include <string.h>
-static void* XXH_memcpy(void* dest, const void* src, size_t size)
+XXH_NO_INLINE XXH_PUREF XXH64_hash_t
+XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
+                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+                      XXH64_hash_t seed)
 {
-    return memcpy(dest,src,size);
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
+    XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
+
+    #define XXH3_MIDSIZE_STARTOFFSET 3
+    #define XXH3_MIDSIZE_LASTOFFSET  17
+
+    {   xxh_u64 acc = len * XXH_PRIME64_1;
+        xxh_u64 acc_end;
+        unsigned int const nbRounds = (unsigned int)len / 16;
+        unsigned int i;
+        XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
+        for (i=0; i<8; i++) {
+            acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
+        }
+        /* last bytes */
+        acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
+        XXH_ASSERT(nbRounds >= 8);
+        acc = XXH3_avalanche(acc);
+#if defined(__clang__)                                /* Clang */ \
+    && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
+    && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
+        /*
+         * UGLY HACK:
+         * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
+         * In everywhere else, it uses scalar code.
+         *
+         * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
+         * would still be slower than UMAAL (see XXH_mult64to128).
+         *
+         * Unfortunately, Clang doesn't handle the long multiplies properly and
+         * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
+         * scalarized into an ugly mess of VMOV.32 instructions.
+         *
+         * This mess is difficult to avoid without turning autovectorization
+         * off completely, but they are usually relatively minor and/or not
+         * worth it to fix.
+         *
+         * This loop is the easiest to fix, as unlike XXH32, this pragma
+         * _actually works_ because it is a loop vectorization instead of an
+         * SLP vectorization.
+         */
+        #pragma clang loop vectorize(disable)
+#endif
+        for (i=8 ; i < nbRounds; i++) {
+            /*
+             * Prevents clang for unrolling the acc loop and interleaving with this one.
+             */
+            XXH_COMPILER_GUARD(acc);
+            acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
+        }
+        return XXH3_avalanche(acc + acc_end);
+    }
 }
 
-#include <limits.h>   /* ULLONG_MAX */
 
+/* =======     Long Keys     ======= */
 
-/* *************************************
-*  Compiler Specific Options
-***************************************/
-#ifdef _MSC_VER /* Visual Studio warning fix */
-#  pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+#define XXH_STRIPE_LEN 64
+#define XXH_SECRET_CONSUME_RATE 8   /* nb of secret bytes consumed at each accumulation */
+#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
+
+#ifdef XXH_OLD_NAMES
+#  define STRIPE_LEN XXH_STRIPE_LEN
+#  define ACC_NB XXH_ACC_NB
 #endif
 
-#if XXH_NO_INLINE_HINTS /* disable inlining hints */
-#  define XXH_FORCE_INLINE static
-#  define XXH_NO_INLINE static
-#elif defined(_MSC_VER)    /* Visual Studio */
-#  define XXH_FORCE_INLINE static __forceinline
-#  define XXH_NO_INLINE static __declspec(noinline)
-#else
-#  if defined (__cplusplus) \
-    || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
-#    ifdef __GNUC__
-#      define XXH_FORCE_INLINE static inline __attribute__((always_inline))
-#      define XXH_NO_INLINE static __attribute__((noinline))
+#ifndef XXH_PREFETCH_DIST
+#  ifdef __clang__
+#    define XXH_PREFETCH_DIST 320
+#  else
+#    if (XXH_VECTOR == XXH_AVX512)
+#      define XXH_PREFETCH_DIST 512
 #    else
-#      define XXH_FORCE_INLINE static inline
-#      define XXH_NO_INLINE static
+#      define XXH_PREFETCH_DIST 384
 #    endif
-#  else
-#    define XXH_FORCE_INLINE static
-#    define XXH_NO_INLINE static
-#  endif /* __STDC_VERSION__ */
-#endif
-
+#  endif  /* __clang__ */
+#endif  /* XXH_PREFETCH_DIST */
 
-
-/* *************************************
-*  Debug
-***************************************/
 /*
- * DEBUGLEVEL is expected to be defined externally, typically via the compiler's
- * command line options. The value must be a number.
+ * These macros are to generate an XXH3_accumulate() function.
+ * The two arguments select the name suffix and target attribute.
+ *
+ * The name of this symbol is XXH3_accumulate_<name>() and it calls
+ * XXH3_accumulate_512_<name>().
+ *
+ * It may be useful to hand implement this function if the compiler fails to
+ * optimize the inline function.
  */
-#ifndef DEBUGLEVEL
-#  define DEBUGLEVEL 0
-#endif
-
-#if (DEBUGLEVEL>=1)
-#  include <assert.h>   /* note: can still be disabled with NDEBUG */
-#  define XXH_ASSERT(c)   assert(c)
-#else
-#  define XXH_ASSERT(c)   ((void)0)
-#endif
+#define XXH3_ACCUMULATE_TEMPLATE(name)                      \
+void                                                        \
+XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc,           \
+                       const xxh_u8* XXH_RESTRICT input,    \
+                       const xxh_u8* XXH_RESTRICT secret,   \
+                       size_t nbStripes)                    \
+{                                                           \
+    size_t n;                                               \
+    for (n = 0; n < nbStripes; n++ ) {                      \
+        const xxh_u8* const in = input + n*XXH_STRIPE_LEN;  \
+        XXH_PREFETCH(in + XXH_PREFETCH_DIST);               \
+        XXH3_accumulate_512_##name(                         \
+                 acc,                                       \
+                 in,                                        \
+                 secret + n*XXH_SECRET_CONSUME_RATE);       \
+    }                                                       \
+}
 
-/* note: use after variable declarations */
-#define XXH_STATIC_ASSERT(c)  do { enum { XXH_sa = 1/(int)(!!(c)) }; } while (0)
 
+XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
+{
+    if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
+    XXH_memcpy(dst, &v64, sizeof(v64));
+}
 
-/* *************************************
-*  Basic Types
-***************************************/
+/* Several intrinsic functions below are supposed to accept __int64 as argument,
+ * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
+ * However, several environments do not define __int64 type,
+ * requiring a workaround.
+ */
 #if !defined (__VMS) \
- && (defined (__cplusplus) \
- || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
-# include <stdint.h>
-  typedef uint8_t  xxh_u8;
+  && (defined (__cplusplus) \
+  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+    typedef int64_t xxh_i64;
 #else
-  typedef unsigned char      xxh_u8;
-#endif
-typedef XXH32_hash_t xxh_u32;
-
+    /* the following type must have a width of 64-bit */
+    typedef long long xxh_i64;
+#endif
 
-/* ***   Memory access   *** */
 
-#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
 /*
- * Manual byteshift. Best for old compilers which don't inline memcpy.
- * We actually directly use XXH_readLE32 and XXH_readBE32.
+ * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
+ *
+ * It is a hardened version of UMAC, based off of FARSH's implementation.
+ *
+ * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
+ * implementations, and it is ridiculously fast.
+ *
+ * We harden it by mixing the original input to the accumulators as well as the product.
+ *
+ * This means that in the (relatively likely) case of a multiply by zero, the
+ * original input is preserved.
+ *
+ * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
+ * cross-pollination, as otherwise the upper and lower halves would be
+ * essentially independent.
+ *
+ * This doesn't matter on 64-bit hashes since they all get merged together in
+ * the end, so we skip the extra step.
+ *
+ * Both XXH3_64bits and XXH3_128bits use this subroutine.
  */
-#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
 
-/*
- * Force direct memory access. Only works on CPU which support unaligned memory
- * access in hardware.
- */
-static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
+#if (XXH_VECTOR == XXH_AVX512) \
+     || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
 
-#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
+#ifndef XXH_TARGET_AVX512
+# define XXH_TARGET_AVX512  /* disable attribute target */
+#endif
+
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void
+XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
+                     const void* XXH_RESTRICT input,
+                     const void* XXH_RESTRICT secret)
+{
+    __m512i* const xacc = (__m512i *) acc;
+    XXH_ASSERT((((size_t)acc) & 63) == 0);
+    XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
+
+    {
+        /* data_vec    = input[0]; */
+        __m512i const data_vec    = _mm512_loadu_si512   (input);
+        /* key_vec     = secret[0]; */
+        __m512i const key_vec     = _mm512_loadu_si512   (secret);
+        /* data_key    = data_vec ^ key_vec; */
+        __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec);
+        /* data_key_lo = data_key >> 32; */
+        __m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32);
+        /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+        __m512i const product     = _mm512_mul_epu32     (data_key, data_key_lo);
+        /* xacc[0] += swap(data_vec); */
+        __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
+        __m512i const sum       = _mm512_add_epi64(*xacc, data_swap);
+        /* xacc[0] += product; */
+        *xacc = _mm512_add_epi64(product, sum);
+    }
+}
+XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512)
 
 /*
- * __pack instructions are safer but compiler specific, hence potentially
- * problematic for some compilers.
+ * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
  *
- * Currently only defined for GCC and ICC.
+ * Multiplication isn't perfect, as explained by Google in HighwayHash:
+ *
+ *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
+ *  // varying degrees. In descending order of goodness, bytes
+ *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
+ *  // As expected, the upper and lower bytes are much worse.
+ *
+ * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
+ *
+ * Since our algorithm uses a pseudorandom secret to add some variance into the
+ * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
+ *
+ * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
+ * extraction.
+ *
+ * Both XXH3_64bits and XXH3_128bits use this subroutine.
  */
-typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
-static xxh_u32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
 
-#else
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void
+XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+    XXH_ASSERT((((size_t)acc) & 63) == 0);
+    XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
+    {   __m512i* const xacc = (__m512i*) acc;
+        const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
+
+        /* xacc[0] ^= (xacc[0] >> 47) */
+        __m512i const acc_vec     = *xacc;
+        __m512i const shifted     = _mm512_srli_epi64    (acc_vec, 47);
+        /* xacc[0] ^= secret; */
+        __m512i const key_vec     = _mm512_loadu_si512   (secret);
+        __m512i const data_key    = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */);
+
+        /* xacc[0] *= XXH_PRIME32_1; */
+        __m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32);
+        __m512i const prod_lo     = _mm512_mul_epu32     (data_key, prime32);
+        __m512i const prod_hi     = _mm512_mul_epu32     (data_key_hi, prime32);
+        *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
+    }
+}
 
-/*
- * Portable and safe solution. Generally efficient.
- * see: https://stackoverflow.com/a/32095106/646947
- */
-static xxh_u32 XXH_read32(const void* memPtr)
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void
+XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
 {
-    xxh_u32 val;
-    memcpy(&val, memPtr, sizeof(val));
-    return val;
+    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
+    XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
+    XXH_ASSERT(((size_t)customSecret & 63) == 0);
+    (void)(&XXH_writeLE64);
+    {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
+        __m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64);
+        __m512i const seed     = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos);
+
+        const __m512i* const src  = (const __m512i*) ((const void*) XXH3_kSecret);
+              __m512i* const dest = (      __m512i*) customSecret;
+        int i;
+        XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
+        XXH_ASSERT(((size_t)dest & 63) == 0);
+        for (i=0; i < nbRounds; ++i) {
+            dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed);
+    }   }
 }
 
-#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
+#endif
 
+#if (XXH_VECTOR == XXH_AVX2) \
+    || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
 
-/* ***   Endianess   *** */
-typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
+#ifndef XXH_TARGET_AVX2
+# define XXH_TARGET_AVX2  /* disable attribute target */
+#endif
 
-/*!
- * XXH_CPU_LITTLE_ENDIAN:
- * Defined to 1 if the target is little endian, or 0 if it is big endian.
- * It can be defined externally, for example on the compiler command line.
- *
- * If it is not defined, a runtime check (which is usually constant folded)
- * is used instead.
- */
-#ifndef XXH_CPU_LITTLE_ENDIAN
-/*
- * Try to detect endianness automatically, to avoid the nonstandard behavior
- * in `XXH_isLittleEndian()`
- */
-#  if defined(_WIN32) /* Windows is always little endian */ \
-     || defined(__LITTLE_ENDIAN__) \
-     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
-#    define XXH_CPU_LITTLE_ENDIAN 1
-#  elif defined(__BIG_ENDIAN__) \
-     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
-#    define XXH_CPU_LITTLE_ENDIAN 0
-#  else
-static int XXH_isLittleEndian(void)
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void
+XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
+                    const void* XXH_RESTRICT input,
+                    const void* XXH_RESTRICT secret)
 {
-    /*
-     * Nonstandard, but well-defined behavior in practice.
-     * Don't use static: it is detrimental to performance.
-     */
-    const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
-    return one.c[0];
+    XXH_ASSERT((((size_t)acc) & 31) == 0);
+    {   __m256i* const xacc    =       (__m256i *) acc;
+        /* Unaligned. This is mainly for pointer arithmetic, and because
+         * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason. */
+        const         __m256i* const xinput  = (const __m256i *) input;
+        /* Unaligned. This is mainly for pointer arithmetic, and because
+         * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
+        const         __m256i* const xsecret = (const __m256i *) secret;
+
+        size_t i;
+        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
+            /* data_vec    = xinput[i]; */
+            __m256i const data_vec    = _mm256_loadu_si256    (xinput+i);
+            /* key_vec     = xsecret[i]; */
+            __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
+            /* data_key    = data_vec ^ key_vec; */
+            __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
+            /* data_key_lo = data_key >> 32; */
+            __m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32);
+            /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+            __m256i const product     = _mm256_mul_epu32     (data_key, data_key_lo);
+            /* xacc[i] += swap(data_vec); */
+            __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
+            __m256i const sum       = _mm256_add_epi64(xacc[i], data_swap);
+            /* xacc[i] += product; */
+            xacc[i] = _mm256_add_epi64(product, sum);
+    }   }
 }
-#   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian()
-#  endif
-#endif
+XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2)
 
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void
+XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+    XXH_ASSERT((((size_t)acc) & 31) == 0);
+    {   __m256i* const xacc = (__m256i*) acc;
+        /* Unaligned. This is mainly for pointer arithmetic, and because
+         * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
+        const         __m256i* const xsecret = (const __m256i *) secret;
+        const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
+
+        size_t i;
+        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
+            /* xacc[i] ^= (xacc[i] >> 47) */
+            __m256i const acc_vec     = xacc[i];
+            __m256i const shifted     = _mm256_srli_epi64    (acc_vec, 47);
+            __m256i const data_vec    = _mm256_xor_si256     (acc_vec, shifted);
+            /* xacc[i] ^= xsecret; */
+            __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
+            __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
+
+            /* xacc[i] *= XXH_PRIME32_1; */
+            __m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32);
+            __m256i const prod_lo     = _mm256_mul_epu32     (data_key, prime32);
+            __m256i const prod_hi     = _mm256_mul_epu32     (data_key_hi, prime32);
+            xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
+        }
+    }
+}
 
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
+{
+    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
+    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
+    XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
+    (void)(&XXH_writeLE64);
+    XXH_PREFETCH(customSecret);
+    {   __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64);
+
+        const __m256i* const src  = (const __m256i*) ((const void*) XXH3_kSecret);
+              __m256i*       dest = (      __m256i*) customSecret;
+
+#       if defined(__GNUC__) || defined(__clang__)
+        /*
+         * On GCC & Clang, marking 'dest' as modified will cause the compiler:
+         *   - do not extract the secret from sse registers in the internal loop
+         *   - use less common registers, and avoid pushing these reg into stack
+         */
+        XXH_COMPILER_GUARD(dest);
+#       endif
+        XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */
+        XXH_ASSERT(((size_t)dest & 31) == 0);
+
+        /* GCC -O2 need unroll loop manually */
+        dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed);
+        dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed);
+        dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed);
+        dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed);
+        dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed);
+        dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed);
+    }
+}
 
+#endif
 
-/* ****************************************
-*  Compiler-specific Functions and Macros
-******************************************/
-#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
+/* x86dispatch always generates SSE2 */
+#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
 
-#ifndef __has_builtin
-#  define __has_builtin(x) 0
+#ifndef XXH_TARGET_SSE2
+# define XXH_TARGET_SSE2  /* disable attribute target */
 #endif
 
-#if !defined(NO_CLANG_BUILTIN) && __has_builtin(__builtin_rotateleft32) \
-                               && __has_builtin(__builtin_rotateleft64)
-#  define XXH_rotl32 __builtin_rotateleft32
-#  define XXH_rotl64 __builtin_rotateleft64
-/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
-#elif defined(_MSC_VER)
-#  define XXH_rotl32(x,r) _rotl(x,r)
-#  define XXH_rotl64(x,r) _rotl64(x,r)
-#else
-#  define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
-#  define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
-#endif
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void
+XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
+                    const void* XXH_RESTRICT input,
+                    const void* XXH_RESTRICT secret)
+{
+    /* SSE2 is just a half-scale version of the AVX2 version. */
+    XXH_ASSERT((((size_t)acc) & 15) == 0);
+    {   __m128i* const xacc    =       (__m128i *) acc;
+        /* Unaligned. This is mainly for pointer arithmetic, and because
+         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+        const         __m128i* const xinput  = (const __m128i *) input;
+        /* Unaligned. This is mainly for pointer arithmetic, and because
+         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+        const         __m128i* const xsecret = (const __m128i *) secret;
+
+        size_t i;
+        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
+            /* data_vec    = xinput[i]; */
+            __m128i const data_vec    = _mm_loadu_si128   (xinput+i);
+            /* key_vec     = xsecret[i]; */
+            __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
+            /* data_key    = data_vec ^ key_vec; */
+            __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
+            /* data_key_lo = data_key >> 32; */
+            __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
+            /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+            __m128i const product     = _mm_mul_epu32     (data_key, data_key_lo);
+            /* xacc[i] += swap(data_vec); */
+            __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
+            __m128i const sum       = _mm_add_epi64(xacc[i], data_swap);
+            /* xacc[i] += product; */
+            xacc[i] = _mm_add_epi64(product, sum);
+    }   }
+}
+XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2)
 
-#if defined(_MSC_VER)     /* Visual Studio */
-#  define XXH_swap32 _byteswap_ulong
-#elif XXH_GCC_VERSION >= 403
-#  define XXH_swap32 __builtin_bswap32
-#else
-static xxh_u32 XXH_swap32 (xxh_u32 x)
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void
+XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
 {
-    return  ((x << 24) & 0xff000000 ) |
-            ((x <<  8) & 0x00ff0000 ) |
-            ((x >>  8) & 0x0000ff00 ) |
-            ((x >> 24) & 0x000000ff );
+    XXH_ASSERT((((size_t)acc) & 15) == 0);
+    {   __m128i* const xacc = (__m128i*) acc;
+        /* Unaligned. This is mainly for pointer arithmetic, and because
+         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+        const         __m128i* const xsecret = (const __m128i *) secret;
+        const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
+
+        size_t i;
+        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
+            /* xacc[i] ^= (xacc[i] >> 47) */
+            __m128i const acc_vec     = xacc[i];
+            __m128i const shifted     = _mm_srli_epi64    (acc_vec, 47);
+            __m128i const data_vec    = _mm_xor_si128     (acc_vec, shifted);
+            /* xacc[i] ^= xsecret[i]; */
+            __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
+            __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
+
+            /* xacc[i] *= XXH_PRIME32_1; */
+            __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
+            __m128i const prod_lo     = _mm_mul_epu32     (data_key, prime32);
+            __m128i const prod_hi     = _mm_mul_epu32     (data_key_hi, prime32);
+            xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
+        }
+    }
+}
+
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
+{
+    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
+    (void)(&XXH_writeLE64);
+    {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
+
+#       if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
+        /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */
+        XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) };
+        __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
+#       else
+        __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64);
+#       endif
+        int i;
+
+        const void* const src16 = XXH3_kSecret;
+        __m128i* dst16 = (__m128i*) customSecret;
+#       if defined(__GNUC__) || defined(__clang__)
+        /*
+         * On GCC & Clang, marking 'dest' as modified will cause the compiler:
+         *   - do not extract the secret from sse registers in the internal loop
+         *   - use less common registers, and avoid pushing these reg into stack
+         */
+        XXH_COMPILER_GUARD(dst16);
+#       endif
+        XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */
+        XXH_ASSERT(((size_t)dst16 & 15) == 0);
+
+        for (i=0; i < nbRounds; ++i) {
+            dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed);
+    }   }
 }
+
 #endif
 
+#if (XXH_VECTOR == XXH_NEON)
 
-/* ***************************
-*  Memory reads
-*****************************/
-typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
+/* forward declarations for the scalar routines */
+XXH_FORCE_INLINE void
+XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input,
+                 void const* XXH_RESTRICT secret, size_t lane);
 
-/*
- * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
+XXH_FORCE_INLINE void
+XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
+                         void const* XXH_RESTRICT secret, size_t lane);
+
+/*!
+ * @internal
+ * @brief The bulk processing loop for NEON and WASM SIMD128.
  *
- * This is ideal for older compilers which don't inline memcpy.
+ * The NEON code path is actually partially scalar when running on AArch64. This
+ * is to optimize the pipelining and can have up to 15% speedup depending on the
+ * CPU, and it also mitigates some GCC codegen issues.
+ *
+ * @see XXH3_NEON_LANES for configuring this and details about this optimization.
+ *
+ * NEON's 32-bit to 64-bit long multiply takes a half vector of 32-bit
+ * integers instead of the other platforms which mask full 64-bit vectors,
+ * so the setup is more complicated than just shifting right.
+ *
+ * Additionally, there is an optimization for 4 lanes at once noted below.
+ *
+ * Since, as stated, the most optimal amount of lanes for Cortexes is 6,
+ * there needs to be *three* versions of the accumulate operation used
+ * for the remaining 2 lanes.
+ *
+ * WASM's SIMD128 uses SIMDe's arm_neon.h polyfill because the intrinsics overlap
+ * nearly perfectly.
  */
-#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
 
-XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
+XXH_FORCE_INLINE void
+XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
+                    const void* XXH_RESTRICT input,
+                    const void* XXH_RESTRICT secret)
 {
-    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
-    return bytePtr[0]
-         | ((xxh_u32)bytePtr[1] << 8)
-         | ((xxh_u32)bytePtr[2] << 16)
-         | ((xxh_u32)bytePtr[3] << 24);
+    XXH_ASSERT((((size_t)acc) & 15) == 0);
+    XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0);
+    {   /* GCC for darwin arm64 does not like aliasing here */
+        xxh_aliasing_uint64x2_t* const xacc = (xxh_aliasing_uint64x2_t*) acc;
+        /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
+        uint8_t const* xinput = (const uint8_t *) input;
+        uint8_t const* xsecret  = (const uint8_t *) secret;
+
+        size_t i;
+#ifdef __wasm_simd128__
+        /*
+         * On WASM SIMD128, Clang emits direct address loads when XXH3_kSecret
+         * is constant propagated, which results in it converting it to this
+         * inside the loop:
+         *
+         *    a = v128.load(XXH3_kSecret +  0 + $secret_offset, offset = 0)
+         *    b = v128.load(XXH3_kSecret + 16 + $secret_offset, offset = 0)
+         *    ...
+         *
+         * This requires a full 32-bit address immediate (and therefore a 6 byte
+         * instruction) as well as an add for each offset.
+         *
+         * Putting an asm guard prevents it from folding (at the cost of losing
+         * the alignment hint), and uses the free offset in `v128.load` instead
+         * of adding secret_offset each time which overall reduces code size by
+         * about a kilobyte and improves performance.
+         */
+        XXH_COMPILER_GUARD(xsecret);
+#endif
+        /* Scalar lanes use the normal scalarRound routine */
+        for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
+            XXH3_scalarRound(acc, input, secret, i);
+        }
+        i = 0;
+        /* 4 NEON lanes at a time. */
+        for (; i+1 < XXH3_NEON_LANES / 2; i+=2) {
+            /* data_vec = xinput[i]; */
+            uint64x2_t data_vec_1 = XXH_vld1q_u64(xinput  + (i * 16));
+            uint64x2_t data_vec_2 = XXH_vld1q_u64(xinput  + ((i+1) * 16));
+            /* key_vec  = xsecret[i];  */
+            uint64x2_t key_vec_1  = XXH_vld1q_u64(xsecret + (i * 16));
+            uint64x2_t key_vec_2  = XXH_vld1q_u64(xsecret + ((i+1) * 16));
+            /* data_swap = swap(data_vec) */
+            uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1);
+            uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1);
+            /* data_key = data_vec ^ key_vec; */
+            uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1);
+            uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2);
+
+            /*
+             * If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a
+             * de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to
+             * get one vector with the low 32 bits of each lane, and one vector
+             * with the high 32 bits of each lane.
+             *
+             * The intrinsic returns a double vector because the original ARMv7-a
+             * instruction modified both arguments in place. AArch64 and SIMD128 emit
+             * two instructions from this intrinsic.
+             *
+             *  [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ]
+             *  [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ]
+             */
+            uint32x4x2_t unzipped = vuzpq_u32(
+                vreinterpretq_u32_u64(data_key_1),
+                vreinterpretq_u32_u64(data_key_2)
+            );
+            /* data_key_lo = data_key & 0xFFFFFFFF */
+            uint32x4_t data_key_lo = unzipped.val[0];
+            /* data_key_hi = data_key >> 32 */
+            uint32x4_t data_key_hi = unzipped.val[1];
+            /*
+             * Then, we can split the vectors horizontally and multiply which, as for most
+             * widening intrinsics, have a variant that works on both high half vectors
+             * for free on AArch64. A similar instruction is available on SIMD128.
+             *
+             * sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi
+             */
+            uint64x2_t sum_1 = XXH_vmlal_low_u32(data_swap_1, data_key_lo, data_key_hi);
+            uint64x2_t sum_2 = XXH_vmlal_high_u32(data_swap_2, data_key_lo, data_key_hi);
+            /*
+             * Clang reorders
+             *    a += b * c;     // umlal   swap.2d, dkl.2s, dkh.2s
+             *    c += a;         // add     acc.2d, acc.2d, swap.2d
+             * to
+             *    c += a;         // add     acc.2d, acc.2d, swap.2d
+             *    c += b * c;     // umlal   acc.2d, dkl.2s, dkh.2s
+             *
+             * While it would make sense in theory since the addition is faster,
+             * for reasons likely related to umlal being limited to certain NEON
+             * pipelines, this is worse. A compiler guard fixes this.
+             */
+            XXH_COMPILER_GUARD_CLANG_NEON(sum_1);
+            XXH_COMPILER_GUARD_CLANG_NEON(sum_2);
+            /* xacc[i] = acc_vec + sum; */
+            xacc[i]   = vaddq_u64(xacc[i], sum_1);
+            xacc[i+1] = vaddq_u64(xacc[i+1], sum_2);
+        }
+        /* Operate on the remaining NEON lanes 2 at a time. */
+        for (; i < XXH3_NEON_LANES / 2; i++) {
+            /* data_vec = xinput[i]; */
+            uint64x2_t data_vec = XXH_vld1q_u64(xinput  + (i * 16));
+            /* key_vec  = xsecret[i];  */
+            uint64x2_t key_vec  = XXH_vld1q_u64(xsecret + (i * 16));
+            /* acc_vec_2 = swap(data_vec) */
+            uint64x2_t data_swap = vextq_u64(data_vec, data_vec, 1);
+            /* data_key = data_vec ^ key_vec; */
+            uint64x2_t data_key = veorq_u64(data_vec, key_vec);
+            /* For two lanes, just use VMOVN and VSHRN. */
+            /* data_key_lo = data_key & 0xFFFFFFFF; */
+            uint32x2_t data_key_lo = vmovn_u64(data_key);
+            /* data_key_hi = data_key >> 32; */
+            uint32x2_t data_key_hi = vshrn_n_u64(data_key, 32);
+            /* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi; */
+            uint64x2_t sum = vmlal_u32(data_swap, data_key_lo, data_key_hi);
+            /* Same Clang workaround as before */
+            XXH_COMPILER_GUARD_CLANG_NEON(sum);
+            /* xacc[i] = acc_vec + sum; */
+            xacc[i] = vaddq_u64 (xacc[i], sum);
+        }
+    }
 }
+XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon)
 
-XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
+XXH_FORCE_INLINE void
+XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
 {
-    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
-    return bytePtr[3]
-         | ((xxh_u32)bytePtr[2] << 8)
-         | ((xxh_u32)bytePtr[1] << 16)
-         | ((xxh_u32)bytePtr[0] << 24);
-}
+    XXH_ASSERT((((size_t)acc) & 15) == 0);
+
+    {   xxh_aliasing_uint64x2_t* xacc       = (xxh_aliasing_uint64x2_t*) acc;
+        uint8_t const* xsecret = (uint8_t const*) secret;
+
+        size_t i;
+        /* WASM uses operator overloads and doesn't need these. */
+#ifndef __wasm_simd128__
+        /* { prime32_1, prime32_1 } */
+        uint32x2_t const kPrimeLo = vdup_n_u32(XXH_PRIME32_1);
+        /* { 0, prime32_1, 0, prime32_1 } */
+        uint32x4_t const kPrimeHi = vreinterpretq_u32_u64(vdupq_n_u64((xxh_u64)XXH_PRIME32_1 << 32));
+#endif
 
+        /* AArch64 uses both scalar and neon at the same time */
+        for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
+            XXH3_scalarScrambleRound(acc, secret, i);
+        }
+        for (i=0; i < XXH3_NEON_LANES / 2; i++) {
+            /* xacc[i] ^= (xacc[i] >> 47); */
+            uint64x2_t acc_vec  = xacc[i];
+            uint64x2_t shifted  = vshrq_n_u64(acc_vec, 47);
+            uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
+
+            /* xacc[i] ^= xsecret[i]; */
+            uint64x2_t key_vec  = XXH_vld1q_u64(xsecret + (i * 16));
+            uint64x2_t data_key = veorq_u64(data_vec, key_vec);
+            /* xacc[i] *= XXH_PRIME32_1 */
+#ifdef __wasm_simd128__
+            /* SIMD128 has multiply by u64x2, use it instead of expanding and scalarizing */
+            xacc[i] = data_key * XXH_PRIME32_1;
 #else
-XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
+            /*
+             * Expanded version with portable NEON intrinsics
+             *
+             *    lo(x) * lo(y) + (hi(x) * lo(y) << 32)
+             *
+             * prod_hi = hi(data_key) * lo(prime) << 32
+             *
+             * Since we only need 32 bits of this multiply a trick can be used, reinterpreting the vector
+             * as a uint32x4_t and multiplying by { 0, prime, 0, prime } to cancel out the unwanted bits
+             * and avoid the shift.
+             */
+            uint32x4_t prod_hi = vmulq_u32 (vreinterpretq_u32_u64(data_key), kPrimeHi);
+            /* Extract low bits for vmlal_u32  */
+            uint32x2_t data_key_lo = vmovn_u64(data_key);
+            /* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */
+            xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo);
+#endif
+        }
+    }
+}
+#endif
+
+#if (XXH_VECTOR == XXH_VSX)
+
+XXH_FORCE_INLINE void
+XXH3_accumulate_512_vsx(  void* XXH_RESTRICT acc,
+                    const void* XXH_RESTRICT input,
+                    const void* XXH_RESTRICT secret)
 {
-    return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
+    /* presumed aligned */
+    xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
+    xxh_u8 const* const xinput   = (xxh_u8 const*) input;   /* no alignment restriction */
+    xxh_u8 const* const xsecret  = (xxh_u8 const*) secret;    /* no alignment restriction */
+    xxh_u64x2 const v32 = { 32, 32 };
+    size_t i;
+    for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
+        /* data_vec = xinput[i]; */
+        xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + 16*i);
+        /* key_vec = xsecret[i]; */
+        xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + 16*i);
+        xxh_u64x2 const data_key = data_vec ^ key_vec;
+        /* shuffled = (data_key << 32) | (data_key >> 32); */
+        xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
+        /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
+        xxh_u64x2 const product  = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
+        /* acc_vec = xacc[i]; */
+        xxh_u64x2 acc_vec        = xacc[i];
+        acc_vec += product;
+
+        /* swap high and low halves */
+#ifdef __s390x__
+        acc_vec += vec_permi(data_vec, data_vec, 2);
+#else
+        acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
+#endif
+        xacc[i] = acc_vec;
+    }
 }
+XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx)
 
-static xxh_u32 XXH_readBE32(const void* ptr)
+XXH_FORCE_INLINE void
+XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
 {
-    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
+    XXH_ASSERT((((size_t)acc) & 15) == 0);
+
+    {   xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
+        const xxh_u8* const xsecret = (const xxh_u8*) secret;
+        /* constants */
+        xxh_u64x2 const v32  = { 32, 32 };
+        xxh_u64x2 const v47 = { 47, 47 };
+        xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
+        size_t i;
+        for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
+            /* xacc[i] ^= (xacc[i] >> 47); */
+            xxh_u64x2 const acc_vec  = xacc[i];
+            xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
+
+            /* xacc[i] ^= xsecret[i]; */
+            xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + 16*i);
+            xxh_u64x2 const data_key = data_vec ^ key_vec;
+
+            /* xacc[i] *= XXH_PRIME32_1 */
+            /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF);  */
+            xxh_u64x2 const prod_even  = XXH_vec_mule((xxh_u32x4)data_key, prime);
+            /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */
+            xxh_u64x2 const prod_odd  = XXH_vec_mulo((xxh_u32x4)data_key, prime);
+            xacc[i] = prod_odd + (prod_even << v32);
+    }   }
 }
+
 #endif
 
-XXH_FORCE_INLINE xxh_u32
-XXH_readLE32_align(const void* ptr, XXH_alignment align)
+#if (XXH_VECTOR == XXH_SVE)
+
+XXH_FORCE_INLINE void
+XXH3_accumulate_512_sve( void* XXH_RESTRICT acc,
+                   const void* XXH_RESTRICT input,
+                   const void* XXH_RESTRICT secret)
 {
-    if (align==XXH_unaligned) {
-        return XXH_readLE32(ptr);
+    uint64_t *xacc = (uint64_t *)acc;
+    const uint64_t *xinput = (const uint64_t *)(const void *)input;
+    const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
+    svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
+    uint64_t element_count = svcntd();
+    if (element_count >= 8) {
+        svbool_t mask = svptrue_pat_b64(SV_VL8);
+        svuint64_t vacc = svld1_u64(mask, xacc);
+        ACCRND(vacc, 0);
+        svst1_u64(mask, xacc, vacc);
+    } else if (element_count == 2) {   /* sve128 */
+        svbool_t mask = svptrue_pat_b64(SV_VL2);
+        svuint64_t acc0 = svld1_u64(mask, xacc + 0);
+        svuint64_t acc1 = svld1_u64(mask, xacc + 2);
+        svuint64_t acc2 = svld1_u64(mask, xacc + 4);
+        svuint64_t acc3 = svld1_u64(mask, xacc + 6);
+        ACCRND(acc0, 0);
+        ACCRND(acc1, 2);
+        ACCRND(acc2, 4);
+        ACCRND(acc3, 6);
+        svst1_u64(mask, xacc + 0, acc0);
+        svst1_u64(mask, xacc + 2, acc1);
+        svst1_u64(mask, xacc + 4, acc2);
+        svst1_u64(mask, xacc + 6, acc3);
     } else {
-        return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
+        svbool_t mask = svptrue_pat_b64(SV_VL4);
+        svuint64_t acc0 = svld1_u64(mask, xacc + 0);
+        svuint64_t acc1 = svld1_u64(mask, xacc + 4);
+        ACCRND(acc0, 0);
+        ACCRND(acc1, 4);
+        svst1_u64(mask, xacc + 0, acc0);
+        svst1_u64(mask, xacc + 4, acc1);
     }
 }
 
+XXH_FORCE_INLINE void
+XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc,
+               const xxh_u8* XXH_RESTRICT input,
+               const xxh_u8* XXH_RESTRICT secret,
+               size_t nbStripes)
+{
+    if (nbStripes != 0) {
+        uint64_t *xacc = (uint64_t *)acc;
+        const uint64_t *xinput = (const uint64_t *)(const void *)input;
+        const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
+        svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
+        uint64_t element_count = svcntd();
+        if (element_count >= 8) {
+            svbool_t mask = svptrue_pat_b64(SV_VL8);
+            svuint64_t vacc = svld1_u64(mask, xacc + 0);
+            do {
+                /* svprfd(svbool_t, void *, enum svfprop); */
+                svprfd(mask, xinput + 128, SV_PLDL1STRM);
+                ACCRND(vacc, 0);
+                xinput += 8;
+                xsecret += 1;
+                nbStripes--;
+           } while (nbStripes != 0);
+
+           svst1_u64(mask, xacc + 0, vacc);
+        } else if (element_count == 2) { /* sve128 */
+            svbool_t mask = svptrue_pat_b64(SV_VL2);
+            svuint64_t acc0 = svld1_u64(mask, xacc + 0);
+            svuint64_t acc1 = svld1_u64(mask, xacc + 2);
+            svuint64_t acc2 = svld1_u64(mask, xacc + 4);
+            svuint64_t acc3 = svld1_u64(mask, xacc + 6);
+            do {
+                svprfd(mask, xinput + 128, SV_PLDL1STRM);
+                ACCRND(acc0, 0);
+                ACCRND(acc1, 2);
+                ACCRND(acc2, 4);
+                ACCRND(acc3, 6);
+                xinput += 8;
+                xsecret += 1;
+                nbStripes--;
+           } while (nbStripes != 0);
+
+           svst1_u64(mask, xacc + 0, acc0);
+           svst1_u64(mask, xacc + 2, acc1);
+           svst1_u64(mask, xacc + 4, acc2);
+           svst1_u64(mask, xacc + 6, acc3);
+        } else {
+            svbool_t mask = svptrue_pat_b64(SV_VL4);
+            svuint64_t acc0 = svld1_u64(mask, xacc + 0);
+            svuint64_t acc1 = svld1_u64(mask, xacc + 4);
+            do {
+                svprfd(mask, xinput + 128, SV_PLDL1STRM);
+                ACCRND(acc0, 0);
+                ACCRND(acc1, 4);
+                xinput += 8;
+                xsecret += 1;
+                nbStripes--;
+           } while (nbStripes != 0);
+
+           svst1_u64(mask, xacc + 0, acc0);
+           svst1_u64(mask, xacc + 4, acc1);
+       }
+    }
+}
 
-/* *************************************
-*  Misc
-***************************************/
-XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
-
+#endif
 
-/* *******************************************************************
-*  32-bit hash functions
-*********************************************************************/
-static const xxh_u32 PRIME32_1 = 0x9E3779B1U;   /* 0b10011110001101110111100110110001 */
-static const xxh_u32 PRIME32_2 = 0x85EBCA77U;   /* 0b10000101111010111100101001110111 */
-static const xxh_u32 PRIME32_3 = 0xC2B2AE3DU;   /* 0b11000010101100101010111000111101 */
-static const xxh_u32 PRIME32_4 = 0x27D4EB2FU;   /* 0b00100111110101001110101100101111 */
-static const xxh_u32 PRIME32_5 = 0x165667B1U;   /* 0b00010110010101100110011110110001 */
+/* scalar variants - universal */
 
-static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
+#if defined(__aarch64__) && (defined(__GNUC__) || defined(__clang__))
+/*
+ * In XXH3_scalarRound(), GCC and Clang have a similar codegen issue, where they
+ * emit an excess mask and a full 64-bit multiply-add (MADD X-form).
+ *
+ * While this might not seem like much, as AArch64 is a 64-bit architecture, only
+ * big Cortex designs have a full 64-bit multiplier.
+ *
+ * On the little cores, the smaller 32-bit multiplier is used, and full 64-bit
+ * multiplies expand to 2-3 multiplies in microcode. This has a major penalty
+ * of up to 4 latency cycles and 2 stall cycles in the multiply pipeline.
+ *
+ * Thankfully, AArch64 still provides the 32-bit long multiply-add (UMADDL) which does
+ * not have this penalty and does the mask automatically.
+ */
+XXH_FORCE_INLINE xxh_u64
+XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
 {
-    acc += input * PRIME32_2;
-    acc  = XXH_rotl32(acc, 13);
-    acc *= PRIME32_1;
-#if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE)
-    /*
-     * UGLY HACK:
-     * This inline assembly hack forces acc into a normal register. This is the
-     * only thing that prevents GCC and Clang from autovectorizing the XXH32
-     * loop (pragmas and attributes don't work for some resason) without globally
-     * disabling SSE4.1.
-     *
-     * The reason we want to avoid vectorization is because despite working on
-     * 4 integers at a time, there are multiple factors slowing XXH32 down on
-     * SSE4:
-     * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
-     *   newer chips!) making it slightly slower to multiply four integers at
-     *   once compared to four integers independently. Even when pmulld was
-     *   fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
-     *   just to multiply unless doing a long operation.
-     *
-     * - Four instructions are required to rotate,
-     *      movqda tmp,  v // not required with VEX encoding
-     *      pslld  tmp, 13 // tmp <<= 13
-     *      psrld  v,   19 // x >>= 19
-     *      por    v,  tmp // x |= tmp
-     *   compared to one for scalar:
-     *      roll   v, 13    // reliably fast across the board
-     *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason
-     *
-     * - Instruction level parallelism is actually more beneficial here because
-     *   the SIMD actually serializes this operation: While v1 is rotating, v2
-     *   can load data, while v3 can multiply. SSE forces them to operate
-     *   together.
-     *
-     * How this hack works:
-     * __asm__(""       // Declare an assembly block but don't declare any instructions
-     *          :       // However, as an Input/Output Operand,
-     *          "+r"    // constrain a read/write operand (+) as a general purpose register (r).
-     *          (acc)   // and set acc as the operand
-     * );
-     *
-     * Because of the 'r', the compiler has promised that seed will be in a
-     * general purpose register and the '+' says that it will be 'read/write',
-     * so it has to assume it has changed. It is like volatile without all the
-     * loads and stores.
-     *
-     * Since the argument has to be in a normal register (not an SSE register),
-     * each time XXH32_round is called, it is impossible to vectorize.
-     */
-    __asm__("" : "+r" (acc));
-#endif
-    return acc;
+    xxh_u64 ret;
+    /* note: %x = 64-bit register, %w = 32-bit register */
+    __asm__("umaddl %x0, %w1, %w2, %x3" : "=r" (ret) : "r" (lhs), "r" (rhs), "r" (acc));
+    return ret;
 }
-
-/* mix all bits */
-static xxh_u32 XXH32_avalanche(xxh_u32 h32)
+#else
+XXH_FORCE_INLINE xxh_u64
+XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
 {
-    h32 ^= h32 >> 15;
-    h32 *= PRIME32_2;
-    h32 ^= h32 >> 13;
-    h32 *= PRIME32_3;
-    h32 ^= h32 >> 16;
-    return(h32);
+    return XXH_mult32to64((xxh_u32)lhs, (xxh_u32)rhs) + acc;
 }
+#endif
 
-#define XXH_get32bits(p) XXH_readLE32_align(p, align)
-
-static xxh_u32
-XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
+/*!
+ * @internal
+ * @brief Scalar round for @ref XXH3_accumulate_512_scalar().
+ *
+ * This is extracted to its own function because the NEON path uses a combination
+ * of NEON and scalar.
+ */
+XXH_FORCE_INLINE void
+XXH3_scalarRound(void* XXH_RESTRICT acc,
+                 void const* XXH_RESTRICT input,
+                 void const* XXH_RESTRICT secret,
+                 size_t lane)
 {
-#define PROCESS1 do {                           \
-    h32 += (*ptr++) * PRIME32_5;                \
-    h32 = XXH_rotl32(h32, 11) * PRIME32_1;      \
-} while (0)
+    xxh_u64* xacc = (xxh_u64*) acc;
+    xxh_u8 const* xinput  = (xxh_u8 const*) input;
+    xxh_u8 const* xsecret = (xxh_u8 const*) secret;
+    XXH_ASSERT(lane < XXH_ACC_NB);
+    XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
+    {
+        xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8);
+        xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8);
+        xacc[lane ^ 1] += data_val; /* swap adjacent lanes */
+        xacc[lane] = XXH_mult32to64_add64(data_key /* & 0xFFFFFFFF */, data_key >> 32, xacc[lane]);
+    }
+}
 
-#define PROCESS4 do {                           \
-    h32 += XXH_get32bits(ptr) * PRIME32_3;      \
-    ptr += 4;                                   \
-    h32  = XXH_rotl32(h32, 17) * PRIME32_4;     \
-} while (0)
+/*!
+ * @internal
+ * @brief Processes a 64 byte block of data using the scalar path.
+ */
+XXH_FORCE_INLINE void
+XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
+                     const void* XXH_RESTRICT input,
+                     const void* XXH_RESTRICT secret)
+{
+    size_t i;
+    /* ARM GCC refuses to unroll this loop, resulting in a 24% slowdown on ARMv6. */
+#if defined(__GNUC__) && !defined(__clang__) \
+  && (defined(__arm__) || defined(__thumb2__)) \
+  && defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \
+  && XXH_SIZE_OPT <= 0
+#  pragma GCC unroll 8
+#endif
+    for (i=0; i < XXH_ACC_NB; i++) {
+        XXH3_scalarRound(acc, input, secret, i);
+    }
+}
+XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar)
 
-    /* Compact rerolled version */
-    if (XXH_REROLL) {
-        len &= 15;
-        while (len >= 4) {
-            PROCESS4;
-            len -= 4;
-        }
-        while (len > 0) {
-            PROCESS1;
-            --len;
-        }
-        return XXH32_avalanche(h32);
-    } else {
-         switch(len&15) /* or switch(bEnd - p) */ {
-           case 12:      PROCESS4;
-                         /* fallthrough */
-           case 8:       PROCESS4;
-                         /* fallthrough */
-           case 4:       PROCESS4;
-                         return XXH32_avalanche(h32);
-
-           case 13:      PROCESS4;
-                         /* fallthrough */
-           case 9:       PROCESS4;
-                         /* fallthrough */
-           case 5:       PROCESS4;
-                         PROCESS1;
-                         return XXH32_avalanche(h32);
-
-           case 14:      PROCESS4;
-                         /* fallthrough */
-           case 10:      PROCESS4;
-                         /* fallthrough */
-           case 6:       PROCESS4;
-                         PROCESS1;
-                         PROCESS1;
-                         return XXH32_avalanche(h32);
-
-           case 15:      PROCESS4;
-                         /* fallthrough */
-           case 11:      PROCESS4;
-                         /* fallthrough */
-           case 7:       PROCESS4;
-                         /* fallthrough */
-           case 3:       PROCESS1;
-                         /* fallthrough */
-           case 2:       PROCESS1;
-                         /* fallthrough */
-           case 1:       PROCESS1;
-                         /* fallthrough */
-           case 0:       return XXH32_avalanche(h32);
-        }
-        XXH_ASSERT(0);
-        return h32;   /* reaching this point is deemed impossible */
+/*!
+ * @internal
+ * @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar().
+ *
+ * This is extracted to its own function because the NEON path uses a combination
+ * of NEON and scalar.
+ */
+XXH_FORCE_INLINE void
+XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
+                         void const* XXH_RESTRICT secret,
+                         size_t lane)
+{
+    xxh_u64* const xacc = (xxh_u64*) acc;   /* presumed aligned */
+    const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
+    XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
+    XXH_ASSERT(lane < XXH_ACC_NB);
+    {
+        xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8);
+        xxh_u64 acc64 = xacc[lane];
+        acc64 = XXH_xorshift64(acc64, 47);
+        acc64 ^= key64;
+        acc64 *= XXH_PRIME32_1;
+        xacc[lane] = acc64;
     }
 }
 
-XXH_FORCE_INLINE xxh_u32
-XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
+/*!
+ * @internal
+ * @brief Scrambles the accumulators after a large chunk has been read
+ */
+XXH_FORCE_INLINE void
+XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
 {
-    const xxh_u8* bEnd = input + len;
-    xxh_u32 h32;
-
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
-    if (input==NULL) {
-        len=0;
-        bEnd=input=(const xxh_u8*)(size_t)16;
+    size_t i;
+    for (i=0; i < XXH_ACC_NB; i++) {
+        XXH3_scalarScrambleRound(acc, secret, i);
     }
+}
+
+XXH_FORCE_INLINE void
+XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
+{
+    /*
+     * We need a separate pointer for the hack below,
+     * which requires a non-const pointer.
+     * Any decent compiler will optimize this out otherwise.
+     */
+    const xxh_u8* kSecretPtr = XXH3_kSecret;
+    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
+
+#if defined(__GNUC__) && defined(__aarch64__)
+    /*
+     * UGLY HACK:
+     * GCC and Clang generate a bunch of MOV/MOVK pairs for aarch64, and they are
+     * placed sequentially, in order, at the top of the unrolled loop.
+     *
+     * While MOVK is great for generating constants (2 cycles for a 64-bit
+     * constant compared to 4 cycles for LDR), it fights for bandwidth with
+     * the arithmetic instructions.
+     *
+     *   I   L   S
+     * MOVK
+     * MOVK
+     * MOVK
+     * MOVK
+     * ADD
+     * SUB      STR
+     *          STR
+     * By forcing loads from memory (as the asm line causes the compiler to assume
+     * that XXH3_kSecretPtr has been changed), the pipelines are used more
+     * efficiently:
+     *   I   L   S
+     *      LDR
+     *  ADD LDR
+     *  SUB     STR
+     *          STR
+     *
+     * See XXH3_NEON_LANES for details on the pipsline.
+     *
+     * XXH3_64bits_withSeed, len == 256, Snapdragon 835
+     *   without hack: 2654.4 MB/s
+     *   with hack:    3202.9 MB/s
+     */
+    XXH_COMPILER_GUARD(kSecretPtr);
 #endif
+    {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
+        int i;
+        for (i=0; i < nbRounds; i++) {
+            /*
+             * The asm hack causes the compiler to assume that kSecretPtr aliases with
+             * customSecret, and on aarch64, this prevented LDP from merging two
+             * loads together for free. Putting the loads together before the stores
+             * properly generates LDP.
+             */
+            xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i)     + seed64;
+            xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
+            XXH_writeLE64((xxh_u8*)customSecret + 16*i,     lo);
+            XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
+    }   }
+}
 
-    if (len>=16) {
-        const xxh_u8* const limit = bEnd - 15;
-        xxh_u32 v1 = seed + PRIME32_1 + PRIME32_2;
-        xxh_u32 v2 = seed + PRIME32_2;
-        xxh_u32 v3 = seed + 0;
-        xxh_u32 v4 = seed - PRIME32_1;
 
-        do {
-            v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
-            v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
-            v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
-            v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
-        } while (input < limit);
+typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t);
+typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
+typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
 
-        h32 = XXH_rotl32(v1, 1)  + XXH_rotl32(v2, 7)
-            + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
-    } else {
-        h32  = seed + PRIME32_5;
-    }
 
-    h32 += (xxh_u32)len;
+#if (XXH_VECTOR == XXH_AVX512)
 
-    return XXH32_finalize(h32, input, len&15, align);
-}
+#define XXH3_accumulate_512 XXH3_accumulate_512_avx512
+#define XXH3_accumulate     XXH3_accumulate_avx512
+#define XXH3_scrambleAcc    XXH3_scrambleAcc_avx512
+#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
 
+#elif (XXH_VECTOR == XXH_AVX2)
 
-XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
-{
-#if 0
-    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
-    XXH32_state_t state;
-    XXH32_reset(&state, seed);
-    XXH32_update(&state, (const xxh_u8*)input, len);
-    return XXH32_digest(&state);
+#define XXH3_accumulate_512 XXH3_accumulate_512_avx2
+#define XXH3_accumulate     XXH3_accumulate_avx2
+#define XXH3_scrambleAcc    XXH3_scrambleAcc_avx2
+#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
 
-#else
+#elif (XXH_VECTOR == XXH_SSE2)
 
-    if (XXH_FORCE_ALIGN_CHECK) {
-        if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
-            return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
-    }   }
+#define XXH3_accumulate_512 XXH3_accumulate_512_sse2
+#define XXH3_accumulate     XXH3_accumulate_sse2
+#define XXH3_scrambleAcc    XXH3_scrambleAcc_sse2
+#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
 
-    return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
-#endif
-}
+#elif (XXH_VECTOR == XXH_NEON)
 
+#define XXH3_accumulate_512 XXH3_accumulate_512_neon
+#define XXH3_accumulate     XXH3_accumulate_neon
+#define XXH3_scrambleAcc    XXH3_scrambleAcc_neon
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
 
+#elif (XXH_VECTOR == XXH_VSX)
 
-/*******   Hash streaming   *******/
+#define XXH3_accumulate_512 XXH3_accumulate_512_vsx
+#define XXH3_accumulate     XXH3_accumulate_vsx
+#define XXH3_scrambleAcc    XXH3_scrambleAcc_vsx
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
 
-XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
-{
-    return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
-}
-XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
-{
-    XXH_free(statePtr);
-    return XXH_OK;
-}
+#elif (XXH_VECTOR == XXH_SVE)
+#define XXH3_accumulate_512 XXH3_accumulate_512_sve
+#define XXH3_accumulate     XXH3_accumulate_sve
+#define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
 
-XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
-{
-    memcpy(dstState, srcState, sizeof(*dstState));
-}
+#else /* scalar */
 
-XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
-{
-    XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
-    memset(&state, 0, sizeof(state));
-    state.v1 = seed + PRIME32_1 + PRIME32_2;
-    state.v2 = seed + PRIME32_2;
-    state.v3 = seed + 0;
-    state.v4 = seed - PRIME32_1;
-    /* do not write into reserved, planned to be removed in a future version */
-    memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
-    return XXH_OK;
-}
+#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
+#define XXH3_accumulate     XXH3_accumulate_scalar
+#define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
 
+#endif
 
-XXH_PUBLIC_API XXH_errorcode
-XXH32_update(XXH32_state_t* state, const void* input, size_t len)
-{
-    if (input==NULL)
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
-        return XXH_OK;
-#else
-        return XXH_ERROR;
+#if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */
+#  undef XXH3_initCustomSecret
+#  define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
 #endif
 
-    {   const xxh_u8* p = (const xxh_u8*)input;
-        const xxh_u8* const bEnd = p + len;
+XXH_FORCE_INLINE void
+XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
+                      const xxh_u8* XXH_RESTRICT input, size_t len,
+                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+                            XXH3_f_accumulate f_acc,
+                            XXH3_f_scrambleAcc f_scramble)
+{
+    size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
+    size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
+    size_t const nb_blocks = (len - 1) / block_len;
 
-        state->total_len_32 += (XXH32_hash_t)len;
-        state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
+    size_t n;
 
-        if (state->memsize + len < 16)  {   /* fill in tmp buffer */
-            XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
-            state->memsize += (XXH32_hash_t)len;
-            return XXH_OK;
-        }
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
 
-        if (state->memsize) {   /* some data left from previous update */
-            XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
-            {   const xxh_u32* p32 = state->mem32;
-                state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++;
-                state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++;
-                state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++;
-                state->v4 = XXH32_round(state->v4, XXH_readLE32(p32));
-            }
-            p += 16-state->memsize;
-            state->memsize = 0;
-        }
+    for (n = 0; n < nb_blocks; n++) {
+        f_acc(acc, input + n*block_len, secret, nbStripesPerBlock);
+        f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
+    }
 
-        if (p <= bEnd-16) {
-            const xxh_u8* const limit = bEnd - 16;
-            xxh_u32 v1 = state->v1;
-            xxh_u32 v2 = state->v2;
-            xxh_u32 v3 = state->v3;
-            xxh_u32 v4 = state->v4;
+    /* last partial block */
+    XXH_ASSERT(len > XXH_STRIPE_LEN);
+    {   size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
+        XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
+        f_acc(acc, input + nb_blocks*block_len, secret, nbStripes);
 
-            do {
-                v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4;
-                v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4;
-                v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4;
-                v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4;
-            } while (p<=limit);
+        /* last stripe */
+        {   const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
+#define XXH_SECRET_LASTACC_START 7  /* not aligned on 8, last secret is different from acc & scrambler */
+            XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
+    }   }
+}
 
-            state->v1 = v1;
-            state->v2 = v2;
-            state->v3 = v3;
-            state->v4 = v4;
-        }
+XXH_FORCE_INLINE xxh_u64
+XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
+{
+    return XXH3_mul128_fold64(
+               acc[0] ^ XXH_readLE64(secret),
+               acc[1] ^ XXH_readLE64(secret+8) );
+}
 
-        if (p < bEnd) {
-            XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
-            state->memsize = (unsigned)(bEnd-p);
-        }
+static XXH64_hash_t
+XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
+{
+    xxh_u64 result64 = start;
+    size_t i = 0;
+
+    for (i = 0; i < 4; i++) {
+        result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
+#if defined(__clang__)                                /* Clang */ \
+    && (defined(__arm__) || defined(__thumb__))       /* ARMv7 */ \
+    && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \
+    && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
+        /*
+         * UGLY HACK:
+         * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
+         * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
+         * XXH3_64bits, len == 256, Snapdragon 835:
+         *   without hack: 2063.7 MB/s
+         *   with hack:    2560.7 MB/s
+         */
+        XXH_COMPILER_GUARD(result64);
+#endif
     }
 
-    return XXH_OK;
+    return XXH3_avalanche(result64);
 }
 
+#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
+                        XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
 
-XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* state)
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
+                           const void* XXH_RESTRICT secret, size_t secretSize,
+                           XXH3_f_accumulate f_acc,
+                           XXH3_f_scrambleAcc f_scramble)
 {
-    xxh_u32 h32;
-
-    if (state->large_len) {
-        h32 = XXH_rotl32(state->v1, 1)
-            + XXH_rotl32(state->v2, 7)
-            + XXH_rotl32(state->v3, 12)
-            + XXH_rotl32(state->v4, 18);
-    } else {
-        h32 = state->v3 /* == seed */ + PRIME32_5;
-    }
+    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
 
-    h32 += state->total_len_32;
+    XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble);
 
-    return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
+    /* converge into final hash */
+    XXH_STATIC_ASSERT(sizeof(acc) == 64);
+    /* do not align on 8, so that the secret is different from the accumulator */
+#define XXH_SECRET_MERGEACCS_START 11
+    XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+    return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
 }
 
+/*
+ * It's important for performance to transmit secret's size (when it's static)
+ * so that the compiler can properly optimize the vectorized loop.
+ * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
+ * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
+ * breaks -Og, this is XXH_NO_INLINE.
+ */
+XXH3_WITH_SECRET_INLINE XXH64_hash_t
+XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
+                             XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
+{
+    (void)seed64;
+    return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc);
+}
 
-/*******   Canonical representation   *******/
+/*
+ * It's preferable for performance that XXH3_hashLong is not inlined,
+ * as it results in a smaller function for small data, easier to the instruction cache.
+ * Note that inside this no_inline function, we do inline the internal loop,
+ * and provide a statically defined secret size to allow optimization of vector loop.
+ */
+XXH_NO_INLINE XXH_PUREF XXH64_hash_t
+XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
+                          XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
+{
+    (void)seed64; (void)secret; (void)secretLen;
+    return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc);
+}
 
 /*
- * The default return values from XXH functions are unsigned 32 and 64 bit
- * integers.
- *
- * The canonical representation uses big endian convention, the same convention
- * as human-readable numbers (large digits first).
+ * XXH3_hashLong_64b_withSeed():
+ * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
+ * and then use this key for long mode hashing.
  *
- * This way, hash values can be written into a file or buffer, remaining
- * comparable across different systems.
+ * This operation is decently fast but nonetheless costs a little bit of time.
+ * Try to avoid it whenever possible (typically when seed==0).
  *
- * The following functions allow transformation of hash values to and from their
- * canonical format.
+ * It's important for performance that XXH3_hashLong is not inlined. Not sure
+ * why (uop cache maybe?), but the difference is large and easily measurable.
  */
-XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
+                                    XXH64_hash_t seed,
+                                    XXH3_f_accumulate f_acc,
+                                    XXH3_f_scrambleAcc f_scramble,
+                                    XXH3_f_initCustomSecret f_initSec)
 {
-    XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
-    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
-    memcpy(dst, &hash, sizeof(*dst));
+#if XXH_SIZE_OPT <= 0
+    if (seed == 0)
+        return XXH3_hashLong_64b_internal(input, len,
+                                          XXH3_kSecret, sizeof(XXH3_kSecret),
+                                          f_acc, f_scramble);
+#endif
+    {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
+        f_initSec(secret, seed);
+        return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
+                                          f_acc, f_scramble);
+    }
 }
 
-XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
+/*
+ * It's important for performance that XXH3_hashLong is not inlined.
+ */
+XXH_NO_INLINE XXH64_hash_t
+XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len,
+                           XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
 {
-    return XXH_readBE32(src);
+    (void)secret; (void)secretLen;
+    return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
+                XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
 }
 
 
-#ifndef XXH_NO_LONG_LONG
+typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
+                                          XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
 
-/* *******************************************************************
-*  64-bit hash functions
-*********************************************************************/
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
+                     XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
+                     XXH3_hashLong64_f f_hashLong)
+{
+    XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
+    /*
+     * If an action is to be taken if `secretLen` condition is not respected,
+     * it should be done here.
+     * For now, it's a contract pre-condition.
+     * Adding a check and a branch here would cost performance at every hash.
+     * Also, note that function signature doesn't offer room to return an error.
+     */
+    if (len <= 16)
+        return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
+    if (len <= 128)
+        return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
+    if (len <= XXH3_MIDSIZE_MAX)
+        return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
+    return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
+}
 
-/*******   Memory access   *******/
 
-typedef XXH64_hash_t xxh_u64;
+/* ===   Public entry point   === */
+
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length)
+{
+    return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
+}
+
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH64_hash_t
+XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize)
+{
+    return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
+}
+
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH64_hash_t
+XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed)
+{
+    return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
+}
+
+XXH_PUBLIC_API XXH64_hash_t
+XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
+{
+    if (length <= XXH3_MIDSIZE_MAX)
+        return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
+    return XXH3_hashLong_64b_withSecret(input, length, seed, (const xxh_u8*)secret, secretSize);
+}
 
 
+/* ===   XXH3 streaming   === */
+#ifndef XXH_NO_STREAM
+/*
+ * Malloc's a pointer that is always aligned to @align.
+ *
+ * This must be freed with `XXH_alignedFree()`.
+ *
+ * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
+ * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
+ * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
+ *
+ * This underalignment previously caused a rather obvious crash which went
+ * completely unnoticed due to XXH3_createState() not actually being tested.
+ * Credit to RedSpah for noticing this bug.
+ *
+ * The alignment is done manually: Functions like posix_memalign or _mm_malloc
+ * are avoided: To maintain portability, we would have to write a fallback
+ * like this anyways, and besides, testing for the existence of library
+ * functions without relying on external build tools is impossible.
+ *
+ * The method is simple: Overallocate, manually align, and store the offset
+ * to the original behind the returned pointer.
+ *
+ * Align must be a power of 2 and 8 <= align <= 128.
+ */
+static XXH_MALLOCF void* XXH_alignedMalloc(size_t s, size_t align)
+{
+    XXH_ASSERT(align <= 128 && align >= 8); /* range check */
+    XXH_ASSERT((align & (align-1)) == 0);   /* power of 2 */
+    XXH_ASSERT(s != 0 && s < (s + align));  /* empty/overflow */
+    {   /* Overallocate to make room for manual realignment and an offset byte */
+        xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
+        if (base != NULL) {
+            /*
+             * Get the offset needed to align this pointer.
+             *
+             * Even if the returned pointer is aligned, there will always be
+             * at least one byte to store the offset to the original pointer.
+             */
+            size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
+            /* Add the offset for the now-aligned pointer */
+            xxh_u8* ptr = base + offset;
+
+            XXH_ASSERT((size_t)ptr % align == 0);
+
+            /* Store the offset immediately before the returned pointer. */
+            ptr[-1] = (xxh_u8)offset;
+            return ptr;
+        }
+        return NULL;
+    }
+}
+/*
+ * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
+ * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
+ */
+static void XXH_alignedFree(void* p)
+{
+    if (p != NULL) {
+        xxh_u8* ptr = (xxh_u8*)p;
+        /* Get the offset byte we added in XXH_malloc. */
+        xxh_u8 offset = ptr[-1];
+        /* Free the original malloc'd pointer */
+        xxh_u8* base = ptr - offset;
+        XXH_free(base);
+    }
+}
+/*! @ingroup XXH3_family */
 /*!
- * XXH_REROLL_XXH64:
- * Whether to reroll the XXH64_finalize() loop.
+ * @brief Allocate an @ref XXH3_state_t.
  *
- * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a
- * performance gain on 64-bit hosts, as only one jump is required.
+ * @return An allocated pointer of @ref XXH3_state_t on success.
+ * @return `NULL` on failure.
  *
- * However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit
- * registers, and 64-bit arithmetic needs to be simulated, it isn't beneficial
- * to unroll. The code becomes ridiculously large (the largest function in the
- * binary on i386!), and rerolling it saves anywhere from 3kB to 20kB. It is
- * also slightly faster because it fits into cache better and is more likely
- * to be inlined by the compiler.
+ * @note Must be freed with XXH3_freeState().
  *
- * If XXH_REROLL is defined, this is ignored and the loop is always rerolled.
+ * @see @ref streaming_example "Streaming Example"
  */
-#ifndef XXH_REROLL_XXH64
-#  if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \
-   || !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \
-     || defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \
-     || defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \
-     || defined(__mips64__) || defined(__mips64)) /* mips64 */ \
-   || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */
-#    define XXH_REROLL_XXH64 1
-#  else
-#    define XXH_REROLL_XXH64 0
-#  endif
-#endif /* !defined(XXH_REROLL_XXH64) */
+XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
+{
+    XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
+    if (state==NULL) return NULL;
+    XXH3_INITSTATE(state);
+    return state;
+}
 
-#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
-/*
- * Manual byteshift. Best for old compilers which don't inline memcpy.
- * We actually directly use XXH_readLE64 and XXH_readBE64.
+/*! @ingroup XXH3_family */
+/*!
+ * @brief Frees an @ref XXH3_state_t.
+ *
+ * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
+ *
+ * @return @ref XXH_OK.
+ *
+ * @note Must be allocated with XXH3_createState().
+ *
+ * @see @ref streaming_example "Streaming Example"
  */
-#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
+XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
+{
+    XXH_alignedFree(statePtr);
+    return XXH_OK;
+}
 
-/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
-static xxh_u64 XXH_read64(const void* memPtr) { return *(const xxh_u64*) memPtr; }
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API void
+XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state)
+{
+    XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
+}
 
-#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
+static void
+XXH3_reset_internal(XXH3_state_t* statePtr,
+                    XXH64_hash_t seed,
+                    const void* secret, size_t secretSize)
+{
+    size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
+    size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
+    XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
+    XXH_ASSERT(statePtr != NULL);
+    /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
+    memset((char*)statePtr + initStart, 0, initLength);
+    statePtr->acc[0] = XXH_PRIME32_3;
+    statePtr->acc[1] = XXH_PRIME64_1;
+    statePtr->acc[2] = XXH_PRIME64_2;
+    statePtr->acc[3] = XXH_PRIME64_3;
+    statePtr->acc[4] = XXH_PRIME64_4;
+    statePtr->acc[5] = XXH_PRIME32_2;
+    statePtr->acc[6] = XXH_PRIME64_5;
+    statePtr->acc[7] = XXH_PRIME32_1;
+    statePtr->seed = seed;
+    statePtr->useSeed = (seed != 0);
+    statePtr->extSecret = (const unsigned char*)secret;
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+    statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
+    statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
+}
 
-/*
- * __pack instructions are safer, but compiler specific, hence potentially
- * problematic for some compilers.
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
+{
+    if (statePtr == NULL) return XXH_ERROR;
+    XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
+    return XXH_OK;
+}
+
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
+{
+    if (statePtr == NULL) return XXH_ERROR;
+    XXH3_reset_internal(statePtr, 0, secret, secretSize);
+    if (secret == NULL) return XXH_ERROR;
+    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
+    return XXH_OK;
+}
+
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
+{
+    if (statePtr == NULL) return XXH_ERROR;
+    if (seed==0) return XXH3_64bits_reset(statePtr);
+    if ((seed != statePtr->seed) || (statePtr->extSecret != NULL))
+        XXH3_initCustomSecret(statePtr->customSecret, seed);
+    XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
+    return XXH_OK;
+}
+
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64)
+{
+    if (statePtr == NULL) return XXH_ERROR;
+    if (secret == NULL) return XXH_ERROR;
+    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
+    XXH3_reset_internal(statePtr, seed64, secret, secretSize);
+    statePtr->useSeed = 1; /* always, even if seed64==0 */
+    return XXH_OK;
+}
+
+/*!
+ * @internal
+ * @brief Processes a large input for XXH3_update() and XXH3_digest_long().
  *
- * Currently only defined for GCC and ICC.
+ * Unlike XXH3_hashLong_internal_loop(), this can process data that overlaps a block.
+ *
+ * @param acc                Pointer to the 8 accumulator lanes
+ * @param nbStripesSoFarPtr  In/out pointer to the number of leftover stripes in the block*
+ * @param nbStripesPerBlock  Number of stripes in a block
+ * @param input              Input pointer
+ * @param nbStripes          Number of stripes to process
+ * @param secret             Secret pointer
+ * @param secretLimit        Offset of the last block in @p secret
+ * @param f_acc              Pointer to an XXH3_accumulate implementation
+ * @param f_scramble         Pointer to an XXH3_scrambleAcc implementation
+ * @return                   Pointer past the end of @p input after processing
  */
-typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
-static xxh_u64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }
+XXH_FORCE_INLINE const xxh_u8 *
+XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
+                    size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
+                    const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
+                    const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
+                    XXH3_f_accumulate f_acc,
+                    XXH3_f_scrambleAcc f_scramble)
+{
+    const xxh_u8* initialSecret = secret + *nbStripesSoFarPtr * XXH_SECRET_CONSUME_RATE;
+    /* Process full blocks */
+    if (nbStripes >= (nbStripesPerBlock - *nbStripesSoFarPtr)) {
+        /* Process the initial partial block... */
+        size_t nbStripesThisIter = nbStripesPerBlock - *nbStripesSoFarPtr;
 
-#else
+        do {
+            /* Accumulate and scramble */
+            f_acc(acc, input, initialSecret, nbStripesThisIter);
+            f_scramble(acc, secret + secretLimit);
+            input += nbStripesThisIter * XXH_STRIPE_LEN;
+            nbStripes -= nbStripesThisIter;
+            /* Then continue the loop with the full block size */
+            nbStripesThisIter = nbStripesPerBlock;
+            initialSecret = secret;
+        } while (nbStripes >= nbStripesPerBlock);
+        *nbStripesSoFarPtr = 0;
+    }
+    /* Process a partial block */
+    if (nbStripes > 0) {
+        f_acc(acc, input, initialSecret, nbStripes);
+        input += nbStripes * XXH_STRIPE_LEN;
+        *nbStripesSoFarPtr += nbStripes;
+    }
+    /* Return end pointer */
+    return input;
+}
 
+#ifndef XXH3_STREAM_USE_STACK
+# if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */
+#   define XXH3_STREAM_USE_STACK 1
+# endif
+#endif
 /*
- * Portable and safe solution. Generally efficient.
- * see: https://stackoverflow.com/a/32095106/646947
+ * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
  */
-static xxh_u64 XXH_read64(const void* memPtr)
+XXH_FORCE_INLINE XXH_errorcode
+XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
+            const xxh_u8* XXH_RESTRICT input, size_t len,
+            XXH3_f_accumulate f_acc,
+            XXH3_f_scrambleAcc f_scramble)
 {
-    xxh_u64 val;
-    memcpy(&val, memPtr, sizeof(val));
-    return val;
-}
-
-#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
+    if (input==NULL) {
+        XXH_ASSERT(len == 0);
+        return XXH_OK;
+    }
 
-#if defined(_MSC_VER)     /* Visual Studio */
-#  define XXH_swap64 _byteswap_uint64
-#elif XXH_GCC_VERSION >= 403
-#  define XXH_swap64 __builtin_bswap64
+    XXH_ASSERT(state != NULL);
+    {   const xxh_u8* const bEnd = input + len;
+        const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
+#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
+        /* For some reason, gcc and MSVC seem to suffer greatly
+         * when operating accumulators directly into state.
+         * Operating into stack space seems to enable proper optimization.
+         * clang, on the other hand, doesn't seem to need this trick */
+        XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8];
+        XXH_memcpy(acc, state->acc, sizeof(acc));
 #else
-static xxh_u64 XXH_swap64 (xxh_u64 x)
-{
-    return  ((x << 56) & 0xff00000000000000ULL) |
-            ((x << 40) & 0x00ff000000000000ULL) |
-            ((x << 24) & 0x0000ff0000000000ULL) |
-            ((x << 8)  & 0x000000ff00000000ULL) |
-            ((x >> 8)  & 0x00000000ff000000ULL) |
-            ((x >> 24) & 0x0000000000ff0000ULL) |
-            ((x >> 40) & 0x000000000000ff00ULL) |
-            ((x >> 56) & 0x00000000000000ffULL);
-}
+        xxh_u64* XXH_RESTRICT const acc = state->acc;
 #endif
+        state->totalLen += len;
+        XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
 
+        /* small input : just fill in tmp buffer */
+        if (len <= XXH3_INTERNALBUFFER_SIZE - state->bufferedSize) {
+            XXH_memcpy(state->buffer + state->bufferedSize, input, len);
+            state->bufferedSize += (XXH32_hash_t)len;
+            return XXH_OK;
+        }
 
-/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
-#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
+        /* total input is now > XXH3_INTERNALBUFFER_SIZE */
+        #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
+        XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0);   /* clean multiple */
+
+        /*
+         * Internal buffer is partially filled (always, except at beginning)
+         * Complete it, then consume it.
+         */
+        if (state->bufferedSize) {
+            size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
+            XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
+            input += loadSize;
+            XXH3_consumeStripes(acc,
+                               &state->nbStripesSoFar, state->nbStripesPerBlock,
+                                state->buffer, XXH3_INTERNALBUFFER_STRIPES,
+                                secret, state->secretLimit,
+                                f_acc, f_scramble);
+            state->bufferedSize = 0;
+        }
+        XXH_ASSERT(input < bEnd);
+        if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
+            size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
+            input = XXH3_consumeStripes(acc,
+                                       &state->nbStripesSoFar, state->nbStripesPerBlock,
+                                       input, nbStripes,
+                                       secret, state->secretLimit,
+                                       f_acc, f_scramble);
+            XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
 
-XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
-{
-    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
-    return bytePtr[0]
-         | ((xxh_u64)bytePtr[1] << 8)
-         | ((xxh_u64)bytePtr[2] << 16)
-         | ((xxh_u64)bytePtr[3] << 24)
-         | ((xxh_u64)bytePtr[4] << 32)
-         | ((xxh_u64)bytePtr[5] << 40)
-         | ((xxh_u64)bytePtr[6] << 48)
-         | ((xxh_u64)bytePtr[7] << 56);
-}
+        }
+        /* Some remaining input (always) : buffer it */
+        XXH_ASSERT(input < bEnd);
+        XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
+        XXH_ASSERT(state->bufferedSize == 0);
+        XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
+        state->bufferedSize = (XXH32_hash_t)(bEnd-input);
+#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
+        /* save stack accumulators into state */
+        XXH_memcpy(state->acc, acc, sizeof(acc));
+#endif
+    }
 
-XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
-{
-    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
-    return bytePtr[7]
-         | ((xxh_u64)bytePtr[6] << 8)
-         | ((xxh_u64)bytePtr[5] << 16)
-         | ((xxh_u64)bytePtr[4] << 24)
-         | ((xxh_u64)bytePtr[3] << 32)
-         | ((xxh_u64)bytePtr[2] << 40)
-         | ((xxh_u64)bytePtr[1] << 48)
-         | ((xxh_u64)bytePtr[0] << 56);
+    return XXH_OK;
 }
 
-#else
-XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
 {
-    return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
+    return XXH3_update(state, (const xxh_u8*)input, len,
+                       XXH3_accumulate, XXH3_scrambleAcc);
 }
 
-static xxh_u64 XXH_readBE64(const void* ptr)
+
+XXH_FORCE_INLINE void
+XXH3_digest_long (XXH64_hash_t* acc,
+                  const XXH3_state_t* state,
+                  const unsigned char* secret)
 {
-    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
+    xxh_u8 lastStripe[XXH_STRIPE_LEN];
+    const xxh_u8* lastStripePtr;
+
+    /*
+     * Digest on a local copy. This way, the state remains unaltered, and it can
+     * continue ingesting more input afterwards.
+     */
+    XXH_memcpy(acc, state->acc, sizeof(state->acc));
+    if (state->bufferedSize >= XXH_STRIPE_LEN) {
+        /* Consume remaining stripes then point to remaining data in buffer */
+        size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
+        size_t nbStripesSoFar = state->nbStripesSoFar;
+        XXH3_consumeStripes(acc,
+                           &nbStripesSoFar, state->nbStripesPerBlock,
+                            state->buffer, nbStripes,
+                            secret, state->secretLimit,
+                            XXH3_accumulate, XXH3_scrambleAcc);
+        lastStripePtr = state->buffer + state->bufferedSize - XXH_STRIPE_LEN;
+    } else {  /* bufferedSize < XXH_STRIPE_LEN */
+        /* Copy to temp buffer */
+        size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
+        XXH_ASSERT(state->bufferedSize > 0);  /* there is always some input buffered */
+        XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
+        XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
+        lastStripePtr = lastStripe;
+    }
+    /* Last stripe */
+    XXH3_accumulate_512(acc,
+                        lastStripePtr,
+                        secret + state->secretLimit - XXH_SECRET_LASTACC_START);
 }
-#endif
 
-XXH_FORCE_INLINE xxh_u64
-XXH_readLE64_align(const void* ptr, XXH_alignment align)
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
 {
-    if (align==XXH_unaligned)
-        return XXH_readLE64(ptr);
-    else
-        return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
+    const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
+    if (state->totalLen > XXH3_MIDSIZE_MAX) {
+        XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
+        XXH3_digest_long(acc, state, secret);
+        return XXH3_mergeAccs(acc,
+                              secret + XXH_SECRET_MERGEACCS_START,
+                              (xxh_u64)state->totalLen * XXH_PRIME64_1);
+    }
+    /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
+    if (state->useSeed)
+        return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
+    return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
+                                  secret, state->secretLimit + XXH_STRIPE_LEN);
 }
+#endif /* !XXH_NO_STREAM */
 
 
-/*******   xxh64   *******/
+/* ==========================================
+ * XXH3 128 bits (a.k.a XXH128)
+ * ==========================================
+ * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
+ * even without counting the significantly larger output size.
+ *
+ * For example, extra steps are taken to avoid the seed-dependent collisions
+ * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
+ *
+ * This strength naturally comes at the cost of some speed, especially on short
+ * lengths. Note that longer hashes are about as fast as the 64-bit version
+ * due to it using only a slight modification of the 64-bit loop.
+ *
+ * XXH128 is also more oriented towards 64-bit machines. It is still extremely
+ * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
+ */
 
-static const xxh_u64 PRIME64_1 = 0x9E3779B185EBCA87ULL;   /* 0b1001111000110111011110011011000110000101111010111100101010000111 */
-static const xxh_u64 PRIME64_2 = 0xC2B2AE3D27D4EB4FULL;   /* 0b1100001010110010101011100011110100100111110101001110101101001111 */
-static const xxh_u64 PRIME64_3 = 0x165667B19E3779F9ULL;   /* 0b0001011001010110011001111011000110011110001101110111100111111001 */
-static const xxh_u64 PRIME64_4 = 0x85EBCA77C2B2AE63ULL;   /* 0b1000010111101011110010100111011111000010101100101010111001100011 */
-static const xxh_u64 PRIME64_5 = 0x27D4EB2F165667C5ULL;   /* 0b0010011111010100111010110010111100010110010101100110011111000101 */
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
+XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+    /* A doubled version of 1to3_64b with different constants. */
+    XXH_ASSERT(input != NULL);
+    XXH_ASSERT(1 <= len && len <= 3);
+    XXH_ASSERT(secret != NULL);
+    /*
+     * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
+     * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
+     * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
+     */
+    {   xxh_u8 const c1 = input[0];
+        xxh_u8 const c2 = input[len >> 1];
+        xxh_u8 const c3 = input[len - 1];
+        xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
+                                | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
+        xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
+        xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
+        xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
+        xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
+        xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
+        XXH128_hash_t h128;
+        h128.low64  = XXH64_avalanche(keyed_lo);
+        h128.high64 = XXH64_avalanche(keyed_hi);
+        return h128;
+    }
+}
 
-static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
+XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 {
-    acc += input * PRIME64_2;
-    acc  = XXH_rotl64(acc, 31);
-    acc *= PRIME64_1;
-    return acc;
+    XXH_ASSERT(input != NULL);
+    XXH_ASSERT(secret != NULL);
+    XXH_ASSERT(4 <= len && len <= 8);
+    seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
+    {   xxh_u32 const input_lo = XXH_readLE32(input);
+        xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
+        xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
+        xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
+        xxh_u64 const keyed = input_64 ^ bitflip;
+
+        /* Shift len to the left to ensure it is even, this avoids even multiplies. */
+        XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
+
+        m128.high64 += (m128.low64 << 1);
+        m128.low64  ^= (m128.high64 >> 3);
+
+        m128.low64   = XXH_xorshift64(m128.low64, 35);
+        m128.low64  *= PRIME_MX2;
+        m128.low64   = XXH_xorshift64(m128.low64, 28);
+        m128.high64  = XXH3_avalanche(m128.high64);
+        return m128;
+    }
 }
 
-static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
+XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 {
-    val  = XXH64_round(0, val);
-    acc ^= val;
-    acc  = acc * PRIME64_1 + PRIME64_4;
-    return acc;
+    XXH_ASSERT(input != NULL);
+    XXH_ASSERT(secret != NULL);
+    XXH_ASSERT(9 <= len && len <= 16);
+    {   xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
+        xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
+        xxh_u64 const input_lo = XXH_readLE64(input);
+        xxh_u64       input_hi = XXH_readLE64(input + len - 8);
+        XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
+        /*
+         * Put len in the middle of m128 to ensure that the length gets mixed to
+         * both the low and high bits in the 128x64 multiply below.
+         */
+        m128.low64 += (xxh_u64)(len - 1) << 54;
+        input_hi   ^= bitfliph;
+        /*
+         * Add the high 32 bits of input_hi to the high 32 bits of m128, then
+         * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
+         * the high 64 bits of m128.
+         *
+         * The best approach to this operation is different on 32-bit and 64-bit.
+         */
+        if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
+            /*
+             * 32-bit optimized version, which is more readable.
+             *
+             * On 32-bit, it removes an ADC and delays a dependency between the two
+             * halves of m128.high64, but it generates an extra mask on 64-bit.
+             */
+            m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
+        } else {
+            /*
+             * 64-bit optimized (albeit more confusing) version.
+             *
+             * Uses some properties of addition and multiplication to remove the mask:
+             *
+             * Let:
+             *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
+             *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
+             *    c = XXH_PRIME32_2
+             *
+             *    a + (b * c)
+             * Inverse Property: x + y - x == y
+             *    a + (b * (1 + c - 1))
+             * Distributive Property: x * (y + z) == (x * y) + (x * z)
+             *    a + (b * 1) + (b * (c - 1))
+             * Identity Property: x * 1 == x
+             *    a + b + (b * (c - 1))
+             *
+             * Substitute a, b, and c:
+             *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
+             *
+             * Since input_hi.hi + input_hi.lo == input_hi, we get this:
+             *    input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
+             */
+            m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
+        }
+        /* m128 ^= XXH_swap64(m128 >> 64); */
+        m128.low64  ^= XXH_swap64(m128.high64);
+
+        {   /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
+            XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
+            h128.high64 += m128.high64 * XXH_PRIME64_2;
+
+            h128.low64   = XXH3_avalanche(h128.low64);
+            h128.high64  = XXH3_avalanche(h128.high64);
+            return h128;
+    }   }
 }
 
-static xxh_u64 XXH64_avalanche(xxh_u64 h64)
+/*
+ * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
+ */
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
+XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 {
-    h64 ^= h64 >> 33;
-    h64 *= PRIME64_2;
-    h64 ^= h64 >> 29;
-    h64 *= PRIME64_3;
-    h64 ^= h64 >> 32;
-    return h64;
+    XXH_ASSERT(len <= 16);
+    {   if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
+        if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
+        if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
+        {   XXH128_hash_t h128;
+            xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
+            xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
+            h128.low64 = XXH64_avalanche(seed ^ bitflipl);
+            h128.high64 = XXH64_avalanche( seed ^ bitfliph);
+            return h128;
+    }   }
 }
 
+/*
+ * A bit slower than XXH3_mix16B, but handles multiply by zero better.
+ */
+XXH_FORCE_INLINE XXH128_hash_t
+XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
+              const xxh_u8* secret, XXH64_hash_t seed)
+{
+    acc.low64  += XXH3_mix16B (input_1, secret+0, seed);
+    acc.low64  ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
+    acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
+    acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
+    return acc;
+}
 
-#define XXH_get64bits(p) XXH_readLE64_align(p, align)
 
-static xxh_u64
-XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
+XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
+                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+                      XXH64_hash_t seed)
 {
-#define PROCESS1_64 do {                                   \
-    h64 ^= (*ptr++) * PRIME64_5;                           \
-    h64 = XXH_rotl64(h64, 11) * PRIME64_1;                 \
-} while (0)
-
-#define PROCESS4_64 do {                                   \
-    h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * PRIME64_1;      \
-    ptr += 4;                                              \
-    h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;     \
-} while (0)
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
+    XXH_ASSERT(16 < len && len <= 128);
 
-#define PROCESS8_64 do {                                   \
-    xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \
-    ptr += 8;                                              \
-    h64 ^= k1;                                             \
-    h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;     \
-} while (0)
+    {   XXH128_hash_t acc;
+        acc.low64 = len * XXH_PRIME64_1;
+        acc.high64 = 0;
 
-    /* Rerolled version for 32-bit targets is faster and much smaller. */
-    if (XXH_REROLL || XXH_REROLL_XXH64) {
-        len &= 31;
-        while (len >= 8) {
-            PROCESS8_64;
-            len -= 8;
-        }
-        if (len >= 4) {
-            PROCESS4_64;
-            len -= 4;
+#if XXH_SIZE_OPT >= 1
+        {
+            /* Smaller, but slightly slower. */
+            unsigned int i = (unsigned int)(len - 1) / 32;
+            do {
+                acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed);
+            } while (i-- != 0);
         }
-        while (len > 0) {
-            PROCESS1_64;
-            --len;
+#else
+        if (len > 32) {
+            if (len > 64) {
+                if (len > 96) {
+                    acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
+                }
+                acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
+            }
+            acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
         }
-         return  XXH64_avalanche(h64);
-    } else {
-        switch(len & 31) {
-           case 24: PROCESS8_64;
-                         /* fallthrough */
-           case 16: PROCESS8_64;
-                         /* fallthrough */
-           case  8: PROCESS8_64;
-                    return XXH64_avalanche(h64);
-
-           case 28: PROCESS8_64;
-                         /* fallthrough */
-           case 20: PROCESS8_64;
-                         /* fallthrough */
-           case 12: PROCESS8_64;
-                         /* fallthrough */
-           case  4: PROCESS4_64;
-                    return XXH64_avalanche(h64);
-
-           case 25: PROCESS8_64;
-                         /* fallthrough */
-           case 17: PROCESS8_64;
-                         /* fallthrough */
-           case  9: PROCESS8_64;
-                    PROCESS1_64;
-                    return XXH64_avalanche(h64);
-
-           case 29: PROCESS8_64;
-                         /* fallthrough */
-           case 21: PROCESS8_64;
-                         /* fallthrough */
-           case 13: PROCESS8_64;
-                         /* fallthrough */
-           case  5: PROCESS4_64;
-                    PROCESS1_64;
-                    return XXH64_avalanche(h64);
-
-           case 26: PROCESS8_64;
-                         /* fallthrough */
-           case 18: PROCESS8_64;
-                         /* fallthrough */
-           case 10: PROCESS8_64;
-                    PROCESS1_64;
-                    PROCESS1_64;
-                    return XXH64_avalanche(h64);
-
-           case 30: PROCESS8_64;
-                         /* fallthrough */
-           case 22: PROCESS8_64;
-                         /* fallthrough */
-           case 14: PROCESS8_64;
-                         /* fallthrough */
-           case  6: PROCESS4_64;
-                    PROCESS1_64;
-                    PROCESS1_64;
-                    return XXH64_avalanche(h64);
-
-           case 27: PROCESS8_64;
-                         /* fallthrough */
-           case 19: PROCESS8_64;
-                         /* fallthrough */
-           case 11: PROCESS8_64;
-                    PROCESS1_64;
-                    PROCESS1_64;
-                    PROCESS1_64;
-                    return XXH64_avalanche(h64);
-
-           case 31: PROCESS8_64;
-                         /* fallthrough */
-           case 23: PROCESS8_64;
-                         /* fallthrough */
-           case 15: PROCESS8_64;
-                         /* fallthrough */
-           case  7: PROCESS4_64;
-                         /* fallthrough */
-           case  3: PROCESS1_64;
-                         /* fallthrough */
-           case  2: PROCESS1_64;
-                         /* fallthrough */
-           case  1: PROCESS1_64;
-                         /* fallthrough */
-           case  0: return XXH64_avalanche(h64);
+        acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
+#endif
+        {   XXH128_hash_t h128;
+            h128.low64  = acc.low64 + acc.high64;
+            h128.high64 = (acc.low64    * XXH_PRIME64_1)
+                        + (acc.high64   * XXH_PRIME64_4)
+                        + ((len - seed) * XXH_PRIME64_2);
+            h128.low64  = XXH3_avalanche(h128.low64);
+            h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
+            return h128;
         }
     }
-    /* impossible to reach */
-    XXH_ASSERT(0);
-    return 0;  /* unreachable, but some compilers complain without it */
 }
 
-XXH_FORCE_INLINE xxh_u64
-XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
+XXH_NO_INLINE XXH_PUREF XXH128_hash_t
+XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
+                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+                       XXH64_hash_t seed)
 {
-    const xxh_u8* bEnd = input + len;
-    xxh_u64 h64;
-
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
-    if (input==NULL) {
-        len=0;
-        bEnd=input=(const xxh_u8*)(size_t)32;
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
+    XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
+
+    {   XXH128_hash_t acc;
+        unsigned i;
+        acc.low64 = len * XXH_PRIME64_1;
+        acc.high64 = 0;
+        /*
+         *  We set as `i` as offset + 32. We do this so that unchanged
+         * `len` can be used as upper bound. This reaches a sweet spot
+         * where both x86 and aarch64 get simple agen and good codegen
+         * for the loop.
+         */
+        for (i = 32; i < 160; i += 32) {
+            acc = XXH128_mix32B(acc,
+                                input  + i - 32,
+                                input  + i - 16,
+                                secret + i - 32,
+                                seed);
+        }
+        acc.low64 = XXH3_avalanche(acc.low64);
+        acc.high64 = XXH3_avalanche(acc.high64);
+        /*
+         * NB: `i <= len` will duplicate the last 32-bytes if
+         * len % 32 was zero. This is an unfortunate necessity to keep
+         * the hash result stable.
+         */
+        for (i=160; i <= len; i += 32) {
+            acc = XXH128_mix32B(acc,
+                                input + i - 32,
+                                input + i - 16,
+                                secret + XXH3_MIDSIZE_STARTOFFSET + i - 160,
+                                seed);
+        }
+        /* last bytes */
+        acc = XXH128_mix32B(acc,
+                            input + len - 16,
+                            input + len - 32,
+                            secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
+                            (XXH64_hash_t)0 - seed);
+
+        {   XXH128_hash_t h128;
+            h128.low64  = acc.low64 + acc.high64;
+            h128.high64 = (acc.low64    * XXH_PRIME64_1)
+                        + (acc.high64   * XXH_PRIME64_4)
+                        + ((len - seed) * XXH_PRIME64_2);
+            h128.low64  = XXH3_avalanche(h128.low64);
+            h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
+            return h128;
+        }
     }
-#endif
+}
 
-    if (len>=32) {
-        const xxh_u8* const limit = bEnd - 32;
-        xxh_u64 v1 = seed + PRIME64_1 + PRIME64_2;
-        xxh_u64 v2 = seed + PRIME64_2;
-        xxh_u64 v3 = seed + 0;
-        xxh_u64 v4 = seed - PRIME64_1;
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
+                            const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+                            XXH3_f_accumulate f_acc,
+                            XXH3_f_scrambleAcc f_scramble)
+{
+    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
+
+    XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble);
+
+    /* converge into final hash */
+    XXH_STATIC_ASSERT(sizeof(acc) == 64);
+    XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+    {   XXH128_hash_t h128;
+        h128.low64  = XXH3_mergeAccs(acc,
+                                     secret + XXH_SECRET_MERGEACCS_START,
+                                     (xxh_u64)len * XXH_PRIME64_1);
+        h128.high64 = XXH3_mergeAccs(acc,
+                                     secret + secretSize
+                                            - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
+                                     ~((xxh_u64)len * XXH_PRIME64_2));
+        return h128;
+    }
+}
 
-        do {
-            v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
-            v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
-            v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
-            v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
-        } while (input<=limit);
+/*
+ * It's important for performance that XXH3_hashLong() is not inlined.
+ */
+XXH_NO_INLINE XXH_PUREF XXH128_hash_t
+XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
+                           XXH64_hash_t seed64,
+                           const void* XXH_RESTRICT secret, size_t secretLen)
+{
+    (void)seed64; (void)secret; (void)secretLen;
+    return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
+                                       XXH3_accumulate, XXH3_scrambleAcc);
+}
 
-        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
-        h64 = XXH64_mergeRound(h64, v1);
-        h64 = XXH64_mergeRound(h64, v2);
-        h64 = XXH64_mergeRound(h64, v3);
-        h64 = XXH64_mergeRound(h64, v4);
+/*
+ * It's important for performance to pass @p secretLen (when it's static)
+ * to the compiler, so that it can properly optimize the vectorized loop.
+ *
+ * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
+ * breaks -Og, this is XXH_NO_INLINE.
+ */
+XXH3_WITH_SECRET_INLINE XXH128_hash_t
+XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
+                              XXH64_hash_t seed64,
+                              const void* XXH_RESTRICT secret, size_t secretLen)
+{
+    (void)seed64;
+    return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
+                                       XXH3_accumulate, XXH3_scrambleAcc);
+}
 
-    } else {
-        h64  = seed + PRIME64_5;
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
+                                XXH64_hash_t seed64,
+                                XXH3_f_accumulate f_acc,
+                                XXH3_f_scrambleAcc f_scramble,
+                                XXH3_f_initCustomSecret f_initSec)
+{
+    if (seed64 == 0)
+        return XXH3_hashLong_128b_internal(input, len,
+                                           XXH3_kSecret, sizeof(XXH3_kSecret),
+                                           f_acc, f_scramble);
+    {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
+        f_initSec(secret, seed64);
+        return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
+                                           f_acc, f_scramble);
     }
+}
 
-    h64 += (xxh_u64) len;
-
-    return XXH64_finalize(h64, input, len, align);
+/*
+ * It's important for performance that XXH3_hashLong is not inlined.
+ */
+XXH_NO_INLINE XXH128_hash_t
+XXH3_hashLong_128b_withSeed(const void* input, size_t len,
+                            XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
+{
+    (void)secret; (void)secretLen;
+    return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
+                XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
 }
 
+typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
+                                            XXH64_hash_t, const void* XXH_RESTRICT, size_t);
 
-XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_128bits_internal(const void* input, size_t len,
+                      XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
+                      XXH3_hashLong128_f f_hl128)
 {
-#if 0
-    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
-    XXH64_state_t state;
-    XXH64_reset(&state, seed);
-    XXH64_update(&state, (const xxh_u8*)input, len);
-    return XXH64_digest(&state);
+    XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
+    /*
+     * If an action is to be taken if `secret` conditions are not respected,
+     * it should be done here.
+     * For now, it's a contract pre-condition.
+     * Adding a check and a branch here would cost performance at every hash.
+     */
+    if (len <= 16)
+        return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
+    if (len <= 128)
+        return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
+    if (len <= XXH3_MIDSIZE_MAX)
+        return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
+    return f_hl128(input, len, seed64, secret, secretLen);
+}
 
-#else
 
-    if (XXH_FORCE_ALIGN_CHECK) {
-        if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
-            return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
-    }   }
+/* ===   Public XXH128 API   === */
 
-    return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len)
+{
+    return XXH3_128bits_internal(input, len, 0,
+                                 XXH3_kSecret, sizeof(XXH3_kSecret),
+                                 XXH3_hashLong_128b_default);
+}
 
-#endif
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize)
+{
+    return XXH3_128bits_internal(input, len, 0,
+                                 (const xxh_u8*)secret, secretSize,
+                                 XXH3_hashLong_128b_withSecret);
 }
 
-/*******   Hash Streaming   *******/
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
+{
+    return XXH3_128bits_internal(input, len, seed,
+                                 XXH3_kSecret, sizeof(XXH3_kSecret),
+                                 XXH3_hashLong_128b_withSeed);
+}
 
-XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
 {
-    return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
+    if (len <= XXH3_MIDSIZE_MAX)
+        return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
+    return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
 }
-XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
+
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
 {
-    XXH_free(statePtr);
-    return XXH_OK;
+    return XXH3_128bits_withSeed(input, len, seed);
 }
 
-XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
+
+/* ===   XXH3 128-bit streaming   === */
+#ifndef XXH_NO_STREAM
+/*
+ * All initialization and update functions are identical to 64-bit streaming variant.
+ * The only difference is the finalization routine.
+ */
+
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
 {
-    memcpy(dstState, srcState, sizeof(*dstState));
+    return XXH3_64bits_reset(statePtr);
 }
 
-XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
 {
-    XXH64_state_t state;   /* use a local state to memcpy() in order to avoid strict-aliasing warnings */
-    memset(&state, 0, sizeof(state));
-    state.v1 = seed + PRIME64_1 + PRIME64_2;
-    state.v2 = seed + PRIME64_2;
-    state.v3 = seed + 0;
-    state.v4 = seed - PRIME64_1;
-     /* do not write into reserved64, might be removed in a future version */
-    memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
-    return XXH_OK;
+    return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
 }
 
+/*! @ingroup XXH3_family */
 XXH_PUBLIC_API XXH_errorcode
-XXH64_update (XXH64_state_t* state, const void* input, size_t len)
+XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
 {
-    if (input==NULL)
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
-        return XXH_OK;
-#else
-        return XXH_ERROR;
-#endif
+    return XXH3_64bits_reset_withSeed(statePtr, seed);
+}
 
-    {   const xxh_u8* p = (const xxh_u8*)input;
-        const xxh_u8* const bEnd = p + len;
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
+{
+    return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
+}
 
-        state->total_len += len;
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
+{
+    return XXH3_64bits_update(state, input, len);
+}
 
-        if (state->memsize + len < 32) {  /* fill in tmp buffer */
-            XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
-            state->memsize += (xxh_u32)len;
-            return XXH_OK;
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
+{
+    const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
+    if (state->totalLen > XXH3_MIDSIZE_MAX) {
+        XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
+        XXH3_digest_long(acc, state, secret);
+        XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+        {   XXH128_hash_t h128;
+            h128.low64  = XXH3_mergeAccs(acc,
+                                         secret + XXH_SECRET_MERGEACCS_START,
+                                         (xxh_u64)state->totalLen * XXH_PRIME64_1);
+            h128.high64 = XXH3_mergeAccs(acc,
+                                         secret + state->secretLimit + XXH_STRIPE_LEN
+                                                - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
+                                         ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
+            return h128;
         }
+    }
+    /* len <= XXH3_MIDSIZE_MAX : short code */
+    if (state->useSeed)
+        return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
+    return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
+                                   secret, state->secretLimit + XXH_STRIPE_LEN);
+}
+#endif /* !XXH_NO_STREAM */
+/* 128-bit utility functions */
 
-        if (state->memsize) {   /* tmp buffer is full */
-            XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
-            state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0));
-            state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1));
-            state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2));
-            state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3));
-            p += 32-state->memsize;
-            state->memsize = 0;
-        }
+#include <string.h>   /* memcmp, memcpy */
 
-        if (p+32 <= bEnd) {
-            const xxh_u8* const limit = bEnd - 32;
-            xxh_u64 v1 = state->v1;
-            xxh_u64 v2 = state->v2;
-            xxh_u64 v3 = state->v3;
-            xxh_u64 v4 = state->v4;
+/* return : 1 is equal, 0 if different */
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
+{
+    /* note : XXH128_hash_t is compact, it has no padding byte */
+    return !(memcmp(&h1, &h2, sizeof(h1)));
+}
 
-            do {
-                v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8;
-                v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8;
-                v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8;
-                v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8;
-            } while (p<=limit);
+/* This prototype is compatible with stdlib's qsort().
+ * @return : >0 if *h128_1  > *h128_2
+ *           <0 if *h128_1  < *h128_2
+ *           =0 if *h128_1 == *h128_2  */
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2)
+{
+    XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
+    XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
+    int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
+    /* note : bets that, in most cases, hash values are different */
+    if (hcmp) return hcmp;
+    return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
+}
 
-            state->v1 = v1;
-            state->v2 = v2;
-            state->v3 = v3;
-            state->v4 = v4;
-        }
 
-        if (p < bEnd) {
-            XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
-            state->memsize = (unsigned)(bEnd-p);
-        }
+/*======   Canonical representation   ======*/
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API void
+XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash)
+{
+    XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
+    if (XXH_CPU_LITTLE_ENDIAN) {
+        hash.high64 = XXH_swap64(hash.high64);
+        hash.low64  = XXH_swap64(hash.low64);
     }
-
-    return XXH_OK;
+    XXH_memcpy(dst, &hash.high64, sizeof(hash.high64));
+    XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
 }
 
-
-XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* state)
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src)
 {
-    xxh_u64 h64;
+    XXH128_hash_t h;
+    h.high64 = XXH_readBE64(src);
+    h.low64  = XXH_readBE64(src->digest + 8);
+    return h;
+}
 
-    if (state->total_len >= 32) {
-        xxh_u64 const v1 = state->v1;
-        xxh_u64 const v2 = state->v2;
-        xxh_u64 const v3 = state->v3;
-        xxh_u64 const v4 = state->v4;
 
-        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
-        h64 = XXH64_mergeRound(h64, v1);
-        h64 = XXH64_mergeRound(h64, v2);
-        h64 = XXH64_mergeRound(h64, v3);
-        h64 = XXH64_mergeRound(h64, v4);
-    } else {
-        h64  = state->v3 /*seed*/ + PRIME64_5;
-    }
 
-    h64 += (xxh_u64) state->total_len;
+/* ==========================================
+ * Secret generators
+ * ==========================================
+ */
+#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
 
-    return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
+XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128)
+{
+    XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 );
+    XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
 }
 
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize)
+{
+#if (XXH_DEBUGLEVEL >= 1)
+    XXH_ASSERT(secretBuffer != NULL);
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+#else
+    /* production mode, assert() are disabled */
+    if (secretBuffer == NULL) return XXH_ERROR;
+    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
+#endif
 
-/******* Canonical representation   *******/
+    if (customSeedSize == 0) {
+        customSeed = XXH3_kSecret;
+        customSeedSize = XXH_SECRET_DEFAULT_SIZE;
+    }
+#if (XXH_DEBUGLEVEL >= 1)
+    XXH_ASSERT(customSeed != NULL);
+#else
+    if (customSeed == NULL) return XXH_ERROR;
+#endif
 
-XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
-{
-    XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
-    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
-    memcpy(dst, &hash, sizeof(*dst));
+    /* Fill secretBuffer with a copy of customSeed - repeat as needed */
+    {   size_t pos = 0;
+        while (pos < secretSize) {
+            size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize);
+            memcpy((char*)secretBuffer + pos, customSeed, toCopy);
+            pos += toCopy;
+    }   }
+
+    {   size_t const nbSeg16 = secretSize / 16;
+        size_t n;
+        XXH128_canonical_t scrambler;
+        XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
+        for (n=0; n<nbSeg16; n++) {
+            XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n);
+            XXH3_combine16((char*)secretBuffer + n*16, h128);
+        }
+        /* last segment */
+        XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler));
+    }
+    return XXH_OK;
 }
 
-XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API void
+XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed)
 {
-    return XXH_readBE64(src);
+    XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
+    XXH3_initCustomSecret(secret, seed);
+    XXH_ASSERT(secretBuffer != NULL);
+    memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE);
 }
 
 
 
-/* *********************************************************************
-*  XXH3
-*  New generation hash designed for speed on small keys and vectorization
-************************************************************************ */
-
-#include "xxh3.h"
-
+/* Pop our optimization override from above */
+#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
+  && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
+  && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
+#  pragma GCC pop_options
+#endif
 
 #endif  /* XXH_NO_LONG_LONG */
 
+#endif  /* XXH_NO_XXH3 */
 
+/*!
+ * @}
+ */
 #endif  /* XXH_IMPLEMENTATION */
 
 
 #if defined (__cplusplus)
-}
+} /* extern "C" */
 #endif