|
@@ -1,7 +1,7 @@
|
|
|
/*
|
|
|
* xxHash - Extremely Fast Hash algorithm
|
|
|
* Header File
|
|
|
- * Copyright (C) 2012-2020 Yann Collet
|
|
|
+ * Copyright (C) 2012-2023 Yann Collet
|
|
|
*
|
|
|
* BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
|
|
|
*
|
|
@@ -33,43 +33,213 @@
|
|
|
* - xxHash source repository: https://github.com/Cyan4973/xxHash
|
|
|
*/
|
|
|
|
|
|
-/* TODO: update */
|
|
|
-/* Notice extracted from xxHash homepage:
|
|
|
-
|
|
|
-xxHash is an extremely fast hash algorithm, running at RAM speed limits.
|
|
|
-It also successfully passes all tests from the SMHasher suite.
|
|
|
-
|
|
|
-Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
|
|
|
-
|
|
|
-Name Speed Q.Score Author
|
|
|
-xxHash 5.4 GB/s 10
|
|
|
-CrapWow 3.2 GB/s 2 Andrew
|
|
|
-MumurHash 3a 2.7 GB/s 10 Austin Appleby
|
|
|
-SpookyHash 2.0 GB/s 10 Bob Jenkins
|
|
|
-SBox 1.4 GB/s 9 Bret Mulvey
|
|
|
-Lookup3 1.2 GB/s 9 Bob Jenkins
|
|
|
-SuperFastHash 1.2 GB/s 1 Paul Hsieh
|
|
|
-CityHash64 1.05 GB/s 10 Pike & Alakuijala
|
|
|
-FNV 0.55 GB/s 5 Fowler, Noll, Vo
|
|
|
-CRC32 0.43 GB/s 9
|
|
|
-MD5-32 0.33 GB/s 10 Ronald L. Rivest
|
|
|
-SHA1-32 0.28 GB/s 10
|
|
|
-
|
|
|
-Q.Score is a measure of quality of the hash function.
|
|
|
-It depends on successfully passing SMHasher test set.
|
|
|
-10 is a perfect score.
|
|
|
-
|
|
|
-Note: SMHasher's CRC32 implementation is not the fastest one.
|
|
|
-Other speed-oriented implementations can be faster,
|
|
|
-especially in combination with PCLMUL instruction:
|
|
|
-https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
|
|
|
-
|
|
|
-A 64-bit version, named XXH64, is available since r35.
|
|
|
-It offers much better speed, but for 64-bit applications only.
|
|
|
-Name Speed on 64 bits Speed on 32 bits
|
|
|
-XXH64 13.8 GB/s 1.9 GB/s
|
|
|
-XXH32 6.8 GB/s 6.0 GB/s
|
|
|
-*/
|
|
|
+/*!
|
|
|
+ * @mainpage xxHash
|
|
|
+ *
|
|
|
+ * xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed
|
|
|
+ * limits.
|
|
|
+ *
|
|
|
+ * It is proposed in four flavors, in three families:
|
|
|
+ * 1. @ref XXH32_family
|
|
|
+ * - Classic 32-bit hash function. Simple, compact, and runs on almost all
|
|
|
+ * 32-bit and 64-bit systems.
|
|
|
+ * 2. @ref XXH64_family
|
|
|
+ * - Classic 64-bit adaptation of XXH32. Just as simple, and runs well on most
|
|
|
+ * 64-bit systems (but _not_ 32-bit systems).
|
|
|
+ * 3. @ref XXH3_family
|
|
|
+ * - Modern 64-bit and 128-bit hash function family which features improved
|
|
|
+ * strength and performance across the board, especially on smaller data.
|
|
|
+ * It benefits greatly from SIMD and 64-bit without requiring it.
|
|
|
+ *
|
|
|
+ * Benchmarks
|
|
|
+ * ---
|
|
|
+ * The reference system uses an Intel i7-9700K CPU, and runs Ubuntu x64 20.04.
|
|
|
+ * The open source benchmark program is compiled with clang v10.0 using -O3 flag.
|
|
|
+ *
|
|
|
+ * | Hash Name | ISA ext | Width | Large Data Speed | Small Data Velocity |
|
|
|
+ * | -------------------- | ------- | ----: | ---------------: | ------------------: |
|
|
|
+ * | XXH3_64bits() | @b AVX2 | 64 | 59.4 GB/s | 133.1 |
|
|
|
+ * | MeowHash | AES-NI | 128 | 58.2 GB/s | 52.5 |
|
|
|
+ * | XXH3_128bits() | @b AVX2 | 128 | 57.9 GB/s | 118.1 |
|
|
|
+ * | CLHash | PCLMUL | 64 | 37.1 GB/s | 58.1 |
|
|
|
+ * | XXH3_64bits() | @b SSE2 | 64 | 31.5 GB/s | 133.1 |
|
|
|
+ * | XXH3_128bits() | @b SSE2 | 128 | 29.6 GB/s | 118.1 |
|
|
|
+ * | RAM sequential read | | N/A | 28.0 GB/s | N/A |
|
|
|
+ * | ahash | AES-NI | 64 | 22.5 GB/s | 107.2 |
|
|
|
+ * | City64 | | 64 | 22.0 GB/s | 76.6 |
|
|
|
+ * | T1ha2 | | 64 | 22.0 GB/s | 99.0 |
|
|
|
+ * | City128 | | 128 | 21.7 GB/s | 57.7 |
|
|
|
+ * | FarmHash | AES-NI | 64 | 21.3 GB/s | 71.9 |
|
|
|
+ * | XXH64() | | 64 | 19.4 GB/s | 71.0 |
|
|
|
+ * | SpookyHash | | 64 | 19.3 GB/s | 53.2 |
|
|
|
+ * | Mum | | 64 | 18.0 GB/s | 67.0 |
|
|
|
+ * | CRC32C | SSE4.2 | 32 | 13.0 GB/s | 57.9 |
|
|
|
+ * | XXH32() | | 32 | 9.7 GB/s | 71.9 |
|
|
|
+ * | City32 | | 32 | 9.1 GB/s | 66.0 |
|
|
|
+ * | Blake3* | @b AVX2 | 256 | 4.4 GB/s | 8.1 |
|
|
|
+ * | Murmur3 | | 32 | 3.9 GB/s | 56.1 |
|
|
|
+ * | SipHash* | | 64 | 3.0 GB/s | 43.2 |
|
|
|
+ * | Blake3* | @b SSE2 | 256 | 2.4 GB/s | 8.1 |
|
|
|
+ * | HighwayHash | | 64 | 1.4 GB/s | 6.0 |
|
|
|
+ * | FNV64 | | 64 | 1.2 GB/s | 62.7 |
|
|
|
+ * | Blake2* | | 256 | 1.1 GB/s | 5.1 |
|
|
|
+ * | SHA1* | | 160 | 0.8 GB/s | 5.6 |
|
|
|
+ * | MD5* | | 128 | 0.6 GB/s | 7.8 |
|
|
|
+ * @note
|
|
|
+ * - Hashes which require a specific ISA extension are noted. SSE2 is also noted,
|
|
|
+ * even though it is mandatory on x64.
|
|
|
+ * - Hashes with an asterisk are cryptographic. Note that MD5 is non-cryptographic
|
|
|
+ * by modern standards.
|
|
|
+ * - Small data velocity is a rough average of algorithm's efficiency for small
|
|
|
+ * data. For more accurate information, see the wiki.
|
|
|
+ * - More benchmarks and strength tests are found on the wiki:
|
|
|
+ * https://github.com/Cyan4973/xxHash/wiki
|
|
|
+ *
|
|
|
+ * Usage
|
|
|
+ * ------
|
|
|
+ * All xxHash variants use a similar API. Changing the algorithm is a trivial
|
|
|
+ * substitution.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * For functions which take an input and length parameter, the following
|
|
|
+ * requirements are assumed:
|
|
|
+ * - The range from [`input`, `input + length`) is valid, readable memory.
|
|
|
+ * - The only exception is if the `length` is `0`, `input` may be `NULL`.
|
|
|
+ * - For C++, the objects must have the *TriviallyCopyable* property, as the
|
|
|
+ * functions access bytes directly as if it was an array of `unsigned char`.
|
|
|
+ *
|
|
|
+ * @anchor single_shot_example
|
|
|
+ * **Single Shot**
|
|
|
+ *
|
|
|
+ * These functions are stateless functions which hash a contiguous block of memory,
|
|
|
+ * immediately returning the result. They are the easiest and usually the fastest
|
|
|
+ * option.
|
|
|
+ *
|
|
|
+ * XXH32(), XXH64(), XXH3_64bits(), XXH3_128bits()
|
|
|
+ *
|
|
|
+ * @code{.c}
|
|
|
+ * #include <string.h>
|
|
|
+ * #include "xxhash.h"
|
|
|
+ *
|
|
|
+ * // Example for a function which hashes a null terminated string with XXH32().
|
|
|
+ * XXH32_hash_t hash_string(const char* string, XXH32_hash_t seed)
|
|
|
+ * {
|
|
|
+ * // NULL pointers are only valid if the length is zero
|
|
|
+ * size_t length = (string == NULL) ? 0 : strlen(string);
|
|
|
+ * return XXH32(string, length, seed);
|
|
|
+ * }
|
|
|
+ * @endcode
|
|
|
+ *
|
|
|
+ *
|
|
|
+ * @anchor streaming_example
|
|
|
+ * **Streaming**
|
|
|
+ *
|
|
|
+ * These groups of functions allow incremental hashing of unknown size, even
|
|
|
+ * more than what would fit in a size_t.
|
|
|
+ *
|
|
|
+ * XXH32_reset(), XXH64_reset(), XXH3_64bits_reset(), XXH3_128bits_reset()
|
|
|
+ *
|
|
|
+ * @code{.c}
|
|
|
+ * #include <stdio.h>
|
|
|
+ * #include <assert.h>
|
|
|
+ * #include "xxhash.h"
|
|
|
+ * // Example for a function which hashes a FILE incrementally with XXH3_64bits().
|
|
|
+ * XXH64_hash_t hashFile(FILE* f)
|
|
|
+ * {
|
|
|
+ * // Allocate a state struct. Do not just use malloc() or new.
|
|
|
+ * XXH3_state_t* state = XXH3_createState();
|
|
|
+ * assert(state != NULL && "Out of memory!");
|
|
|
+ * // Reset the state to start a new hashing session.
|
|
|
+ * XXH3_64bits_reset(state);
|
|
|
+ * char buffer[4096];
|
|
|
+ * size_t count;
|
|
|
+ * // Read the file in chunks
|
|
|
+ * while ((count = fread(buffer, 1, sizeof(buffer), f)) != 0) {
|
|
|
+ * // Run update() as many times as necessary to process the data
|
|
|
+ * XXH3_64bits_update(state, buffer, count);
|
|
|
+ * }
|
|
|
+ * // Retrieve the finalized hash. This will not change the state.
|
|
|
+ * XXH64_hash_t result = XXH3_64bits_digest(state);
|
|
|
+ * // Free the state. Do not use free().
|
|
|
+ * XXH3_freeState(state);
|
|
|
+ * return result;
|
|
|
+ * }
|
|
|
+ * @endcode
|
|
|
+ *
|
|
|
+ * Streaming functions generate the xxHash value from an incremental input.
|
|
|
+ * This method is slower than single-call functions, due to state management.
|
|
|
+ * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
|
|
|
+ *
|
|
|
+ * An XXH state must first be allocated using `XXH*_createState()`.
|
|
|
+ *
|
|
|
+ * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
|
|
|
+ *
|
|
|
+ * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
|
|
|
+ *
|
|
|
+ * The function returns an error code, with 0 meaning OK, and any other value
|
|
|
+ * meaning there is an error.
|
|
|
+ *
|
|
|
+ * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
|
|
|
+ * This function returns the nn-bits hash as an int or long long.
|
|
|
+ *
|
|
|
+ * It's still possible to continue inserting input into the hash state after a
|
|
|
+ * digest, and generate new hash values later on by invoking `XXH*_digest()`.
|
|
|
+ *
|
|
|
+ * When done, release the state using `XXH*_freeState()`.
|
|
|
+ *
|
|
|
+ *
|
|
|
+ * @anchor canonical_representation_example
|
|
|
+ * **Canonical Representation**
|
|
|
+ *
|
|
|
+ * The default return values from XXH functions are unsigned 32, 64 and 128 bit
|
|
|
+ * integers.
|
|
|
+ * This the simplest and fastest format for further post-processing.
|
|
|
+ *
|
|
|
+ * However, this leaves open the question of what is the order on the byte level,
|
|
|
+ * since little and big endian conventions will store the same number differently.
|
|
|
+ *
|
|
|
+ * The canonical representation settles this issue by mandating big-endian
|
|
|
+ * convention, the same convention as human-readable numbers (large digits first).
|
|
|
+ *
|
|
|
+ * When writing hash values to storage, sending them over a network, or printing
|
|
|
+ * them, it's highly recommended to use the canonical representation to ensure
|
|
|
+ * portability across a wider range of systems, present and future.
|
|
|
+ *
|
|
|
+ * The following functions allow transformation of hash values to and from
|
|
|
+ * canonical format.
|
|
|
+ *
|
|
|
+ * XXH32_canonicalFromHash(), XXH32_hashFromCanonical(),
|
|
|
+ * XXH64_canonicalFromHash(), XXH64_hashFromCanonical(),
|
|
|
+ * XXH128_canonicalFromHash(), XXH128_hashFromCanonical(),
|
|
|
+ *
|
|
|
+ * @code{.c}
|
|
|
+ * #include <stdio.h>
|
|
|
+ * #include "xxhash.h"
|
|
|
+ *
|
|
|
+ * // Example for a function which prints XXH32_hash_t in human readable format
|
|
|
+ * void printXxh32(XXH32_hash_t hash)
|
|
|
+ * {
|
|
|
+ * XXH32_canonical_t cano;
|
|
|
+ * XXH32_canonicalFromHash(&cano, hash);
|
|
|
+ * size_t i;
|
|
|
+ * for(i = 0; i < sizeof(cano.digest); ++i) {
|
|
|
+ * printf("%02x", cano.digest[i]);
|
|
|
+ * }
|
|
|
+ * printf("\n");
|
|
|
+ * }
|
|
|
+ *
|
|
|
+ * // Example for a function which converts XXH32_canonical_t to XXH32_hash_t
|
|
|
+ * XXH32_hash_t convertCanonicalToXxh32(XXH32_canonical_t cano)
|
|
|
+ * {
|
|
|
+ * XXH32_hash_t hash = XXH32_hashFromCanonical(&cano);
|
|
|
+ * return hash;
|
|
|
+ * }
|
|
|
+ * @endcode
|
|
|
+ *
|
|
|
+ *
|
|
|
+ * @file xxhash.h
|
|
|
+ * xxHash prototypes and implementation
|
|
|
+ */
|
|
|
|
|
|
#if defined (__cplusplus)
|
|
|
extern "C" {
|
|
@@ -79,21 +249,80 @@ extern "C" {
|
|
|
* INLINE mode
|
|
|
******************************/
|
|
|
/*!
|
|
|
- * XXH_INLINE_ALL (and XXH_PRIVATE_API)
|
|
|
+ * @defgroup public Public API
|
|
|
+ * Contains details on the public xxHash functions.
|
|
|
+ * @{
|
|
|
+ */
|
|
|
+#ifdef XXH_DOXYGEN
|
|
|
+/*!
|
|
|
+ * @brief Gives access to internal state declaration, required for static allocation.
|
|
|
+ *
|
|
|
+ * Incompatible with dynamic linking, due to risks of ABI changes.
|
|
|
+ *
|
|
|
+ * Usage:
|
|
|
+ * @code{.c}
|
|
|
+ * #define XXH_STATIC_LINKING_ONLY
|
|
|
+ * #include "xxhash.h"
|
|
|
+ * @endcode
|
|
|
+ */
|
|
|
+# define XXH_STATIC_LINKING_ONLY
|
|
|
+/* Do not undef XXH_STATIC_LINKING_ONLY for Doxygen */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Gives access to internal definitions.
|
|
|
+ *
|
|
|
+ * Usage:
|
|
|
+ * @code{.c}
|
|
|
+ * #define XXH_STATIC_LINKING_ONLY
|
|
|
+ * #define XXH_IMPLEMENTATION
|
|
|
+ * #include "xxhash.h"
|
|
|
+ * @endcode
|
|
|
+ */
|
|
|
+# define XXH_IMPLEMENTATION
|
|
|
+/* Do not undef XXH_IMPLEMENTATION for Doxygen */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Exposes the implementation and marks all functions as `inline`.
|
|
|
+ *
|
|
|
* Use these build macros to inline xxhash into the target unit.
|
|
|
* Inlining improves performance on small inputs, especially when the length is
|
|
|
* expressed as a compile-time constant:
|
|
|
*
|
|
|
- * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
|
|
|
+ * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
|
|
|
*
|
|
|
* It also keeps xxHash symbols private to the unit, so they are not exported.
|
|
|
*
|
|
|
* Usage:
|
|
|
+ * @code{.c}
|
|
|
* #define XXH_INLINE_ALL
|
|
|
* #include "xxhash.h"
|
|
|
- *
|
|
|
+ * @endcode
|
|
|
* Do not compile and link xxhash.o as a separate object, as it is not useful.
|
|
|
*/
|
|
|
+# define XXH_INLINE_ALL
|
|
|
+# undef XXH_INLINE_ALL
|
|
|
+/*!
|
|
|
+ * @brief Exposes the implementation without marking functions as inline.
|
|
|
+ */
|
|
|
+# define XXH_PRIVATE_API
|
|
|
+# undef XXH_PRIVATE_API
|
|
|
+/*!
|
|
|
+ * @brief Emulate a namespace by transparently prefixing all symbols.
|
|
|
+ *
|
|
|
+ * If you want to include _and expose_ xxHash functions from within your own
|
|
|
+ * library, but also want to avoid symbol collisions with other libraries which
|
|
|
+ * may also include xxHash, you can use @ref XXH_NAMESPACE to automatically prefix
|
|
|
+ * any public symbol from xxhash library with the value of @ref XXH_NAMESPACE
|
|
|
+ * (therefore, avoid empty or numeric values).
|
|
|
+ *
|
|
|
+ * Note that no change is required within the calling program as long as it
|
|
|
+ * includes `xxhash.h`: Regular symbol names will be automatically translated
|
|
|
+ * by this header.
|
|
|
+ */
|
|
|
+# define XXH_NAMESPACE /* YOUR NAME HERE */
|
|
|
+# undef XXH_NAMESPACE
|
|
|
+#endif
|
|
|
+
|
|
|
#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
|
|
|
&& !defined(XXH_INLINE_ALL_31684351384)
|
|
|
/* this section should be traversed only once */
|
|
@@ -104,7 +333,7 @@ extern "C" {
|
|
|
/* make all functions private */
|
|
|
# undef XXH_PUBLIC_API
|
|
|
# if defined(__GNUC__)
|
|
|
-# define XXH_PUBLIC_API static __inline __attribute__((unused))
|
|
|
+# define XXH_PUBLIC_API static __inline __attribute__((__unused__))
|
|
|
# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
|
|
# define XXH_PUBLIC_API static inline
|
|
|
# elif defined(_MSC_VER)
|
|
@@ -116,29 +345,80 @@ extern "C" {
|
|
|
|
|
|
/*
|
|
|
* This part deals with the special case where a unit wants to inline xxHash,
|
|
|
- * but "xxhash.h" has previously been included without XXH_INLINE_ALL, such
|
|
|
- * as part of some previously included *.h header file.
|
|
|
+ * but "xxhash.h" has previously been included without XXH_INLINE_ALL,
|
|
|
+ * such as part of some previously included *.h header file.
|
|
|
* Without further action, the new include would just be ignored,
|
|
|
* and functions would effectively _not_ be inlined (silent failure).
|
|
|
* The following macros solve this situation by prefixing all inlined names,
|
|
|
* avoiding naming collision with previous inclusions.
|
|
|
*/
|
|
|
-# ifdef XXH_NAMESPACE
|
|
|
-# error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported"
|
|
|
- /*
|
|
|
- * Note: Alternative: #undef all symbols (it's a pretty large list).
|
|
|
- * Without #error: it compiles, but functions are actually not inlined.
|
|
|
- */
|
|
|
-# endif
|
|
|
+ /* Before that, we unconditionally #undef all symbols,
|
|
|
+ * in case they were already defined with XXH_NAMESPACE.
|
|
|
+ * They will then be redefined for XXH_INLINE_ALL
|
|
|
+ */
|
|
|
+# undef XXH_versionNumber
|
|
|
+ /* XXH32 */
|
|
|
+# undef XXH32
|
|
|
+# undef XXH32_createState
|
|
|
+# undef XXH32_freeState
|
|
|
+# undef XXH32_reset
|
|
|
+# undef XXH32_update
|
|
|
+# undef XXH32_digest
|
|
|
+# undef XXH32_copyState
|
|
|
+# undef XXH32_canonicalFromHash
|
|
|
+# undef XXH32_hashFromCanonical
|
|
|
+ /* XXH64 */
|
|
|
+# undef XXH64
|
|
|
+# undef XXH64_createState
|
|
|
+# undef XXH64_freeState
|
|
|
+# undef XXH64_reset
|
|
|
+# undef XXH64_update
|
|
|
+# undef XXH64_digest
|
|
|
+# undef XXH64_copyState
|
|
|
+# undef XXH64_canonicalFromHash
|
|
|
+# undef XXH64_hashFromCanonical
|
|
|
+ /* XXH3_64bits */
|
|
|
+# undef XXH3_64bits
|
|
|
+# undef XXH3_64bits_withSecret
|
|
|
+# undef XXH3_64bits_withSeed
|
|
|
+# undef XXH3_64bits_withSecretandSeed
|
|
|
+# undef XXH3_createState
|
|
|
+# undef XXH3_freeState
|
|
|
+# undef XXH3_copyState
|
|
|
+# undef XXH3_64bits_reset
|
|
|
+# undef XXH3_64bits_reset_withSeed
|
|
|
+# undef XXH3_64bits_reset_withSecret
|
|
|
+# undef XXH3_64bits_update
|
|
|
+# undef XXH3_64bits_digest
|
|
|
+# undef XXH3_generateSecret
|
|
|
+ /* XXH3_128bits */
|
|
|
+# undef XXH128
|
|
|
+# undef XXH3_128bits
|
|
|
+# undef XXH3_128bits_withSeed
|
|
|
+# undef XXH3_128bits_withSecret
|
|
|
+# undef XXH3_128bits_reset
|
|
|
+# undef XXH3_128bits_reset_withSeed
|
|
|
+# undef XXH3_128bits_reset_withSecret
|
|
|
+# undef XXH3_128bits_reset_withSecretandSeed
|
|
|
+# undef XXH3_128bits_update
|
|
|
+# undef XXH3_128bits_digest
|
|
|
+# undef XXH128_isEqual
|
|
|
+# undef XXH128_cmp
|
|
|
+# undef XXH128_canonicalFromHash
|
|
|
+# undef XXH128_hashFromCanonical
|
|
|
+ /* Finally, free the namespace itself */
|
|
|
+# undef XXH_NAMESPACE
|
|
|
+
|
|
|
+ /* employ the namespace for XXH_INLINE_ALL */
|
|
|
# define XXH_NAMESPACE XXH_INLINE_
|
|
|
/*
|
|
|
- * Some identifiers (enums, type names) are not symbols, but they must
|
|
|
- * still be renamed to avoid redeclaration.
|
|
|
+ * Some identifiers (enums, type names) are not symbols,
|
|
|
+ * but they must nonetheless be renamed to avoid redeclaration.
|
|
|
* Alternative solution: do not redeclare them.
|
|
|
- * However, this requires some #ifdefs, and is a more dispersed action.
|
|
|
- * Meanwhile, renaming can be achieved in a single block
|
|
|
+ * However, this requires some #ifdefs, and has a more dispersed impact.
|
|
|
+ * Meanwhile, renaming can be achieved in a single place.
|
|
|
*/
|
|
|
-# define XXH_IPREF(Id) XXH_INLINE_ ## Id
|
|
|
+# define XXH_IPREF(Id) XXH_NAMESPACE ## Id
|
|
|
# define XXH_OK XXH_IPREF(XXH_OK)
|
|
|
# define XXH_ERROR XXH_IPREF(XXH_ERROR)
|
|
|
# define XXH_errorcode XXH_IPREF(XXH_errorcode)
|
|
@@ -157,17 +437,15 @@ extern "C" {
|
|
|
# undef XXHASH_H_STATIC_13879238742
|
|
|
#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
|
|
|
|
|
|
-
|
|
|
-
|
|
|
/* ****************************************************************
|
|
|
* Stable API
|
|
|
*****************************************************************/
|
|
|
#ifndef XXHASH_H_5627135585666179
|
|
|
#define XXHASH_H_5627135585666179 1
|
|
|
|
|
|
-/* specific declaration modes for Windows */
|
|
|
+/*! @brief Marks a global symbol. */
|
|
|
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
|
|
|
-# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
|
|
|
+# if defined(_WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
|
|
|
# ifdef XXH_EXPORT
|
|
|
# define XXH_PUBLIC_API __declspec(dllexport)
|
|
|
# elif XXH_IMPORT
|
|
@@ -178,23 +456,11 @@ extern "C" {
|
|
|
# endif
|
|
|
#endif
|
|
|
|
|
|
-/*!
|
|
|
- * XXH_NAMESPACE, aka Namespace Emulation:
|
|
|
- *
|
|
|
- * If you want to include _and expose_ xxHash functions from within your own
|
|
|
- * library, but also want to avoid symbol collisions with other libraries which
|
|
|
- * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
|
|
|
- * any public symbol from xxhash library with the value of XXH_NAMESPACE
|
|
|
- * (therefore, avoid empty or numeric values).
|
|
|
- *
|
|
|
- * Note that no change is required within the calling program as long as it
|
|
|
- * includes `xxhash.h`: Regular symbol names will be automatically translated
|
|
|
- * by this header.
|
|
|
- */
|
|
|
#ifdef XXH_NAMESPACE
|
|
|
# define XXH_CAT(A,B) A##B
|
|
|
# define XXH_NAME2(A,B) XXH_CAT(A,B)
|
|
|
# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
|
|
|
+/* XXH32 */
|
|
|
# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
|
|
|
# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
|
|
|
# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
|
|
@@ -204,6 +470,7 @@ extern "C" {
|
|
|
# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
|
|
|
# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
|
|
|
# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
|
|
|
+/* XXH64 */
|
|
|
# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
|
|
|
# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
|
|
|
# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
|
|
@@ -213,1753 +480,6609 @@ extern "C" {
|
|
|
# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
|
|
|
# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
|
|
|
# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
|
|
|
+/* XXH3_64bits */
|
|
|
+# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
|
|
|
+# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
|
|
|
+# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
|
|
|
+# define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed)
|
|
|
+# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
|
|
|
+# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
|
|
|
+# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
|
|
|
+# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
|
|
|
+# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
|
|
|
+# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
|
|
|
+# define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed)
|
|
|
+# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
|
|
|
+# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
|
|
|
+# define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
|
|
|
+# define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed)
|
|
|
+/* XXH3_128bits */
|
|
|
+# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
|
|
|
+# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
|
|
|
+# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
|
|
|
+# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
|
|
|
+# define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed)
|
|
|
+# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
|
|
|
+# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
|
|
|
+# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
|
|
|
+# define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed)
|
|
|
+# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
|
|
|
+# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
|
|
|
+# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
|
|
|
+# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
|
|
|
+# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
|
|
|
+# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
|
|
|
+#endif
|
|
|
+
|
|
|
+
|
|
|
+/* *************************************
|
|
|
+* Compiler specifics
|
|
|
+***************************************/
|
|
|
+
|
|
|
+/* specific declaration modes for Windows */
|
|
|
+#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
|
|
|
+# if defined(_WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
|
|
|
+# ifdef XXH_EXPORT
|
|
|
+# define XXH_PUBLIC_API __declspec(dllexport)
|
|
|
+# elif XXH_IMPORT
|
|
|
+# define XXH_PUBLIC_API __declspec(dllimport)
|
|
|
+# endif
|
|
|
+# else
|
|
|
+# define XXH_PUBLIC_API /* do nothing */
|
|
|
+# endif
|
|
|
#endif
|
|
|
|
|
|
+#if defined (__GNUC__)
|
|
|
+# define XXH_CONSTF __attribute__((__const__))
|
|
|
+# define XXH_PUREF __attribute__((__pure__))
|
|
|
+# define XXH_MALLOCF __attribute__((__malloc__))
|
|
|
+#else
|
|
|
+# define XXH_CONSTF /* disable */
|
|
|
+# define XXH_PUREF
|
|
|
+# define XXH_MALLOCF
|
|
|
+#endif
|
|
|
|
|
|
/* *************************************
|
|
|
* Version
|
|
|
***************************************/
|
|
|
#define XXH_VERSION_MAJOR 0
|
|
|
-#define XXH_VERSION_MINOR 7
|
|
|
-#define XXH_VERSION_RELEASE 4
|
|
|
+#define XXH_VERSION_MINOR 8
|
|
|
+#define XXH_VERSION_RELEASE 3
|
|
|
+/*! @brief Version number, encoded as two digits each */
|
|
|
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
|
|
|
-XXH_PUBLIC_API unsigned XXH_versionNumber (void);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Obtains the xxHash version.
|
|
|
+ *
|
|
|
+ * This is mostly useful when xxHash is compiled as a shared library,
|
|
|
+ * since the returned value comes from the library, as opposed to header file.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_VERSION_NUMBER of the invoked library.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_CONSTF unsigned XXH_versionNumber (void);
|
|
|
|
|
|
|
|
|
/* ****************************
|
|
|
-* Definitions
|
|
|
+* Common basic types
|
|
|
******************************/
|
|
|
#include <stddef.h> /* size_t */
|
|
|
-typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
|
|
|
+/*!
|
|
|
+ * @brief Exit code for the streaming API.
|
|
|
+ */
|
|
|
+typedef enum {
|
|
|
+ XXH_OK = 0, /*!< OK */
|
|
|
+ XXH_ERROR /*!< Error */
|
|
|
+} XXH_errorcode;
|
|
|
|
|
|
|
|
|
/*-**********************************************************************
|
|
|
* 32-bit hash
|
|
|
************************************************************************/
|
|
|
-#if !defined (__VMS) \
|
|
|
+#if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
|
|
|
+/*!
|
|
|
+ * @brief An unsigned 32-bit integer.
|
|
|
+ *
|
|
|
+ * Not necessarily defined to `uint32_t` but functionally equivalent.
|
|
|
+ */
|
|
|
+typedef uint32_t XXH32_hash_t;
|
|
|
+
|
|
|
+#elif !defined (__VMS) \
|
|
|
&& (defined (__cplusplus) \
|
|
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
|
-# include <stdint.h>
|
|
|
+# ifdef _AIX
|
|
|
+# include <inttypes.h>
|
|
|
+# else
|
|
|
+# include <stdint.h>
|
|
|
+# endif
|
|
|
typedef uint32_t XXH32_hash_t;
|
|
|
+
|
|
|
#else
|
|
|
# include <limits.h>
|
|
|
# if UINT_MAX == 0xFFFFFFFFUL
|
|
|
typedef unsigned int XXH32_hash_t;
|
|
|
+# elif ULONG_MAX == 0xFFFFFFFFUL
|
|
|
+ typedef unsigned long XXH32_hash_t;
|
|
|
# else
|
|
|
-# if ULONG_MAX == 0xFFFFFFFFUL
|
|
|
- typedef unsigned long XXH32_hash_t;
|
|
|
-# else
|
|
|
-# error "unsupported platform: need a 32-bit type"
|
|
|
-# endif
|
|
|
+# error "unsupported platform: need a 32-bit type"
|
|
|
# endif
|
|
|
#endif
|
|
|
|
|
|
/*!
|
|
|
- * XXH32():
|
|
|
- * Calculate the 32-bit hash of sequence "length" bytes stored at memory address "input".
|
|
|
- * The memory between input & input+length must be valid (allocated and read-accessible).
|
|
|
- * "seed" can be used to alter the result predictably.
|
|
|
- * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
|
|
|
+ * @}
|
|
|
+ *
|
|
|
+ * @defgroup XXH32_family XXH32 family
|
|
|
+ * @ingroup public
|
|
|
+ * Contains functions used in the classic 32-bit xxHash algorithm.
|
|
|
*
|
|
|
- * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems,
|
|
|
- * and offers true 64/128 bit hash results. It provides a superior level of
|
|
|
- * dispersion, and greatly reduces the risks of collisions.
|
|
|
+ * @note
|
|
|
+ * XXH32 is useful for older platforms, with no or poor 64-bit performance.
|
|
|
+ * Note that the @ref XXH3_family provides competitive speed for both 32-bit
|
|
|
+ * and 64-bit systems, and offers true 64/128 bit hash results.
|
|
|
+ *
|
|
|
+ * @see @ref XXH64_family, @ref XXH3_family : Other xxHash families
|
|
|
+ * @see @ref XXH32_impl for implementation details
|
|
|
+ * @{
|
|
|
*/
|
|
|
-XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
|
|
|
|
|
|
-/******* Streaming *******/
|
|
|
+/*!
|
|
|
+ * @brief Calculates the 32-bit hash of @p input using xxHash32.
|
|
|
+ *
|
|
|
+ * @param input The block of data to be hashed, at least @p length bytes in size.
|
|
|
+ * @param length The length of @p input, in bytes.
|
|
|
+ * @param seed The 32-bit seed to alter the hash's output predictably.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * The memory between @p input and @p input + @p length must be valid,
|
|
|
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
|
|
|
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
|
|
|
+ *
|
|
|
+ * @return The calculated 32-bit xxHash32 value.
|
|
|
+ *
|
|
|
+ * @see @ref single_shot_example "Single Shot Example" for an example.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
|
|
|
|
|
|
-/*
|
|
|
- * Streaming functions generate the xxHash value from an incrememtal input.
|
|
|
- * This method is slower than single-call functions, due to state management.
|
|
|
- * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
|
|
|
+#ifndef XXH_NO_STREAM
|
|
|
+/*!
|
|
|
+ * @typedef struct XXH32_state_s XXH32_state_t
|
|
|
+ * @brief The opaque state struct for the XXH32 streaming API.
|
|
|
*
|
|
|
- * An XXH state must first be allocated using `XXH*_createState()`.
|
|
|
+ * @see XXH32_state_s for details.
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
+typedef struct XXH32_state_s XXH32_state_t;
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Allocates an @ref XXH32_state_t.
|
|
|
*
|
|
|
- * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
|
|
|
+ * @return An allocated pointer of @ref XXH32_state_t on success.
|
|
|
+ * @return `NULL` on failure.
|
|
|
*
|
|
|
- * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
|
|
|
+ * @note Must be freed with XXH32_freeState().
|
|
|
*
|
|
|
- * The function returns an error code, with 0 meaning OK, and any other value
|
|
|
- * meaning there is an error.
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void);
|
|
|
+/*!
|
|
|
+ * @brief Frees an @ref XXH32_state_t.
|
|
|
*
|
|
|
- * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
|
|
|
- * This function returns the nn-bits hash as an int or long long.
|
|
|
+ * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
|
|
|
*
|
|
|
- * It's still possible to continue inserting input into the hash state after a
|
|
|
- * digest, and generate new hash values later on by invoking `XXH*_digest()`.
|
|
|
+ * @return @ref XXH_OK.
|
|
|
+ *
|
|
|
+ * @note @p statePtr must be allocated with XXH32_createState().
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
*
|
|
|
- * When done, release the state using `XXH*_freeState()`.
|
|
|
*/
|
|
|
-
|
|
|
-typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */
|
|
|
-XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
|
|
|
+/*!
|
|
|
+ * @brief Copies one @ref XXH32_state_t to another.
|
|
|
+ *
|
|
|
+ * @param dst_state The state to copy to.
|
|
|
+ * @param src_state The state to copy from.
|
|
|
+ * @pre
|
|
|
+ * @p dst_state and @p src_state must not be `NULL` and must not overlap.
|
|
|
+ */
|
|
|
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
|
|
|
|
|
|
+/*!
|
|
|
+ * @brief Resets an @ref XXH32_state_t to begin a new hash.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to reset.
|
|
|
+ * @param seed The 32-bit seed to alter the hash result predictably.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * @note This function resets and seeds a state. Call it before @ref XXH32_update().
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed);
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
|
|
|
-XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
|
|
|
|
|
|
-/******* Canonical representation *******/
|
|
|
+/*!
|
|
|
+ * @brief Consumes a block of @p input to an @ref XXH32_state_t.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to update.
|
|
|
+ * @param input The block of data to be hashed, at least @p length bytes in size.
|
|
|
+ * @param length The length of @p input, in bytes.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ * @pre
|
|
|
+ * The memory between @p input and @p input + @p length must be valid,
|
|
|
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
|
|
|
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * @note Call this to incrementally consume blocks of data.
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
|
|
|
|
|
|
-/*
|
|
|
- * The default return values from XXH functions are unsigned 32 and 64 bit
|
|
|
- * integers.
|
|
|
- * This the simplest and fastest format for further post-processing.
|
|
|
+/*!
|
|
|
+ * @brief Returns the calculated hash value from an @ref XXH32_state_t.
|
|
|
*
|
|
|
- * However, this leaves open the question of what is the order on the byte level,
|
|
|
- * since little and big endian conventions will store the same number differently.
|
|
|
+ * @param statePtr The state struct to calculate the hash from.
|
|
|
*
|
|
|
- * The canonical representation settles this issue by mandating big-endian
|
|
|
- * convention, the same convention as human-readable numbers (large digits first).
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
*
|
|
|
- * When writing hash values to storage, sending them over a network, or printing
|
|
|
- * them, it's highly recommended to use the canonical representation to ensure
|
|
|
- * portability across a wider range of systems, present and future.
|
|
|
+ * @return The calculated 32-bit xxHash32 value from that state.
|
|
|
*
|
|
|
- * The following functions allow transformation of hash values to and from
|
|
|
- * canonical format.
|
|
|
+ * @note
|
|
|
+ * Calling XXH32_digest() will not affect @p statePtr, so you can update,
|
|
|
+ * digest, and update again.
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
*/
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
|
|
|
+#endif /* !XXH_NO_STREAM */
|
|
|
|
|
|
-typedef struct { unsigned char digest[4]; } XXH32_canonical_t;
|
|
|
-XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
|
|
|
-XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
|
|
|
+/******* Canonical representation *******/
|
|
|
|
|
|
+/*!
|
|
|
+ * @brief Canonical (big endian) representation of @ref XXH32_hash_t.
|
|
|
+ */
|
|
|
+typedef struct {
|
|
|
+ unsigned char digest[4]; /*!< Hash bytes, big endian */
|
|
|
+} XXH32_canonical_t;
|
|
|
|
|
|
-#ifndef XXH_NO_LONG_LONG
|
|
|
-/*-**********************************************************************
|
|
|
-* 64-bit hash
|
|
|
-************************************************************************/
|
|
|
-#if !defined (__VMS) \
|
|
|
- && (defined (__cplusplus) \
|
|
|
- || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
|
-# include <stdint.h>
|
|
|
- typedef uint64_t XXH64_hash_t;
|
|
|
-#else
|
|
|
- /* the following type must have a width of 64-bit */
|
|
|
- typedef unsigned long long XXH64_hash_t;
|
|
|
-#endif
|
|
|
+/*!
|
|
|
+ * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
|
|
|
+ *
|
|
|
+ * @param dst The @ref XXH32_canonical_t pointer to be stored to.
|
|
|
+ * @param hash The @ref XXH32_hash_t to be converted.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p dst must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @see @ref canonical_representation_example "Canonical Representation Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
|
|
|
|
|
|
/*!
|
|
|
- * XXH64():
|
|
|
- * Returns the 64-bit hash of sequence of length @length stored at memory
|
|
|
- * address @input.
|
|
|
- * @seed can be used to alter the result predictably.
|
|
|
+ * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
|
|
|
+ *
|
|
|
+ * @param src The @ref XXH32_canonical_t to convert.
|
|
|
*
|
|
|
- * This function usually runs faster on 64-bit systems, but slower on 32-bit
|
|
|
- * systems (see benchmark).
|
|
|
+ * @pre
|
|
|
+ * @p src must not be `NULL`.
|
|
|
*
|
|
|
- * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems,
|
|
|
- * and offers true 64/128 bit hash results. It provides a superior level of
|
|
|
- * dispersion, and greatly reduces the risks of collisions.
|
|
|
+ * @return The converted hash.
|
|
|
+ *
|
|
|
+ * @see @ref canonical_representation_example "Canonical Representation Example"
|
|
|
*/
|
|
|
-XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, XXH64_hash_t seed);
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
|
|
|
|
|
|
-/******* Streaming *******/
|
|
|
+
|
|
|
+/*! @cond Doxygen ignores this part */
|
|
|
+#ifdef __has_attribute
|
|
|
+# define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
|
|
|
+#else
|
|
|
+# define XXH_HAS_ATTRIBUTE(x) 0
|
|
|
+#endif
|
|
|
+/*! @endcond */
|
|
|
+
|
|
|
+/*! @cond Doxygen ignores this part */
|
|
|
+/*
|
|
|
+ * C23 __STDC_VERSION__ number hasn't been specified yet. For now
|
|
|
+ * leave as `201711L` (C17 + 1).
|
|
|
+ * TODO: Update to correct value when its been specified.
|
|
|
+ */
|
|
|
+#define XXH_C23_VN 201711L
|
|
|
+/*! @endcond */
|
|
|
+
|
|
|
+/*! @cond Doxygen ignores this part */
|
|
|
+/* C-language Attributes are added in C23. */
|
|
|
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) && defined(__has_c_attribute)
|
|
|
+# define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
|
|
|
+#else
|
|
|
+# define XXH_HAS_C_ATTRIBUTE(x) 0
|
|
|
+#endif
|
|
|
+/*! @endcond */
|
|
|
+
|
|
|
+/*! @cond Doxygen ignores this part */
|
|
|
+#if defined(__cplusplus) && defined(__has_cpp_attribute)
|
|
|
+# define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
|
|
|
+#else
|
|
|
+# define XXH_HAS_CPP_ATTRIBUTE(x) 0
|
|
|
+#endif
|
|
|
+/*! @endcond */
|
|
|
+
|
|
|
+/*! @cond Doxygen ignores this part */
|
|
|
+/*
|
|
|
+ * Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
|
|
|
+ * introduced in CPP17 and C23.
|
|
|
+ * CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
|
|
|
+ * C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough
|
|
|
+ */
|
|
|
+#if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough)
|
|
|
+# define XXH_FALLTHROUGH [[fallthrough]]
|
|
|
+#elif XXH_HAS_ATTRIBUTE(__fallthrough__)
|
|
|
+# define XXH_FALLTHROUGH __attribute__ ((__fallthrough__))
|
|
|
+#else
|
|
|
+# define XXH_FALLTHROUGH /* fallthrough */
|
|
|
+#endif
|
|
|
+/*! @endcond */
|
|
|
+
|
|
|
+/*! @cond Doxygen ignores this part */
|
|
|
+/*
|
|
|
+ * Define XXH_NOESCAPE for annotated pointers in public API.
|
|
|
+ * https://clang.llvm.org/docs/AttributeReference.html#noescape
|
|
|
+ * As of writing this, only supported by clang.
|
|
|
+ */
|
|
|
+#if XXH_HAS_ATTRIBUTE(noescape)
|
|
|
+# define XXH_NOESCAPE __attribute__((__noescape__))
|
|
|
+#else
|
|
|
+# define XXH_NOESCAPE
|
|
|
+#endif
|
|
|
+/*! @endcond */
|
|
|
+
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @}
|
|
|
+ * @ingroup public
|
|
|
+ * @{
|
|
|
+ */
|
|
|
+
|
|
|
+#ifndef XXH_NO_LONG_LONG
|
|
|
+/*-**********************************************************************
|
|
|
+* 64-bit hash
|
|
|
+************************************************************************/
|
|
|
+#if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
|
|
|
+/*!
|
|
|
+ * @brief An unsigned 64-bit integer.
|
|
|
+ *
|
|
|
+ * Not necessarily defined to `uint64_t` but functionally equivalent.
|
|
|
+ */
|
|
|
+typedef uint64_t XXH64_hash_t;
|
|
|
+#elif !defined (__VMS) \
|
|
|
+ && (defined (__cplusplus) \
|
|
|
+ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
|
+# ifdef _AIX
|
|
|
+# include <inttypes.h>
|
|
|
+# else
|
|
|
+# include <stdint.h>
|
|
|
+# endif
|
|
|
+ typedef uint64_t XXH64_hash_t;
|
|
|
+#else
|
|
|
+# include <limits.h>
|
|
|
+# if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
|
|
|
+ /* LP64 ABI says uint64_t is unsigned long */
|
|
|
+ typedef unsigned long XXH64_hash_t;
|
|
|
+# else
|
|
|
+ /* the following type must have a width of 64-bit */
|
|
|
+ typedef unsigned long long XXH64_hash_t;
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @}
|
|
|
+ *
|
|
|
+ * @defgroup XXH64_family XXH64 family
|
|
|
+ * @ingroup public
|
|
|
+ * @{
|
|
|
+ * Contains functions used in the classic 64-bit xxHash algorithm.
|
|
|
+ *
|
|
|
+ * @note
|
|
|
+ * XXH3 provides competitive speed for both 32-bit and 64-bit systems,
|
|
|
+ * and offers true 64/128 bit hash results.
|
|
|
+ * It provides better speed for systems with vector processing capabilities.
|
|
|
+ */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Calculates the 64-bit hash of @p input using xxHash64.
|
|
|
+ *
|
|
|
+ * @param input The block of data to be hashed, at least @p length bytes in size.
|
|
|
+ * @param length The length of @p input, in bytes.
|
|
|
+ * @param seed The 64-bit seed to alter the hash's output predictably.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * The memory between @p input and @p input + @p length must be valid,
|
|
|
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
|
|
|
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
|
|
|
+ *
|
|
|
+ * @return The calculated 64-bit xxHash64 value.
|
|
|
+ *
|
|
|
+ * @see @ref single_shot_example "Single Shot Example" for an example.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
|
|
|
+
|
|
|
+/******* Streaming *******/
|
|
|
+#ifndef XXH_NO_STREAM
|
|
|
+/*!
|
|
|
+ * @brief The opaque state struct for the XXH64 streaming API.
|
|
|
+ *
|
|
|
+ * @see XXH64_state_s for details.
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
|
|
|
-XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Allocates an @ref XXH64_state_t.
|
|
|
+ *
|
|
|
+ * @return An allocated pointer of @ref XXH64_state_t on success.
|
|
|
+ * @return `NULL` on failure.
|
|
|
+ *
|
|
|
+ * @note Must be freed with XXH64_freeState().
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Frees an @ref XXH64_state_t.
|
|
|
+ *
|
|
|
+ * @param statePtr A pointer to an @ref XXH64_state_t allocated with @ref XXH64_createState().
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK.
|
|
|
+ *
|
|
|
+ * @note @p statePtr must be allocated with XXH64_createState().
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
|
|
|
-XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
|
|
|
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed);
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
|
|
|
-XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
|
|
|
+/*!
|
|
|
+ * @brief Copies one @ref XXH64_state_t to another.
|
|
|
+ *
|
|
|
+ * @param dst_state The state to copy to.
|
|
|
+ * @param src_state The state to copy from.
|
|
|
+ * @pre
|
|
|
+ * @p dst_state and @p src_state must not be `NULL` and must not overlap.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Resets an @ref XXH64_state_t to begin a new hash.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to reset.
|
|
|
+ * @param seed The 64-bit seed to alter the hash result predictably.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * @note This function resets and seeds a state. Call it before @ref XXH64_update().
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Consumes a block of @p input to an @ref XXH64_state_t.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to update.
|
|
|
+ * @param input The block of data to be hashed, at least @p length bytes in size.
|
|
|
+ * @param length The length of @p input, in bytes.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ * @pre
|
|
|
+ * The memory between @p input and @p input + @p length must be valid,
|
|
|
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
|
|
|
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * @note Call this to incrementally consume blocks of data.
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Returns the calculated hash value from an @ref XXH64_state_t.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to calculate the hash from.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @return The calculated 64-bit xxHash64 value from that state.
|
|
|
+ *
|
|
|
+ * @note
|
|
|
+ * Calling XXH64_digest() will not affect @p statePtr, so you can update,
|
|
|
+ * digest, and update again.
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr);
|
|
|
+#endif /* !XXH_NO_STREAM */
|
|
|
+/******* Canonical representation *******/
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Canonical (big endian) representation of @ref XXH64_hash_t.
|
|
|
+ */
|
|
|
+typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Converts an @ref XXH64_hash_t to a big endian @ref XXH64_canonical_t.
|
|
|
+ *
|
|
|
+ * @param dst The @ref XXH64_canonical_t pointer to be stored to.
|
|
|
+ * @param hash The @ref XXH64_hash_t to be converted.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p dst must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @see @ref canonical_representation_example "Canonical Representation Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Converts an @ref XXH64_canonical_t to a native @ref XXH64_hash_t.
|
|
|
+ *
|
|
|
+ * @param src The @ref XXH64_canonical_t to convert.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p src must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @return The converted hash.
|
|
|
+ *
|
|
|
+ * @see @ref canonical_representation_example "Canonical Representation Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src);
|
|
|
+
|
|
|
+#ifndef XXH_NO_XXH3
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @}
|
|
|
+ * ************************************************************************
|
|
|
+ * @defgroup XXH3_family XXH3 family
|
|
|
+ * @ingroup public
|
|
|
+ * @{
|
|
|
+ *
|
|
|
+ * XXH3 is a more recent hash algorithm featuring:
|
|
|
+ * - Improved speed for both small and large inputs
|
|
|
+ * - True 64-bit and 128-bit outputs
|
|
|
+ * - SIMD acceleration
|
|
|
+ * - Improved 32-bit viability
|
|
|
+ *
|
|
|
+ * Speed analysis methodology is explained here:
|
|
|
+ *
|
|
|
+ * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
|
|
|
+ *
|
|
|
+ * Compared to XXH64, expect XXH3 to run approximately
|
|
|
+ * ~2x faster on large inputs and >3x faster on small ones,
|
|
|
+ * exact differences vary depending on platform.
|
|
|
+ *
|
|
|
+ * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
|
|
|
+ * but does not require it.
|
|
|
+ * Most 32-bit and 64-bit targets that can run XXH32 smoothly can run XXH3
|
|
|
+ * at competitive speeds, even without vector support. Further details are
|
|
|
+ * explained in the implementation.
|
|
|
+ *
|
|
|
+ * XXH3 has a fast scalar implementation, but it also includes accelerated SIMD
|
|
|
+ * implementations for many common platforms:
|
|
|
+ * - AVX512
|
|
|
+ * - AVX2
|
|
|
+ * - SSE2
|
|
|
+ * - ARM NEON
|
|
|
+ * - WebAssembly SIMD128
|
|
|
+ * - POWER8 VSX
|
|
|
+ * - s390x ZVector
|
|
|
+ * This can be controlled via the @ref XXH_VECTOR macro, but it automatically
|
|
|
+ * selects the best version according to predefined macros. For the x86 family, an
|
|
|
+ * automatic runtime dispatcher is included separately in @ref xxh_x86dispatch.c.
|
|
|
+ *
|
|
|
+ * XXH3 implementation is portable:
|
|
|
+ * it has a generic C90 formulation that can be compiled on any platform,
|
|
|
+ * all implementations generate exactly the same hash value on all platforms.
|
|
|
+ * Starting from v0.8.0, it's also labelled "stable", meaning that
|
|
|
+ * any future version will also generate the same hash value.
|
|
|
+ *
|
|
|
+ * XXH3 offers 2 variants, _64bits and _128bits.
|
|
|
+ *
|
|
|
+ * When only 64 bits are needed, prefer invoking the _64bits variant, as it
|
|
|
+ * reduces the amount of mixing, resulting in faster speed on small inputs.
|
|
|
+ * It's also generally simpler to manipulate a scalar return type than a struct.
|
|
|
+ *
|
|
|
+ * The API supports one-shot hashing, streaming mode, and custom secrets.
|
|
|
+ */
|
|
|
+/*-**********************************************************************
|
|
|
+* XXH3 64-bit variant
|
|
|
+************************************************************************/
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Calculates 64-bit unseeded variant of XXH3 hash of @p input.
|
|
|
+ *
|
|
|
+ * @param input The block of data to be hashed, at least @p length bytes in size.
|
|
|
+ * @param length The length of @p input, in bytes.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * The memory between @p input and @p input + @p length must be valid,
|
|
|
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
|
|
|
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
|
|
|
+ *
|
|
|
+ * @return The calculated 64-bit XXH3 hash value.
|
|
|
+ *
|
|
|
+ * @note
|
|
|
+ * This is equivalent to @ref XXH3_64bits_withSeed() with a seed of `0`, however
|
|
|
+ * it may have slightly better performance due to constant propagation of the
|
|
|
+ * defaults.
|
|
|
+ *
|
|
|
+ * @see
|
|
|
+ * XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants
|
|
|
+ * @see @ref single_shot_example "Single Shot Example" for an example.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Calculates 64-bit seeded variant of XXH3 hash of @p input.
|
|
|
+ *
|
|
|
+ * @param input The block of data to be hashed, at least @p length bytes in size.
|
|
|
+ * @param length The length of @p input, in bytes.
|
|
|
+ * @param seed The 64-bit seed to alter the hash result predictably.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * The memory between @p input and @p input + @p length must be valid,
|
|
|
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
|
|
|
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
|
|
|
+ *
|
|
|
+ * @return The calculated 64-bit XXH3 hash value.
|
|
|
+ *
|
|
|
+ * @note
|
|
|
+ * seed == 0 produces the same results as @ref XXH3_64bits().
|
|
|
+ *
|
|
|
+ * This variant generates a custom secret on the fly based on default secret
|
|
|
+ * altered using the @p seed value.
|
|
|
+ *
|
|
|
+ * While this operation is decently fast, note that it's not completely free.
|
|
|
+ *
|
|
|
+ * @see @ref single_shot_example "Single Shot Example" for an example.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * The bare minimum size for a custom secret.
|
|
|
+ *
|
|
|
+ * @see
|
|
|
+ * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
|
|
|
+ * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
|
|
|
+ */
|
|
|
+#define XXH3_SECRET_SIZE_MIN 136
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Calculates 64-bit variant of XXH3 with a custom "secret".
|
|
|
+ *
|
|
|
+ * @param data The block of data to be hashed, at least @p len bytes in size.
|
|
|
+ * @param len The length of @p data, in bytes.
|
|
|
+ * @param secret The secret data.
|
|
|
+ * @param secretSize The length of @p secret, in bytes.
|
|
|
+ *
|
|
|
+ * @return The calculated 64-bit XXH3 hash value.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * The memory between @p data and @p data + @p len must be valid,
|
|
|
+ * readable, contiguous memory. However, if @p length is `0`, @p data may be
|
|
|
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
|
|
|
+ *
|
|
|
+ * It's possible to provide any blob of bytes as a "secret" to generate the hash.
|
|
|
+ * This makes it more difficult for an external actor to prepare an intentional collision.
|
|
|
+ * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN).
|
|
|
+ * However, the quality of the secret impacts the dispersion of the hash algorithm.
|
|
|
+ * Therefore, the secret _must_ look like a bunch of random bytes.
|
|
|
+ * Avoid "trivial" or structured data such as repeated sequences or a text document.
|
|
|
+ * Whenever in doubt about the "randomness" of the blob of bytes,
|
|
|
+ * consider employing @ref XXH3_generateSecret() instead (see below).
|
|
|
+ * It will generate a proper high entropy secret derived from the blob of bytes.
|
|
|
+ * Another advantage of using XXH3_generateSecret() is that
|
|
|
+ * it guarantees that all bits within the initial blob of bytes
|
|
|
+ * will impact every bit of the output.
|
|
|
+ * This is not necessarily the case when using the blob of bytes directly
|
|
|
+ * because, when hashing _small_ inputs, only a portion of the secret is employed.
|
|
|
+ *
|
|
|
+ * @see @ref single_shot_example "Single Shot Example" for an example.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
|
|
|
+
|
|
|
+
|
|
|
+/******* Streaming *******/
|
|
|
+#ifndef XXH_NO_STREAM
|
|
|
+/*
|
|
|
+ * Streaming requires state maintenance.
|
|
|
+ * This operation costs memory and CPU.
|
|
|
+ * As a consequence, streaming is slower than one-shot hashing.
|
|
|
+ * For better performance, prefer one-shot functions whenever applicable.
|
|
|
+ */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief The opaque state struct for the XXH3 streaming API.
|
|
|
+ *
|
|
|
+ * @see XXH3_state_s for details.
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
+typedef struct XXH3_state_s XXH3_state_t;
|
|
|
+XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void);
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Copies one @ref XXH3_state_t to another.
|
|
|
+ *
|
|
|
+ * @param dst_state The state to copy to.
|
|
|
+ * @param src_state The state to copy from.
|
|
|
+ * @pre
|
|
|
+ * @p dst_state and @p src_state must not be `NULL` and must not overlap.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Resets an @ref XXH3_state_t to begin a new hash.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to reset.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * @note
|
|
|
+ * - This function resets `statePtr` and generate a secret with default parameters.
|
|
|
+ * - Call this function before @ref XXH3_64bits_update().
|
|
|
+ * - Digest will be equivalent to `XXH3_64bits()`.
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ *
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to reset.
|
|
|
+ * @param seed The 64-bit seed to alter the hash result predictably.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * @note
|
|
|
+ * - This function resets `statePtr` and generate a secret from `seed`.
|
|
|
+ * - Call this function before @ref XXH3_64bits_update().
|
|
|
+ * - Digest will be equivalent to `XXH3_64bits_withSeed()`.
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ *
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to reset.
|
|
|
+ * @param secret The secret data.
|
|
|
+ * @param secretSize The length of @p secret, in bytes.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * @note
|
|
|
+ * `secret` is referenced, it _must outlive_ the hash streaming session.
|
|
|
+ *
|
|
|
+ * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN,
|
|
|
+ * and the quality of produced hash values depends on secret's entropy
|
|
|
+ * (secret's content should look like a bunch of random bytes).
|
|
|
+ * When in doubt about the randomness of a candidate `secret`,
|
|
|
+ * consider employing `XXH3_generateSecret()` instead (see below).
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Consumes a block of @p input to an @ref XXH3_state_t.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to update.
|
|
|
+ * @param input The block of data to be hashed, at least @p length bytes in size.
|
|
|
+ * @param length The length of @p input, in bytes.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ * @pre
|
|
|
+ * The memory between @p input and @p input + @p length must be valid,
|
|
|
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
|
|
|
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * @note Call this to incrementally consume blocks of data.
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Returns the calculated XXH3 64-bit hash value from an @ref XXH3_state_t.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to calculate the hash from.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @return The calculated XXH3 64-bit hash value from that state.
|
|
|
+ *
|
|
|
+ * @note
|
|
|
+ * Calling XXH3_64bits_digest() will not affect @p statePtr, so you can update,
|
|
|
+ * digest, and update again.
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
|
|
|
+#endif /* !XXH_NO_STREAM */
|
|
|
+
|
|
|
+/* note : canonical representation of XXH3 is the same as XXH64
|
|
|
+ * since they both produce XXH64_hash_t values */
|
|
|
+
|
|
|
+
|
|
|
+/*-**********************************************************************
|
|
|
+* XXH3 128-bit variant
|
|
|
+************************************************************************/
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief The return value from 128-bit hashes.
|
|
|
+ *
|
|
|
+ * Stored in little endian order, although the fields themselves are in native
|
|
|
+ * endianness.
|
|
|
+ */
|
|
|
+typedef struct {
|
|
|
+ XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */
|
|
|
+ XXH64_hash_t high64; /*!< `value >> 64` */
|
|
|
+} XXH128_hash_t;
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Calculates 128-bit unseeded variant of XXH3 of @p data.
|
|
|
+ *
|
|
|
+ * @param data The block of data to be hashed, at least @p length bytes in size.
|
|
|
+ * @param len The length of @p data, in bytes.
|
|
|
+ *
|
|
|
+ * @return The calculated 128-bit variant of XXH3 value.
|
|
|
+ *
|
|
|
+ * The 128-bit variant of XXH3 has more strength, but it has a bit of overhead
|
|
|
+ * for shorter inputs.
|
|
|
+ *
|
|
|
+ * This is equivalent to @ref XXH3_128bits_withSeed() with a seed of `0`, however
|
|
|
+ * it may have slightly better performance due to constant propagation of the
|
|
|
+ * defaults.
|
|
|
+ *
|
|
|
+ * @see XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants
|
|
|
+ * @see @ref single_shot_example "Single Shot Example" for an example.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len);
|
|
|
+/*! @brief Calculates 128-bit seeded variant of XXH3 hash of @p data.
|
|
|
+ *
|
|
|
+ * @param data The block of data to be hashed, at least @p length bytes in size.
|
|
|
+ * @param len The length of @p data, in bytes.
|
|
|
+ * @param seed The 64-bit seed to alter the hash result predictably.
|
|
|
+ *
|
|
|
+ * @return The calculated 128-bit variant of XXH3 value.
|
|
|
+ *
|
|
|
+ * @note
|
|
|
+ * seed == 0 produces the same results as @ref XXH3_64bits().
|
|
|
+ *
|
|
|
+ * This variant generates a custom secret on the fly based on default secret
|
|
|
+ * altered using the @p seed value.
|
|
|
+ *
|
|
|
+ * While this operation is decently fast, note that it's not completely free.
|
|
|
+ *
|
|
|
+ * @see XXH3_128bits(), XXH3_128bits_withSecret(): other seeding variants
|
|
|
+ * @see @ref single_shot_example "Single Shot Example" for an example.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
|
|
|
+/*!
|
|
|
+ * @brief Calculates 128-bit variant of XXH3 with a custom "secret".
|
|
|
+ *
|
|
|
+ * @param data The block of data to be hashed, at least @p len bytes in size.
|
|
|
+ * @param len The length of @p data, in bytes.
|
|
|
+ * @param secret The secret data.
|
|
|
+ * @param secretSize The length of @p secret, in bytes.
|
|
|
+ *
|
|
|
+ * @return The calculated 128-bit variant of XXH3 value.
|
|
|
+ *
|
|
|
+ * It's possible to provide any blob of bytes as a "secret" to generate the hash.
|
|
|
+ * This makes it more difficult for an external actor to prepare an intentional collision.
|
|
|
+ * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN).
|
|
|
+ * However, the quality of the secret impacts the dispersion of the hash algorithm.
|
|
|
+ * Therefore, the secret _must_ look like a bunch of random bytes.
|
|
|
+ * Avoid "trivial" or structured data such as repeated sequences or a text document.
|
|
|
+ * Whenever in doubt about the "randomness" of the blob of bytes,
|
|
|
+ * consider employing @ref XXH3_generateSecret() instead (see below).
|
|
|
+ * It will generate a proper high entropy secret derived from the blob of bytes.
|
|
|
+ * Another advantage of using XXH3_generateSecret() is that
|
|
|
+ * it guarantees that all bits within the initial blob of bytes
|
|
|
+ * will impact every bit of the output.
|
|
|
+ * This is not necessarily the case when using the blob of bytes directly
|
|
|
+ * because, when hashing _small_ inputs, only a portion of the secret is employed.
|
|
|
+ *
|
|
|
+ * @see @ref single_shot_example "Single Shot Example" for an example.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
|
|
|
+
|
|
|
+/******* Streaming *******/
|
|
|
+#ifndef XXH_NO_STREAM
|
|
|
+/*
|
|
|
+ * Streaming requires state maintenance.
|
|
|
+ * This operation costs memory and CPU.
|
|
|
+ * As a consequence, streaming is slower than one-shot hashing.
|
|
|
+ * For better performance, prefer one-shot functions whenever applicable.
|
|
|
+ *
|
|
|
+ * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
|
|
|
+ * Use already declared XXH3_createState() and XXH3_freeState().
|
|
|
+ *
|
|
|
+ * All reset and streaming functions have same meaning as their 64-bit counterpart.
|
|
|
+ */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Resets an @ref XXH3_state_t to begin a new hash.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to reset.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * @note
|
|
|
+ * - This function resets `statePtr` and generate a secret with default parameters.
|
|
|
+ * - Call it before @ref XXH3_128bits_update().
|
|
|
+ * - Digest will be equivalent to `XXH3_128bits()`.
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to reset.
|
|
|
+ * @param seed The 64-bit seed to alter the hash result predictably.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * @note
|
|
|
+ * - This function resets `statePtr` and generate a secret from `seed`.
|
|
|
+ * - Call it before @ref XXH3_128bits_update().
|
|
|
+ * - Digest will be equivalent to `XXH3_128bits_withSeed()`.
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
|
|
|
+/*!
|
|
|
+ * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to reset.
|
|
|
+ * @param secret The secret data.
|
|
|
+ * @param secretSize The length of @p secret, in bytes.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * `secret` is referenced, it _must outlive_ the hash streaming session.
|
|
|
+ * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN,
|
|
|
+ * and the quality of produced hash values depends on secret's entropy
|
|
|
+ * (secret's content should look like a bunch of random bytes).
|
|
|
+ * When in doubt about the randomness of a candidate `secret`,
|
|
|
+ * consider employing `XXH3_generateSecret()` instead (see below).
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Consumes a block of @p input to an @ref XXH3_state_t.
|
|
|
+ *
|
|
|
+ * Call this to incrementally consume blocks of data.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to update.
|
|
|
+ * @param input The block of data to be hashed, at least @p length bytes in size.
|
|
|
+ * @param length The length of @p input, in bytes.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * @note
|
|
|
+ * The memory between @p input and @p input + @p length must be valid,
|
|
|
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
|
|
|
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
|
|
|
+ *
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Returns the calculated XXH3 128-bit hash value from an @ref XXH3_state_t.
|
|
|
+ *
|
|
|
+ * @param statePtr The state struct to calculate the hash from.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p statePtr must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @return The calculated XXH3 128-bit hash value from that state.
|
|
|
+ *
|
|
|
+ * @note
|
|
|
+ * Calling XXH3_128bits_digest() will not affect @p statePtr, so you can update,
|
|
|
+ * digest, and update again.
|
|
|
+ *
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
|
|
|
+#endif /* !XXH_NO_STREAM */
|
|
|
+
|
|
|
+/* Following helper functions make it possible to compare XXH128_hast_t values.
|
|
|
+ * Since XXH128_hash_t is a structure, this capability is not offered by the language.
|
|
|
+ * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Check equality of two XXH128_hash_t values
|
|
|
+ *
|
|
|
+ * @param h1 The 128-bit hash value.
|
|
|
+ * @param h2 Another 128-bit hash value.
|
|
|
+ *
|
|
|
+ * @return `1` if `h1` and `h2` are equal.
|
|
|
+ * @return `0` if they are not.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Compares two @ref XXH128_hash_t
|
|
|
+ *
|
|
|
+ * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
|
|
|
+ *
|
|
|
+ * @param h128_1 Left-hand side value
|
|
|
+ * @param h128_2 Right-hand side value
|
|
|
+ *
|
|
|
+ * @return >0 if @p h128_1 > @p h128_2
|
|
|
+ * @return =0 if @p h128_1 == @p h128_2
|
|
|
+ * @return <0 if @p h128_1 < @p h128_2
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2);
|
|
|
+
|
|
|
+
|
|
|
+/******* Canonical representation *******/
|
|
|
+typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
|
|
|
+
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Converts an @ref XXH128_hash_t to a big endian @ref XXH128_canonical_t.
|
|
|
+ *
|
|
|
+ * @param dst The @ref XXH128_canonical_t pointer to be stored to.
|
|
|
+ * @param hash The @ref XXH128_hash_t to be converted.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p dst must not be `NULL`.
|
|
|
+ * @see @ref canonical_representation_example "Canonical Representation Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Converts an @ref XXH128_canonical_t to a native @ref XXH128_hash_t.
|
|
|
+ *
|
|
|
+ * @param src The @ref XXH128_canonical_t to convert.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * @p src must not be `NULL`.
|
|
|
+ *
|
|
|
+ * @return The converted hash.
|
|
|
+ * @see @ref canonical_representation_example "Canonical Representation Example"
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src);
|
|
|
+
|
|
|
+
|
|
|
+#endif /* !XXH_NO_XXH3 */
|
|
|
+#endif /* XXH_NO_LONG_LONG */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @}
|
|
|
+ */
|
|
|
+#endif /* XXHASH_H_5627135585666179 */
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
|
|
|
+#define XXHASH_H_STATIC_13879238742
|
|
|
+/* ****************************************************************************
|
|
|
+ * This section contains declarations which are not guaranteed to remain stable.
|
|
|
+ * They may change in future versions, becoming incompatible with a different
|
|
|
+ * version of the library.
|
|
|
+ * These declarations should only be used with static linking.
|
|
|
+ * Never use them in association with dynamic linking!
|
|
|
+ ***************************************************************************** */
|
|
|
+
|
|
|
+/*
|
|
|
+ * These definitions are only present to allow static allocation
|
|
|
+ * of XXH states, on stack or in a struct, for example.
|
|
|
+ * Never **ever** access their members directly.
|
|
|
+ */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Structure for XXH32 streaming API.
|
|
|
+ *
|
|
|
+ * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
|
|
|
+ * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
|
|
|
+ * an opaque type. This allows fields to safely be changed.
|
|
|
+ *
|
|
|
+ * Typedef'd to @ref XXH32_state_t.
|
|
|
+ * Do not access the members of this struct directly.
|
|
|
+ * @see XXH64_state_s, XXH3_state_s
|
|
|
+ */
|
|
|
+struct XXH32_state_s {
|
|
|
+ XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
|
|
|
+ XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
|
|
|
+ XXH32_hash_t v[4]; /*!< Accumulator lanes */
|
|
|
+ XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */
|
|
|
+ XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */
|
|
|
+ XXH32_hash_t reserved; /*!< Reserved field. Do not read nor write to it. */
|
|
|
+}; /* typedef'd to XXH32_state_t */
|
|
|
+
|
|
|
+
|
|
|
+#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Structure for XXH64 streaming API.
|
|
|
+ *
|
|
|
+ * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
|
|
|
+ * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
|
|
|
+ * an opaque type. This allows fields to safely be changed.
|
|
|
+ *
|
|
|
+ * Typedef'd to @ref XXH64_state_t.
|
|
|
+ * Do not access the members of this struct directly.
|
|
|
+ * @see XXH32_state_s, XXH3_state_s
|
|
|
+ */
|
|
|
+struct XXH64_state_s {
|
|
|
+ XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */
|
|
|
+ XXH64_hash_t v[4]; /*!< Accumulator lanes */
|
|
|
+ XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
|
|
|
+ XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */
|
|
|
+ XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/
|
|
|
+ XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it. */
|
|
|
+}; /* typedef'd to XXH64_state_t */
|
|
|
+
|
|
|
+#ifndef XXH_NO_XXH3
|
|
|
+
|
|
|
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
|
|
|
+# define XXH_ALIGN(n) _Alignas(n)
|
|
|
+#elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */
|
|
|
+/* In C++ alignas() is a keyword */
|
|
|
+# define XXH_ALIGN(n) alignas(n)
|
|
|
+#elif defined(__GNUC__)
|
|
|
+# define XXH_ALIGN(n) __attribute__ ((aligned(n)))
|
|
|
+#elif defined(_MSC_VER)
|
|
|
+# define XXH_ALIGN(n) __declspec(align(n))
|
|
|
+#else
|
|
|
+# define XXH_ALIGN(n) /* disabled */
|
|
|
+#endif
|
|
|
+
|
|
|
+/* Old GCC versions only accept the attribute after the type in structures. */
|
|
|
+#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
|
|
|
+ && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \
|
|
|
+ && defined(__GNUC__)
|
|
|
+# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
|
|
|
+#else
|
|
|
+# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
|
|
|
+#endif
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief The size of the internal XXH3 buffer.
|
|
|
+ *
|
|
|
+ * This is the optimal update size for incremental hashing.
|
|
|
+ *
|
|
|
+ * @see XXH3_64b_update(), XXH3_128b_update().
|
|
|
+ */
|
|
|
+#define XXH3_INTERNALBUFFER_SIZE 256
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Default size of the secret buffer (and @ref XXH3_kSecret).
|
|
|
+ *
|
|
|
+ * This is the size used in @ref XXH3_kSecret and the seeded functions.
|
|
|
+ *
|
|
|
+ * Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
|
|
|
+ */
|
|
|
+#define XXH3_SECRET_DEFAULT_SIZE 192
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Structure for XXH3 streaming API.
|
|
|
+ *
|
|
|
+ * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
|
|
|
+ * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined.
|
|
|
+ * Otherwise it is an opaque type.
|
|
|
+ * Never use this definition in combination with dynamic library.
|
|
|
+ * This allows fields to safely be changed in the future.
|
|
|
+ *
|
|
|
+ * @note ** This structure has a strict alignment requirement of 64 bytes!! **
|
|
|
+ * Do not allocate this with `malloc()` or `new`,
|
|
|
+ * it will not be sufficiently aligned.
|
|
|
+ * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation.
|
|
|
+ *
|
|
|
+ * Typedef'd to @ref XXH3_state_t.
|
|
|
+ * Do never access the members of this struct directly.
|
|
|
+ *
|
|
|
+ * @see XXH3_INITSTATE() for stack initialization.
|
|
|
+ * @see XXH3_createState(), XXH3_freeState().
|
|
|
+ * @see XXH32_state_s, XXH64_state_s
|
|
|
+ */
|
|
|
+struct XXH3_state_s {
|
|
|
+ XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
|
|
|
+ /*!< The 8 accumulators. See @ref XXH32_state_s::v and @ref XXH64_state_s::v */
|
|
|
+ XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
|
|
|
+ /*!< Used to store a custom secret generated from a seed. */
|
|
|
+ XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
|
|
|
+ /*!< The internal buffer. @see XXH32_state_s::mem32 */
|
|
|
+ XXH32_hash_t bufferedSize;
|
|
|
+ /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
|
|
|
+ XXH32_hash_t useSeed;
|
|
|
+ /*!< Reserved field. Needed for padding on 64-bit. */
|
|
|
+ size_t nbStripesSoFar;
|
|
|
+ /*!< Number or stripes processed. */
|
|
|
+ XXH64_hash_t totalLen;
|
|
|
+ /*!< Total length hashed. 64-bit even on 32-bit targets. */
|
|
|
+ size_t nbStripesPerBlock;
|
|
|
+ /*!< Number of stripes per block. */
|
|
|
+ size_t secretLimit;
|
|
|
+ /*!< Size of @ref customSecret or @ref extSecret */
|
|
|
+ XXH64_hash_t seed;
|
|
|
+ /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
|
|
|
+ XXH64_hash_t reserved64;
|
|
|
+ /*!< Reserved field. */
|
|
|
+ const unsigned char* extSecret;
|
|
|
+ /*!< Reference to an external secret for the _withSecret variants, NULL
|
|
|
+ * for other variants. */
|
|
|
+ /* note: there may be some padding at the end due to alignment on 64 bytes */
|
|
|
+}; /* typedef'd to XXH3_state_t */
|
|
|
+
|
|
|
+#undef XXH_ALIGN_MEMBER
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Initializes a stack-allocated `XXH3_state_s`.
|
|
|
+ *
|
|
|
+ * When the @ref XXH3_state_t structure is merely emplaced on stack,
|
|
|
+ * it should be initialized with XXH3_INITSTATE() or a memset()
|
|
|
+ * in case its first reset uses XXH3_NNbits_reset_withSeed().
|
|
|
+ * This init can be omitted if the first reset uses default or _withSecret mode.
|
|
|
+ * This operation isn't necessary when the state is created with XXH3_createState().
|
|
|
+ * Note that this doesn't prepare the state for a streaming operation,
|
|
|
+ * it's still necessary to use XXH3_NNbits_reset*() afterwards.
|
|
|
+ */
|
|
|
+#define XXH3_INITSTATE(XXH3_state_ptr) \
|
|
|
+ do { \
|
|
|
+ XXH3_state_t* tmp_xxh3_state_ptr = (XXH3_state_ptr); \
|
|
|
+ tmp_xxh3_state_ptr->seed = 0; \
|
|
|
+ tmp_xxh3_state_ptr->extSecret = NULL; \
|
|
|
+ } while(0)
|
|
|
+
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Calculates the 128-bit hash of @p data using XXH3.
|
|
|
+ *
|
|
|
+ * @param data The block of data to be hashed, at least @p len bytes in size.
|
|
|
+ * @param len The length of @p data, in bytes.
|
|
|
+ * @param seed The 64-bit seed to alter the hash's output predictably.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * The memory between @p data and @p data + @p len must be valid,
|
|
|
+ * readable, contiguous memory. However, if @p len is `0`, @p data may be
|
|
|
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
|
|
|
+ *
|
|
|
+ * @return The calculated 128-bit XXH3 value.
|
|
|
+ *
|
|
|
+ * @see @ref single_shot_example "Single Shot Example" for an example.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
|
|
|
+
|
|
|
+
|
|
|
+/* === Experimental API === */
|
|
|
+/* Symbols defined below must be considered tied to a specific library version. */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Derive a high-entropy secret from any user-defined content, named customSeed.
|
|
|
+ *
|
|
|
+ * @param secretBuffer A writable buffer for derived high-entropy secret data.
|
|
|
+ * @param secretSize Size of secretBuffer, in bytes. Must be >= XXH3_SECRET_SIZE_MIN.
|
|
|
+ * @param customSeed A user-defined content.
|
|
|
+ * @param customSeedSize Size of customSeed, in bytes.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * The generated secret can be used in combination with `*_withSecret()` functions.
|
|
|
+ * The `_withSecret()` variants are useful to provide a higher level of protection
|
|
|
+ * than 64-bit seed, as it becomes much more difficult for an external actor to
|
|
|
+ * guess how to impact the calculation logic.
|
|
|
+ *
|
|
|
+ * The function accepts as input a custom seed of any length and any content,
|
|
|
+ * and derives from it a high-entropy secret of length @p secretSize into an
|
|
|
+ * already allocated buffer @p secretBuffer.
|
|
|
+ *
|
|
|
+ * The generated secret can then be used with any `*_withSecret()` variant.
|
|
|
+ * The functions @ref XXH3_128bits_withSecret(), @ref XXH3_64bits_withSecret(),
|
|
|
+ * @ref XXH3_128bits_reset_withSecret() and @ref XXH3_64bits_reset_withSecret()
|
|
|
+ * are part of this list. They all accept a `secret` parameter
|
|
|
+ * which must be large enough for implementation reasons (>= @ref XXH3_SECRET_SIZE_MIN)
|
|
|
+ * _and_ feature very high entropy (consist of random-looking bytes).
|
|
|
+ * These conditions can be a high bar to meet, so @ref XXH3_generateSecret() can
|
|
|
+ * be employed to ensure proper quality.
|
|
|
+ *
|
|
|
+ * @p customSeed can be anything. It can have any size, even small ones,
|
|
|
+ * and its content can be anything, even "poor entropy" sources such as a bunch
|
|
|
+ * of zeroes. The resulting `secret` will nonetheless provide all required qualities.
|
|
|
+ *
|
|
|
+ * @pre
|
|
|
+ * - @p secretSize must be >= @ref XXH3_SECRET_SIZE_MIN
|
|
|
+ * - When @p customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
|
|
|
+ *
|
|
|
+ * Example code:
|
|
|
+ * @code{.c}
|
|
|
+ * #include <stdio.h>
|
|
|
+ * #include <stdlib.h>
|
|
|
+ * #include <string.h>
|
|
|
+ * #define XXH_STATIC_LINKING_ONLY // expose unstable API
|
|
|
+ * #include "xxhash.h"
|
|
|
+ * // Hashes argv[2] using the entropy from argv[1].
|
|
|
+ * int main(int argc, char* argv[])
|
|
|
+ * {
|
|
|
+ * char secret[XXH3_SECRET_SIZE_MIN];
|
|
|
+ * if (argv != 3) { return 1; }
|
|
|
+ * XXH3_generateSecret(secret, sizeof(secret), argv[1], strlen(argv[1]));
|
|
|
+ * XXH64_hash_t h = XXH3_64bits_withSecret(
|
|
|
+ * argv[2], strlen(argv[2]),
|
|
|
+ * secret, sizeof(secret)
|
|
|
+ * );
|
|
|
+ * printf("%016llx\n", (unsigned long long) h);
|
|
|
+ * }
|
|
|
+ * @endcode
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Generate the same secret as the _withSeed() variants.
|
|
|
+ *
|
|
|
+ * @param secretBuffer A writable buffer of @ref XXH3_SECRET_DEFAULT_SIZE bytes
|
|
|
+ * @param seed The 64-bit seed to alter the hash result predictably.
|
|
|
+ *
|
|
|
+ * The generated secret can be used in combination with
|
|
|
+ *`*_withSecret()` and `_withSecretandSeed()` variants.
|
|
|
+ *
|
|
|
+ * Example C++ `std::string` hash class:
|
|
|
+ * @code{.cpp}
|
|
|
+ * #include <string>
|
|
|
+ * #define XXH_STATIC_LINKING_ONLY // expose unstable API
|
|
|
+ * #include "xxhash.h"
|
|
|
+ * // Slow, seeds each time
|
|
|
+ * class HashSlow {
|
|
|
+ * XXH64_hash_t seed;
|
|
|
+ * public:
|
|
|
+ * HashSlow(XXH64_hash_t s) : seed{s} {}
|
|
|
+ * size_t operator()(const std::string& x) const {
|
|
|
+ * return size_t{XXH3_64bits_withSeed(x.c_str(), x.length(), seed)};
|
|
|
+ * }
|
|
|
+ * };
|
|
|
+ * // Fast, caches the seeded secret for future uses.
|
|
|
+ * class HashFast {
|
|
|
+ * unsigned char secret[XXH3_SECRET_DEFAULT_SIZE];
|
|
|
+ * public:
|
|
|
+ * HashFast(XXH64_hash_t s) {
|
|
|
+ * XXH3_generateSecret_fromSeed(secret, seed);
|
|
|
+ * }
|
|
|
+ * size_t operator()(const std::string& x) const {
|
|
|
+ * return size_t{
|
|
|
+ * XXH3_64bits_withSecret(x.c_str(), x.length(), secret, sizeof(secret))
|
|
|
+ * };
|
|
|
+ * }
|
|
|
+ * };
|
|
|
+ * @endcode
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Maximum size of "short" key in bytes.
|
|
|
+ */
|
|
|
+#define XXH3_MIDSIZE_MAX 240
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Calculates 64/128-bit seeded variant of XXH3 hash of @p data.
|
|
|
+ *
|
|
|
+ * @param data The block of data to be hashed, at least @p len bytes in size.
|
|
|
+ * @param len The length of @p data, in bytes.
|
|
|
+ * @param secret The secret data.
|
|
|
+ * @param secretSize The length of @p secret, in bytes.
|
|
|
+ * @param seed The 64-bit seed to alter the hash result predictably.
|
|
|
+ *
|
|
|
+ * These variants generate hash values using either:
|
|
|
+ * - @p seed for "short" keys (< @ref XXH3_MIDSIZE_MAX = 240 bytes)
|
|
|
+ * - @p secret for "large" keys (>= @ref XXH3_MIDSIZE_MAX).
|
|
|
+ *
|
|
|
+ * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
|
|
|
+ * `_withSeed()` has to generate the secret on the fly for "large" keys.
|
|
|
+ * It's fast, but can be perceptible for "not so large" keys (< 1 KB).
|
|
|
+ * `_withSecret()` has to generate the masks on the fly for "small" keys,
|
|
|
+ * which requires more instructions than _withSeed() variants.
|
|
|
+ * Therefore, _withSecretandSeed variant combines the best of both worlds.
|
|
|
+ *
|
|
|
+ * When @p secret has been generated by XXH3_generateSecret_fromSeed(),
|
|
|
+ * this variant produces *exactly* the same results as `_withSeed()` variant,
|
|
|
+ * hence offering only a pure speed benefit on "large" input,
|
|
|
+ * by skipping the need to regenerate the secret for every large input.
|
|
|
+ *
|
|
|
+ * Another usage scenario is to hash the secret to a 64-bit hash value,
|
|
|
+ * for example with XXH3_64bits(), which then becomes the seed,
|
|
|
+ * and then employ both the seed and the secret in _withSecretandSeed().
|
|
|
+ * On top of speed, an added benefit is that each bit in the secret
|
|
|
+ * has a 50% chance to swap each bit in the output, via its impact to the seed.
|
|
|
+ *
|
|
|
+ * This is not guaranteed when using the secret directly in "small data" scenarios,
|
|
|
+ * because only portions of the secret are employed for small data.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t
|
|
|
+XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len,
|
|
|
+ XXH_NOESCAPE const void* secret, size_t secretSize,
|
|
|
+ XXH64_hash_t seed);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Calculates 128-bit seeded variant of XXH3 hash of @p data.
|
|
|
+ *
|
|
|
+ * @param data The memory segment to be hashed, at least @p len bytes in size.
|
|
|
+ * @param length The length of @p data, in bytes.
|
|
|
+ * @param secret The secret used to alter hash result predictably.
|
|
|
+ * @param secretSize The length of @p secret, in bytes (must be >= XXH3_SECRET_SIZE_MIN)
|
|
|
+ * @param seed64 The 64-bit seed to alter the hash result predictably.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * @see XXH3_64bits_withSecretandSeed(): contract is the same.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t
|
|
|
+XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length,
|
|
|
+ XXH_NOESCAPE const void* secret, size_t secretSize,
|
|
|
+ XXH64_hash_t seed64);
|
|
|
+
|
|
|
+#ifndef XXH_NO_STREAM
|
|
|
+/*!
|
|
|
+ * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
|
|
|
+ *
|
|
|
+ * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
|
|
|
+ * @param secret The secret data.
|
|
|
+ * @param secretSize The length of @p secret, in bytes.
|
|
|
+ * @param seed64 The 64-bit seed to alter the hash result predictably.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * @see XXH3_64bits_withSecretandSeed(). Contract is identical.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_errorcode
|
|
|
+XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
|
|
|
+ XXH_NOESCAPE const void* secret, size_t secretSize,
|
|
|
+ XXH64_hash_t seed64);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
|
|
|
+ *
|
|
|
+ * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
|
|
|
+ * @param secret The secret data.
|
|
|
+ * @param secretSize The length of @p secret, in bytes.
|
|
|
+ * @param seed64 The 64-bit seed to alter the hash result predictably.
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK on success.
|
|
|
+ * @return @ref XXH_ERROR on failure.
|
|
|
+ *
|
|
|
+ * @see XXH3_64bits_withSecretandSeed(). Contract is identical.
|
|
|
+ *
|
|
|
+ * Note: there was a bug in an earlier version of this function (<= v0.8.2)
|
|
|
+ * that would make it generate an incorrect hash value
|
|
|
+ * when @p seed == 0 and @p length < XXH3_MIDSIZE_MAX
|
|
|
+ * and @p secret is different from XXH3_generateSecret_fromSeed().
|
|
|
+ * As stated in the contract, the correct hash result must be
|
|
|
+ * the same as XXH3_128bits_withSeed() when @p length <= XXH3_MIDSIZE_MAX.
|
|
|
+ * Results generated by this older version are wrong, hence not comparable.
|
|
|
+ */
|
|
|
+XXH_PUBLIC_API XXH_errorcode
|
|
|
+XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
|
|
|
+ XXH_NOESCAPE const void* secret, size_t secretSize,
|
|
|
+ XXH64_hash_t seed64);
|
|
|
+
|
|
|
+#endif /* !XXH_NO_STREAM */
|
|
|
+
|
|
|
+#endif /* !XXH_NO_XXH3 */
|
|
|
+#endif /* XXH_NO_LONG_LONG */
|
|
|
+#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
|
|
|
+# define XXH_IMPLEMENTATION
|
|
|
+#endif
|
|
|
+
|
|
|
+#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
|
|
|
+
|
|
|
+
|
|
|
+/* ======================================================================== */
|
|
|
+/* ======================================================================== */
|
|
|
+/* ======================================================================== */
|
|
|
+
|
|
|
+
|
|
|
+/*-**********************************************************************
|
|
|
+ * xxHash implementation
|
|
|
+ *-**********************************************************************
|
|
|
+ * xxHash's implementation used to be hosted inside xxhash.c.
|
|
|
+ *
|
|
|
+ * However, inlining requires implementation to be visible to the compiler,
|
|
|
+ * hence be included alongside the header.
|
|
|
+ * Previously, implementation was hosted inside xxhash.c,
|
|
|
+ * which was then #included when inlining was activated.
|
|
|
+ * This construction created issues with a few build and install systems,
|
|
|
+ * as it required xxhash.c to be stored in /include directory.
|
|
|
+ *
|
|
|
+ * xxHash implementation is now directly integrated within xxhash.h.
|
|
|
+ * As a consequence, xxhash.c is no longer needed in /include.
|
|
|
+ *
|
|
|
+ * xxhash.c is still available and is still useful.
|
|
|
+ * In a "normal" setup, when xxhash is not inlined,
|
|
|
+ * xxhash.h only exposes the prototypes and public symbols,
|
|
|
+ * while xxhash.c can be built into an object file xxhash.o
|
|
|
+ * which can then be linked into the final binary.
|
|
|
+ ************************************************************************/
|
|
|
+
|
|
|
+#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
|
|
|
+ || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
|
|
|
+# define XXH_IMPLEM_13a8737387
|
|
|
+
|
|
|
+/* *************************************
|
|
|
+* Tuning parameters
|
|
|
+***************************************/
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @defgroup tuning Tuning parameters
|
|
|
+ * @{
|
|
|
+ *
|
|
|
+ * Various macros to control xxHash's behavior.
|
|
|
+ */
|
|
|
+#ifdef XXH_DOXYGEN
|
|
|
+/*!
|
|
|
+ * @brief Define this to disable 64-bit code.
|
|
|
+ *
|
|
|
+ * Useful if only using the @ref XXH32_family and you have a strict C90 compiler.
|
|
|
+ */
|
|
|
+# define XXH_NO_LONG_LONG
|
|
|
+# undef XXH_NO_LONG_LONG /* don't actually */
|
|
|
+/*!
|
|
|
+ * @brief Controls how unaligned memory is accessed.
|
|
|
+ *
|
|
|
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is
|
|
|
+ * safe and portable.
|
|
|
+ *
|
|
|
+ * Unfortunately, on some target/compiler combinations, the generated assembly
|
|
|
+ * is sub-optimal.
|
|
|
+ *
|
|
|
+ * The below switch allow selection of a different access method
|
|
|
+ * in the search for improved performance.
|
|
|
+ *
|
|
|
+ * @par Possible options:
|
|
|
+ *
|
|
|
+ * - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
|
|
|
+ * @par
|
|
|
+ * Use `memcpy()`. Safe and portable. Note that most modern compilers will
|
|
|
+ * eliminate the function call and treat it as an unaligned access.
|
|
|
+ *
|
|
|
+ * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((aligned(1)))`
|
|
|
+ * @par
|
|
|
+ * Depends on compiler extensions and is therefore not portable.
|
|
|
+ * This method is safe _if_ your compiler supports it,
|
|
|
+ * and *generally* as fast or faster than `memcpy`.
|
|
|
+ *
|
|
|
+ * - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
|
|
|
+ * @par
|
|
|
+ * Casts directly and dereferences. This method doesn't depend on the
|
|
|
+ * compiler, but it violates the C standard as it directly dereferences an
|
|
|
+ * unaligned pointer. It can generate buggy code on targets which do not
|
|
|
+ * support unaligned memory accesses, but in some circumstances, it's the
|
|
|
+ * only known way to get the most performance.
|
|
|
+ *
|
|
|
+ * - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
|
|
|
+ * @par
|
|
|
+ * Also portable. This can generate the best code on old compilers which don't
|
|
|
+ * inline small `memcpy()` calls, and it might also be faster on big-endian
|
|
|
+ * systems which lack a native byteswap instruction. However, some compilers
|
|
|
+ * will emit literal byteshifts even if the target supports unaligned access.
|
|
|
+ *
|
|
|
+ *
|
|
|
+ * @warning
|
|
|
+ * Methods 1 and 2 rely on implementation-defined behavior. Use these with
|
|
|
+ * care, as what works on one compiler/platform/optimization level may cause
|
|
|
+ * another to read garbage data or even crash.
|
|
|
+ *
|
|
|
+ * See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
|
|
|
+ *
|
|
|
+ * Prefer these methods in priority order (0 > 3 > 1 > 2)
|
|
|
+ */
|
|
|
+# define XXH_FORCE_MEMORY_ACCESS 0
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @def XXH_SIZE_OPT
|
|
|
+ * @brief Controls how much xxHash optimizes for size.
|
|
|
+ *
|
|
|
+ * xxHash, when compiled, tends to result in a rather large binary size. This
|
|
|
+ * is mostly due to heavy usage to forced inlining and constant folding of the
|
|
|
+ * @ref XXH3_family to increase performance.
|
|
|
+ *
|
|
|
+ * However, some developers prefer size over speed. This option can
|
|
|
+ * significantly reduce the size of the generated code. When using the `-Os`
|
|
|
+ * or `-Oz` options on GCC or Clang, this is defined to 1 by default,
|
|
|
+ * otherwise it is defined to 0.
|
|
|
+ *
|
|
|
+ * Most of these size optimizations can be controlled manually.
|
|
|
+ *
|
|
|
+ * This is a number from 0-2.
|
|
|
+ * - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed
|
|
|
+ * comes first.
|
|
|
+ * - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more
|
|
|
+ * conservative and disables hacks that increase code size. It implies the
|
|
|
+ * options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0,
|
|
|
+ * and @ref XXH3_NEON_LANES == 8 if they are not already defined.
|
|
|
+ * - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible.
|
|
|
+ * Performance may cry. For example, the single shot functions just use the
|
|
|
+ * streaming API.
|
|
|
+ */
|
|
|
+# define XXH_SIZE_OPT 0
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @def XXH_FORCE_ALIGN_CHECK
|
|
|
+ * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
|
|
|
+ * and XXH64() only).
|
|
|
+ *
|
|
|
+ * This is an important performance trick for architectures without decent
|
|
|
+ * unaligned memory access performance.
|
|
|
+ *
|
|
|
+ * It checks for input alignment, and when conditions are met, uses a "fast
|
|
|
+ * path" employing direct 32-bit/64-bit reads, resulting in _dramatically
|
|
|
+ * faster_ read speed.
|
|
|
+ *
|
|
|
+ * The check costs one initial branch per hash, which is generally negligible,
|
|
|
+ * but not zero.
|
|
|
+ *
|
|
|
+ * Moreover, it's not useful to generate an additional code path if memory
|
|
|
+ * access uses the same instruction for both aligned and unaligned
|
|
|
+ * addresses (e.g. x86 and aarch64).
|
|
|
+ *
|
|
|
+ * In these cases, the alignment check can be removed by setting this macro to 0.
|
|
|
+ * Then the code will always use unaligned memory access.
|
|
|
+ * Align check is automatically disabled on x86, x64, ARM64, and some ARM chips
|
|
|
+ * which are platforms known to offer good unaligned memory accesses performance.
|
|
|
+ *
|
|
|
+ * It is also disabled by default when @ref XXH_SIZE_OPT >= 1.
|
|
|
+ *
|
|
|
+ * This option does not affect XXH3 (only XXH32 and XXH64).
|
|
|
+ */
|
|
|
+# define XXH_FORCE_ALIGN_CHECK 0
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @def XXH_NO_INLINE_HINTS
|
|
|
+ * @brief When non-zero, sets all functions to `static`.
|
|
|
+ *
|
|
|
+ * By default, xxHash tries to force the compiler to inline almost all internal
|
|
|
+ * functions.
|
|
|
+ *
|
|
|
+ * This can usually improve performance due to reduced jumping and improved
|
|
|
+ * constant folding, but significantly increases the size of the binary which
|
|
|
+ * might not be favorable.
|
|
|
+ *
|
|
|
+ * Additionally, sometimes the forced inlining can be detrimental to performance,
|
|
|
+ * depending on the architecture.
|
|
|
+ *
|
|
|
+ * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
|
|
|
+ * compiler full control on whether to inline or not.
|
|
|
+ *
|
|
|
+ * When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if
|
|
|
+ * @ref XXH_SIZE_OPT >= 1, this will automatically be defined.
|
|
|
+ */
|
|
|
+# define XXH_NO_INLINE_HINTS 0
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @def XXH3_INLINE_SECRET
|
|
|
+ * @brief Determines whether to inline the XXH3 withSecret code.
|
|
|
+ *
|
|
|
+ * When the secret size is known, the compiler can improve the performance
|
|
|
+ * of XXH3_64bits_withSecret() and XXH3_128bits_withSecret().
|
|
|
+ *
|
|
|
+ * However, if the secret size is not known, it doesn't have any benefit. This
|
|
|
+ * happens when xxHash is compiled into a global symbol. Therefore, if
|
|
|
+ * @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0.
|
|
|
+ *
|
|
|
+ * Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers
|
|
|
+ * that are *sometimes* force inline on -Og, and it is impossible to automatically
|
|
|
+ * detect this optimization level.
|
|
|
+ */
|
|
|
+# define XXH3_INLINE_SECRET 0
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @def XXH32_ENDJMP
|
|
|
+ * @brief Whether to use a jump for `XXH32_finalize`.
|
|
|
+ *
|
|
|
+ * For performance, `XXH32_finalize` uses multiple branches in the finalizer.
|
|
|
+ * This is generally preferable for performance,
|
|
|
+ * but depending on exact architecture, a jmp may be preferable.
|
|
|
+ *
|
|
|
+ * This setting is only possibly making a difference for very small inputs.
|
|
|
+ */
|
|
|
+# define XXH32_ENDJMP 0
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Redefines old internal names.
|
|
|
+ *
|
|
|
+ * For compatibility with code that uses xxHash's internals before the names
|
|
|
+ * were changed to improve namespacing. There is no other reason to use this.
|
|
|
+ */
|
|
|
+# define XXH_OLD_NAMES
|
|
|
+# undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @def XXH_NO_STREAM
|
|
|
+ * @brief Disables the streaming API.
|
|
|
+ *
|
|
|
+ * When xxHash is not inlined and the streaming functions are not used, disabling
|
|
|
+ * the streaming functions can improve code size significantly, especially with
|
|
|
+ * the @ref XXH3_family which tends to make constant folded copies of itself.
|
|
|
+ */
|
|
|
+# define XXH_NO_STREAM
|
|
|
+# undef XXH_NO_STREAM /* don't actually */
|
|
|
+#endif /* XXH_DOXYGEN */
|
|
|
+/*!
|
|
|
+ * @}
|
|
|
+ */
|
|
|
+
|
|
|
+#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
|
|
|
+ /* prefer __packed__ structures (method 1) for GCC
|
|
|
+ * < ARMv7 with unaligned access (e.g. Raspbian armhf) still uses byte shifting, so we use memcpy
|
|
|
+ * which for some reason does unaligned loads. */
|
|
|
+# if defined(__GNUC__) && !(defined(__ARM_ARCH) && __ARM_ARCH < 7 && defined(__ARM_FEATURE_UNALIGNED))
|
|
|
+# define XXH_FORCE_MEMORY_ACCESS 1
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef XXH_SIZE_OPT
|
|
|
+ /* default to 1 for -Os or -Oz */
|
|
|
+# if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__)
|
|
|
+# define XXH_SIZE_OPT 1
|
|
|
+# else
|
|
|
+# define XXH_SIZE_OPT 0
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
|
|
|
+ /* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */
|
|
|
+# if XXH_SIZE_OPT >= 1 || \
|
|
|
+ defined(__i386) || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \
|
|
|
+ || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) || defined(_M_ARM) /* visual */
|
|
|
+# define XXH_FORCE_ALIGN_CHECK 0
|
|
|
+# else
|
|
|
+# define XXH_FORCE_ALIGN_CHECK 1
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef XXH_NO_INLINE_HINTS
|
|
|
+# if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__) /* -O0, -fno-inline */
|
|
|
+# define XXH_NO_INLINE_HINTS 1
|
|
|
+# else
|
|
|
+# define XXH_NO_INLINE_HINTS 0
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef XXH3_INLINE_SECRET
|
|
|
+# if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \
|
|
|
+ || !defined(XXH_INLINE_ALL)
|
|
|
+# define XXH3_INLINE_SECRET 0
|
|
|
+# else
|
|
|
+# define XXH3_INLINE_SECRET 1
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef XXH32_ENDJMP
|
|
|
+/* generally preferable for performance */
|
|
|
+# define XXH32_ENDJMP 0
|
|
|
+#endif
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @defgroup impl Implementation
|
|
|
+ * @{
|
|
|
+ */
|
|
|
+
|
|
|
+
|
|
|
+/* *************************************
|
|
|
+* Includes & Memory related functions
|
|
|
+***************************************/
|
|
|
+#if defined(XXH_NO_STREAM)
|
|
|
+/* nothing */
|
|
|
+#elif defined(XXH_NO_STDLIB)
|
|
|
+
|
|
|
+/* When requesting to disable any mention of stdlib,
|
|
|
+ * the library loses the ability to invoked malloc / free.
|
|
|
+ * In practice, it means that functions like `XXH*_createState()`
|
|
|
+ * will always fail, and return NULL.
|
|
|
+ * This flag is useful in situations where
|
|
|
+ * xxhash.h is integrated into some kernel, embedded or limited environment
|
|
|
+ * without access to dynamic allocation.
|
|
|
+ */
|
|
|
+
|
|
|
+static XXH_CONSTF void* XXH_malloc(size_t s) { (void)s; return NULL; }
|
|
|
+static void XXH_free(void* p) { (void)p; }
|
|
|
+
|
|
|
+#else
|
|
|
+
|
|
|
+/*
|
|
|
+ * Modify the local functions below should you wish to use
|
|
|
+ * different memory routines for malloc() and free()
|
|
|
+ */
|
|
|
+#include <stdlib.h>
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Modify this function to use a different routine than malloc().
|
|
|
+ */
|
|
|
+static XXH_MALLOCF void* XXH_malloc(size_t s) { return malloc(s); }
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Modify this function to use a different routine than free().
|
|
|
+ */
|
|
|
+static void XXH_free(void* p) { free(p); }
|
|
|
+
|
|
|
+#endif /* XXH_NO_STDLIB */
|
|
|
+
|
|
|
+#include <string.h>
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Modify this function to use a different routine than memcpy().
|
|
|
+ */
|
|
|
+static void* XXH_memcpy(void* dest, const void* src, size_t size)
|
|
|
+{
|
|
|
+ return memcpy(dest,src,size);
|
|
|
+}
|
|
|
+
|
|
|
+#include <limits.h> /* ULLONG_MAX */
|
|
|
+
|
|
|
+
|
|
|
+/* *************************************
|
|
|
+* Compiler Specific Options
|
|
|
+***************************************/
|
|
|
+#ifdef _MSC_VER /* Visual Studio warning fix */
|
|
|
+# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
|
|
+#endif
|
|
|
+
|
|
|
+#if XXH_NO_INLINE_HINTS /* disable inlining hints */
|
|
|
+# if defined(__GNUC__) || defined(__clang__)
|
|
|
+# define XXH_FORCE_INLINE static __attribute__((__unused__))
|
|
|
+# else
|
|
|
+# define XXH_FORCE_INLINE static
|
|
|
+# endif
|
|
|
+# define XXH_NO_INLINE static
|
|
|
+/* enable inlining hints */
|
|
|
+#elif defined(__GNUC__) || defined(__clang__)
|
|
|
+# define XXH_FORCE_INLINE static __inline__ __attribute__((__always_inline__, __unused__))
|
|
|
+# define XXH_NO_INLINE static __attribute__((__noinline__))
|
|
|
+#elif defined(_MSC_VER) /* Visual Studio */
|
|
|
+# define XXH_FORCE_INLINE static __forceinline
|
|
|
+# define XXH_NO_INLINE static __declspec(noinline)
|
|
|
+#elif defined (__cplusplus) \
|
|
|
+ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */
|
|
|
+# define XXH_FORCE_INLINE static inline
|
|
|
+# define XXH_NO_INLINE static
|
|
|
+#else
|
|
|
+# define XXH_FORCE_INLINE static
|
|
|
+# define XXH_NO_INLINE static
|
|
|
+#endif
|
|
|
+
|
|
|
+#if XXH3_INLINE_SECRET
|
|
|
+# define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE
|
|
|
+#else
|
|
|
+# define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE
|
|
|
+#endif
|
|
|
+
|
|
|
+
|
|
|
+/* *************************************
|
|
|
+* Debug
|
|
|
+***************************************/
|
|
|
+/*!
|
|
|
+ * @ingroup tuning
|
|
|
+ * @def XXH_DEBUGLEVEL
|
|
|
+ * @brief Sets the debugging level.
|
|
|
+ *
|
|
|
+ * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
|
|
|
+ * compiler's command line options. The value must be a number.
|
|
|
+ */
|
|
|
+#ifndef XXH_DEBUGLEVEL
|
|
|
+# ifdef DEBUGLEVEL /* backwards compat */
|
|
|
+# define XXH_DEBUGLEVEL DEBUGLEVEL
|
|
|
+# else
|
|
|
+# define XXH_DEBUGLEVEL 0
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+
|
|
|
+#if (XXH_DEBUGLEVEL>=1)
|
|
|
+# include <assert.h> /* note: can still be disabled with NDEBUG */
|
|
|
+# define XXH_ASSERT(c) assert(c)
|
|
|
+#else
|
|
|
+# if defined(__INTEL_COMPILER)
|
|
|
+# define XXH_ASSERT(c) XXH_ASSUME((unsigned char) (c))
|
|
|
+# else
|
|
|
+# define XXH_ASSERT(c) XXH_ASSUME(c)
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+
|
|
|
+/* note: use after variable declarations */
|
|
|
+#ifndef XXH_STATIC_ASSERT
|
|
|
+# if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */
|
|
|
+# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0)
|
|
|
+# elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */
|
|
|
+# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
|
|
|
+# else
|
|
|
+# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0)
|
|
|
+# endif
|
|
|
+# define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c)
|
|
|
+#endif
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @def XXH_COMPILER_GUARD(var)
|
|
|
+ * @brief Used to prevent unwanted optimizations for @p var.
|
|
|
+ *
|
|
|
+ * It uses an empty GCC inline assembly statement with a register constraint
|
|
|
+ * which forces @p var into a general purpose register (eg eax, ebx, ecx
|
|
|
+ * on x86) and marks it as modified.
|
|
|
+ *
|
|
|
+ * This is used in a few places to avoid unwanted autovectorization (e.g.
|
|
|
+ * XXH32_round()). All vectorization we want is explicit via intrinsics,
|
|
|
+ * and _usually_ isn't wanted elsewhere.
|
|
|
+ *
|
|
|
+ * We also use it to prevent unwanted constant folding for AArch64 in
|
|
|
+ * XXH3_initCustomSecret_scalar().
|
|
|
+ */
|
|
|
+#if defined(__GNUC__) || defined(__clang__)
|
|
|
+# define XXH_COMPILER_GUARD(var) __asm__("" : "+r" (var))
|
|
|
+#else
|
|
|
+# define XXH_COMPILER_GUARD(var) ((void)0)
|
|
|
+#endif
|
|
|
+
|
|
|
+/* Specifically for NEON vectors which use the "w" constraint, on
|
|
|
+ * Clang. */
|
|
|
+#if defined(__clang__) && defined(__ARM_ARCH) && !defined(__wasm__)
|
|
|
+# define XXH_COMPILER_GUARD_CLANG_NEON(var) __asm__("" : "+w" (var))
|
|
|
+#else
|
|
|
+# define XXH_COMPILER_GUARD_CLANG_NEON(var) ((void)0)
|
|
|
+#endif
|
|
|
+
|
|
|
+/* *************************************
|
|
|
+* Basic Types
|
|
|
+***************************************/
|
|
|
+#if !defined (__VMS) \
|
|
|
+ && (defined (__cplusplus) \
|
|
|
+ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
|
+# ifdef _AIX
|
|
|
+# include <inttypes.h>
|
|
|
+# else
|
|
|
+# include <stdint.h>
|
|
|
+# endif
|
|
|
+ typedef uint8_t xxh_u8;
|
|
|
+#else
|
|
|
+ typedef unsigned char xxh_u8;
|
|
|
+#endif
|
|
|
+typedef XXH32_hash_t xxh_u32;
|
|
|
+
|
|
|
+#ifdef XXH_OLD_NAMES
|
|
|
+# warning "XXH_OLD_NAMES is planned to be removed starting v0.9. If the program depends on it, consider moving away from it by employing newer type names directly"
|
|
|
+# define BYTE xxh_u8
|
|
|
+# define U8 xxh_u8
|
|
|
+# define U32 xxh_u32
|
|
|
+#endif
|
|
|
+
|
|
|
+/* *** Memory access *** */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @fn xxh_u32 XXH_read32(const void* ptr)
|
|
|
+ * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
|
|
|
+ *
|
|
|
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
|
|
|
+ *
|
|
|
+ * @param ptr The pointer to read from.
|
|
|
+ * @return The 32-bit native endian integer from the bytes at @p ptr.
|
|
|
+ */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @fn xxh_u32 XXH_readLE32(const void* ptr)
|
|
|
+ * @brief Reads an unaligned 32-bit little endian integer from @p ptr.
|
|
|
+ *
|
|
|
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
|
|
|
+ *
|
|
|
+ * @param ptr The pointer to read from.
|
|
|
+ * @return The 32-bit little endian integer from the bytes at @p ptr.
|
|
|
+ */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @fn xxh_u32 XXH_readBE32(const void* ptr)
|
|
|
+ * @brief Reads an unaligned 32-bit big endian integer from @p ptr.
|
|
|
+ *
|
|
|
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
|
|
|
+ *
|
|
|
+ * @param ptr The pointer to read from.
|
|
|
+ * @return The 32-bit big endian integer from the bytes at @p ptr.
|
|
|
+ */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
|
|
|
+ * @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
|
|
|
+ *
|
|
|
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
|
|
|
+ * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
|
|
|
+ * always @ref XXH_alignment::XXH_unaligned.
|
|
|
+ *
|
|
|
+ * @param ptr The pointer to read from.
|
|
|
+ * @param align Whether @p ptr is aligned.
|
|
|
+ * @pre
|
|
|
+ * If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
|
|
|
+ * aligned.
|
|
|
+ * @return The 32-bit little endian integer from the bytes at @p ptr.
|
|
|
+ */
|
|
|
+
|
|
|
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
|
|
|
+/*
|
|
|
+ * Manual byteshift. Best for old compilers which don't inline memcpy.
|
|
|
+ * We actually directly use XXH_readLE32 and XXH_readBE32.
|
|
|
+ */
|
|
|
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
|
|
|
+
|
|
|
+/*
|
|
|
+ * Force direct memory access. Only works on CPU which support unaligned memory
|
|
|
+ * access in hardware.
|
|
|
+ */
|
|
|
+static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
|
|
|
+
|
|
|
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
|
|
|
+
|
|
|
+/*
|
|
|
+ * __attribute__((aligned(1))) is supported by gcc and clang. Originally the
|
|
|
+ * documentation claimed that it only increased the alignment, but actually it
|
|
|
+ * can decrease it on gcc, clang, and icc:
|
|
|
+ * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
|
|
|
+ * https://gcc.godbolt.org/z/xYez1j67Y.
|
|
|
+ */
|
|
|
+#ifdef XXH_OLD_NAMES
|
|
|
+typedef union { xxh_u32 u32; } __attribute__((__packed__)) unalign;
|
|
|
+#endif
|
|
|
+static xxh_u32 XXH_read32(const void* ptr)
|
|
|
+{
|
|
|
+ typedef __attribute__((__aligned__(1))) xxh_u32 xxh_unalign32;
|
|
|
+ return *((const xxh_unalign32*)ptr);
|
|
|
+}
|
|
|
+
|
|
|
+#else
|
|
|
+
|
|
|
+/*
|
|
|
+ * Portable and safe solution. Generally efficient.
|
|
|
+ * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
|
|
|
+ */
|
|
|
+static xxh_u32 XXH_read32(const void* memPtr)
|
|
|
+{
|
|
|
+ xxh_u32 val;
|
|
|
+ XXH_memcpy(&val, memPtr, sizeof(val));
|
|
|
+ return val;
|
|
|
+}
|
|
|
+
|
|
|
+#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
|
|
|
+
|
|
|
+
|
|
|
+/* *** Endianness *** */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @ingroup tuning
|
|
|
+ * @def XXH_CPU_LITTLE_ENDIAN
|
|
|
+ * @brief Whether the target is little endian.
|
|
|
+ *
|
|
|
+ * Defined to 1 if the target is little endian, or 0 if it is big endian.
|
|
|
+ * It can be defined externally, for example on the compiler command line.
|
|
|
+ *
|
|
|
+ * If it is not defined,
|
|
|
+ * a runtime check (which is usually constant folded) is used instead.
|
|
|
+ *
|
|
|
+ * @note
|
|
|
+ * This is not necessarily defined to an integer constant.
|
|
|
+ *
|
|
|
+ * @see XXH_isLittleEndian() for the runtime check.
|
|
|
+ */
|
|
|
+#ifndef XXH_CPU_LITTLE_ENDIAN
|
|
|
+/*
|
|
|
+ * Try to detect endianness automatically, to avoid the nonstandard behavior
|
|
|
+ * in `XXH_isLittleEndian()`
|
|
|
+ */
|
|
|
+# if defined(_WIN32) /* Windows is always little endian */ \
|
|
|
+ || defined(__LITTLE_ENDIAN__) \
|
|
|
+ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
|
|
|
+# define XXH_CPU_LITTLE_ENDIAN 1
|
|
|
+# elif defined(__BIG_ENDIAN__) \
|
|
|
+ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
|
|
|
+# define XXH_CPU_LITTLE_ENDIAN 0
|
|
|
+# else
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
|
|
|
+ *
|
|
|
+ * Most compilers will constant fold this.
|
|
|
+ */
|
|
|
+static int XXH_isLittleEndian(void)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * Portable and well-defined behavior.
|
|
|
+ * Don't use static: it is detrimental to performance.
|
|
|
+ */
|
|
|
+ const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
|
|
|
+ return one.c[0];
|
|
|
+}
|
|
|
+# define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+/* ****************************************
|
|
|
+* Compiler-specific Functions and Macros
|
|
|
+******************************************/
|
|
|
+#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
|
|
|
+
|
|
|
+#ifdef __has_builtin
|
|
|
+# define XXH_HAS_BUILTIN(x) __has_builtin(x)
|
|
|
+#else
|
|
|
+# define XXH_HAS_BUILTIN(x) 0
|
|
|
+#endif
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * C23 and future versions have standard "unreachable()".
|
|
|
+ * Once it has been implemented reliably we can add it as an
|
|
|
+ * additional case:
|
|
|
+ *
|
|
|
+ * ```
|
|
|
+ * #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN)
|
|
|
+ * # include <stddef.h>
|
|
|
+ * # ifdef unreachable
|
|
|
+ * # define XXH_UNREACHABLE() unreachable()
|
|
|
+ * # endif
|
|
|
+ * #endif
|
|
|
+ * ```
|
|
|
+ *
|
|
|
+ * Note C++23 also has std::unreachable() which can be detected
|
|
|
+ * as follows:
|
|
|
+ * ```
|
|
|
+ * #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L)
|
|
|
+ * # include <utility>
|
|
|
+ * # define XXH_UNREACHABLE() std::unreachable()
|
|
|
+ * #endif
|
|
|
+ * ```
|
|
|
+ * NB: `__cpp_lib_unreachable` is defined in the `<version>` header.
|
|
|
+ * We don't use that as including `<utility>` in `extern "C"` blocks
|
|
|
+ * doesn't work on GCC12
|
|
|
+ */
|
|
|
+
|
|
|
+#if XXH_HAS_BUILTIN(__builtin_unreachable)
|
|
|
+# define XXH_UNREACHABLE() __builtin_unreachable()
|
|
|
+
|
|
|
+#elif defined(_MSC_VER)
|
|
|
+# define XXH_UNREACHABLE() __assume(0)
|
|
|
+
|
|
|
+#else
|
|
|
+# define XXH_UNREACHABLE()
|
|
|
+#endif
|
|
|
+
|
|
|
+#if XXH_HAS_BUILTIN(__builtin_assume)
|
|
|
+# define XXH_ASSUME(c) __builtin_assume(c)
|
|
|
+#else
|
|
|
+# define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); }
|
|
|
+#endif
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @def XXH_rotl32(x,r)
|
|
|
+ * @brief 32-bit rotate left.
|
|
|
+ *
|
|
|
+ * @param x The 32-bit integer to be rotated.
|
|
|
+ * @param r The number of bits to rotate.
|
|
|
+ * @pre
|
|
|
+ * @p r > 0 && @p r < 32
|
|
|
+ * @note
|
|
|
+ * @p x and @p r may be evaluated multiple times.
|
|
|
+ * @return The rotated result.
|
|
|
+ */
|
|
|
+#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
|
|
|
+ && XXH_HAS_BUILTIN(__builtin_rotateleft64)
|
|
|
+# define XXH_rotl32 __builtin_rotateleft32
|
|
|
+# define XXH_rotl64 __builtin_rotateleft64
|
|
|
+/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
|
|
|
+#elif defined(_MSC_VER)
|
|
|
+# define XXH_rotl32(x,r) _rotl(x,r)
|
|
|
+# define XXH_rotl64(x,r) _rotl64(x,r)
|
|
|
+#else
|
|
|
+# define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
|
|
|
+# define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
|
|
|
+#endif
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @fn xxh_u32 XXH_swap32(xxh_u32 x)
|
|
|
+ * @brief A 32-bit byteswap.
|
|
|
+ *
|
|
|
+ * @param x The 32-bit integer to byteswap.
|
|
|
+ * @return @p x, byteswapped.
|
|
|
+ */
|
|
|
+#if defined(_MSC_VER) /* Visual Studio */
|
|
|
+# define XXH_swap32 _byteswap_ulong
|
|
|
+#elif XXH_GCC_VERSION >= 403
|
|
|
+# define XXH_swap32 __builtin_bswap32
|
|
|
+#else
|
|
|
+static xxh_u32 XXH_swap32 (xxh_u32 x)
|
|
|
+{
|
|
|
+ return ((x << 24) & 0xff000000 ) |
|
|
|
+ ((x << 8) & 0x00ff0000 ) |
|
|
|
+ ((x >> 8) & 0x0000ff00 ) |
|
|
|
+ ((x >> 24) & 0x000000ff );
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+
|
|
|
+/* ***************************
|
|
|
+* Memory reads
|
|
|
+*****************************/
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Enum to indicate whether a pointer is aligned.
|
|
|
+ */
|
|
|
+typedef enum {
|
|
|
+ XXH_aligned, /*!< Aligned */
|
|
|
+ XXH_unaligned /*!< Possibly unaligned */
|
|
|
+} XXH_alignment;
|
|
|
+
|
|
|
+/*
|
|
|
+ * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
|
|
|
+ *
|
|
|
+ * This is ideal for older compilers which don't inline memcpy.
|
|
|
+ */
|
|
|
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
|
|
|
+
|
|
|
+XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
|
|
|
+{
|
|
|
+ const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
|
|
|
+ return bytePtr[0]
|
|
|
+ | ((xxh_u32)bytePtr[1] << 8)
|
|
|
+ | ((xxh_u32)bytePtr[2] << 16)
|
|
|
+ | ((xxh_u32)bytePtr[3] << 24);
|
|
|
+}
|
|
|
+
|
|
|
+XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
|
|
|
+{
|
|
|
+ const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
|
|
|
+ return bytePtr[3]
|
|
|
+ | ((xxh_u32)bytePtr[2] << 8)
|
|
|
+ | ((xxh_u32)bytePtr[1] << 16)
|
|
|
+ | ((xxh_u32)bytePtr[0] << 24);
|
|
|
+}
|
|
|
+
|
|
|
+#else
|
|
|
+XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
|
|
|
+{
|
|
|
+ return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
|
|
|
+}
|
|
|
+
|
|
|
+static xxh_u32 XXH_readBE32(const void* ptr)
|
|
|
+{
|
|
|
+ return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+XXH_FORCE_INLINE xxh_u32
|
|
|
+XXH_readLE32_align(const void* ptr, XXH_alignment align)
|
|
|
+{
|
|
|
+ if (align==XXH_unaligned) {
|
|
|
+ return XXH_readLE32(ptr);
|
|
|
+ } else {
|
|
|
+ return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* *************************************
|
|
|
+* Misc
|
|
|
+***************************************/
|
|
|
+/*! @ingroup public */
|
|
|
+XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
|
|
|
+
|
|
|
+
|
|
|
+/* *******************************************************************
|
|
|
+* 32-bit hash functions
|
|
|
+*********************************************************************/
|
|
|
+/*!
|
|
|
+ * @}
|
|
|
+ * @defgroup XXH32_impl XXH32 implementation
|
|
|
+ * @ingroup impl
|
|
|
+ *
|
|
|
+ * Details on the XXH32 implementation.
|
|
|
+ * @{
|
|
|
+ */
|
|
|
+ /* #define instead of static const, to be used as initializers */
|
|
|
+#define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */
|
|
|
+#define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */
|
|
|
+#define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */
|
|
|
+#define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */
|
|
|
+#define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */
|
|
|
+
|
|
|
+#ifdef XXH_OLD_NAMES
|
|
|
+# define PRIME32_1 XXH_PRIME32_1
|
|
|
+# define PRIME32_2 XXH_PRIME32_2
|
|
|
+# define PRIME32_3 XXH_PRIME32_3
|
|
|
+# define PRIME32_4 XXH_PRIME32_4
|
|
|
+# define PRIME32_5 XXH_PRIME32_5
|
|
|
+#endif
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Normal stripe processing routine.
|
|
|
+ *
|
|
|
+ * This shuffles the bits so that any bit from @p input impacts several bits in
|
|
|
+ * @p acc.
|
|
|
+ *
|
|
|
+ * @param acc The accumulator lane.
|
|
|
+ * @param input The stripe of input to mix.
|
|
|
+ * @return The mixed accumulator lane.
|
|
|
+ */
|
|
|
+static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
|
|
|
+{
|
|
|
+ acc += input * XXH_PRIME32_2;
|
|
|
+ acc = XXH_rotl32(acc, 13);
|
|
|
+ acc *= XXH_PRIME32_1;
|
|
|
+#if (defined(__SSE4_1__) || defined(__aarch64__) || defined(__wasm_simd128__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
|
|
|
+ /*
|
|
|
+ * UGLY HACK:
|
|
|
+ * A compiler fence is used to prevent GCC and Clang from
|
|
|
+ * autovectorizing the XXH32 loop (pragmas and attributes don't work for some
|
|
|
+ * reason) without globally disabling SSE4.1.
|
|
|
+ *
|
|
|
+ * The reason we want to avoid vectorization is because despite working on
|
|
|
+ * 4 integers at a time, there are multiple factors slowing XXH32 down on
|
|
|
+ * SSE4:
|
|
|
+ * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
|
|
|
+ * newer chips!) making it slightly slower to multiply four integers at
|
|
|
+ * once compared to four integers independently. Even when pmulld was
|
|
|
+ * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
|
|
|
+ * just to multiply unless doing a long operation.
|
|
|
+ *
|
|
|
+ * - Four instructions are required to rotate,
|
|
|
+ * movqda tmp, v // not required with VEX encoding
|
|
|
+ * pslld tmp, 13 // tmp <<= 13
|
|
|
+ * psrld v, 19 // x >>= 19
|
|
|
+ * por v, tmp // x |= tmp
|
|
|
+ * compared to one for scalar:
|
|
|
+ * roll v, 13 // reliably fast across the board
|
|
|
+ * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason
|
|
|
+ *
|
|
|
+ * - Instruction level parallelism is actually more beneficial here because
|
|
|
+ * the SIMD actually serializes this operation: While v1 is rotating, v2
|
|
|
+ * can load data, while v3 can multiply. SSE forces them to operate
|
|
|
+ * together.
|
|
|
+ *
|
|
|
+ * This is also enabled on AArch64, as Clang is *very aggressive* in vectorizing
|
|
|
+ * the loop. NEON is only faster on the A53, and with the newer cores, it is less
|
|
|
+ * than half the speed.
|
|
|
+ *
|
|
|
+ * Additionally, this is used on WASM SIMD128 because it JITs to the same
|
|
|
+ * SIMD instructions and has the same issue.
|
|
|
+ */
|
|
|
+ XXH_COMPILER_GUARD(acc);
|
|
|
+#endif
|
|
|
+ return acc;
|
|
|
+}
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Mixes all bits to finalize the hash.
|
|
|
+ *
|
|
|
+ * The final mix ensures that all input bits have a chance to impact any bit in
|
|
|
+ * the output digest, resulting in an unbiased distribution.
|
|
|
+ *
|
|
|
+ * @param hash The hash to avalanche.
|
|
|
+ * @return The avalanched hash.
|
|
|
+ */
|
|
|
+static xxh_u32 XXH32_avalanche(xxh_u32 hash)
|
|
|
+{
|
|
|
+ hash ^= hash >> 15;
|
|
|
+ hash *= XXH_PRIME32_2;
|
|
|
+ hash ^= hash >> 13;
|
|
|
+ hash *= XXH_PRIME32_3;
|
|
|
+ hash ^= hash >> 16;
|
|
|
+ return hash;
|
|
|
+}
|
|
|
+
|
|
|
+#define XXH_get32bits(p) XXH_readLE32_align(p, align)
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Processes the last 0-15 bytes of @p ptr.
|
|
|
+ *
|
|
|
+ * There may be up to 15 bytes remaining to consume from the input.
|
|
|
+ * This final stage will digest them to ensure that all input bytes are present
|
|
|
+ * in the final mix.
|
|
|
+ *
|
|
|
+ * @param hash The hash to finalize.
|
|
|
+ * @param ptr The pointer to the remaining input.
|
|
|
+ * @param len The remaining length, modulo 16.
|
|
|
+ * @param align Whether @p ptr is aligned.
|
|
|
+ * @return The finalized hash.
|
|
|
+ * @see XXH64_finalize().
|
|
|
+ */
|
|
|
+static XXH_PUREF xxh_u32
|
|
|
+XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
|
|
|
+{
|
|
|
+#define XXH_PROCESS1 do { \
|
|
|
+ hash += (*ptr++) * XXH_PRIME32_5; \
|
|
|
+ hash = XXH_rotl32(hash, 11) * XXH_PRIME32_1; \
|
|
|
+} while (0)
|
|
|
+
|
|
|
+#define XXH_PROCESS4 do { \
|
|
|
+ hash += XXH_get32bits(ptr) * XXH_PRIME32_3; \
|
|
|
+ ptr += 4; \
|
|
|
+ hash = XXH_rotl32(hash, 17) * XXH_PRIME32_4; \
|
|
|
+} while (0)
|
|
|
+
|
|
|
+ if (ptr==NULL) XXH_ASSERT(len == 0);
|
|
|
+
|
|
|
+ /* Compact rerolled version; generally faster */
|
|
|
+ if (!XXH32_ENDJMP) {
|
|
|
+ len &= 15;
|
|
|
+ while (len >= 4) {
|
|
|
+ XXH_PROCESS4;
|
|
|
+ len -= 4;
|
|
|
+ }
|
|
|
+ while (len > 0) {
|
|
|
+ XXH_PROCESS1;
|
|
|
+ --len;
|
|
|
+ }
|
|
|
+ return XXH32_avalanche(hash);
|
|
|
+ } else {
|
|
|
+ switch(len&15) /* or switch(bEnd - p) */ {
|
|
|
+ case 12: XXH_PROCESS4;
|
|
|
+ XXH_FALLTHROUGH; /* fallthrough */
|
|
|
+ case 8: XXH_PROCESS4;
|
|
|
+ XXH_FALLTHROUGH; /* fallthrough */
|
|
|
+ case 4: XXH_PROCESS4;
|
|
|
+ return XXH32_avalanche(hash);
|
|
|
+
|
|
|
+ case 13: XXH_PROCESS4;
|
|
|
+ XXH_FALLTHROUGH; /* fallthrough */
|
|
|
+ case 9: XXH_PROCESS4;
|
|
|
+ XXH_FALLTHROUGH; /* fallthrough */
|
|
|
+ case 5: XXH_PROCESS4;
|
|
|
+ XXH_PROCESS1;
|
|
|
+ return XXH32_avalanche(hash);
|
|
|
+
|
|
|
+ case 14: XXH_PROCESS4;
|
|
|
+ XXH_FALLTHROUGH; /* fallthrough */
|
|
|
+ case 10: XXH_PROCESS4;
|
|
|
+ XXH_FALLTHROUGH; /* fallthrough */
|
|
|
+ case 6: XXH_PROCESS4;
|
|
|
+ XXH_PROCESS1;
|
|
|
+ XXH_PROCESS1;
|
|
|
+ return XXH32_avalanche(hash);
|
|
|
+
|
|
|
+ case 15: XXH_PROCESS4;
|
|
|
+ XXH_FALLTHROUGH; /* fallthrough */
|
|
|
+ case 11: XXH_PROCESS4;
|
|
|
+ XXH_FALLTHROUGH; /* fallthrough */
|
|
|
+ case 7: XXH_PROCESS4;
|
|
|
+ XXH_FALLTHROUGH; /* fallthrough */
|
|
|
+ case 3: XXH_PROCESS1;
|
|
|
+ XXH_FALLTHROUGH; /* fallthrough */
|
|
|
+ case 2: XXH_PROCESS1;
|
|
|
+ XXH_FALLTHROUGH; /* fallthrough */
|
|
|
+ case 1: XXH_PROCESS1;
|
|
|
+ XXH_FALLTHROUGH; /* fallthrough */
|
|
|
+ case 0: return XXH32_avalanche(hash);
|
|
|
+ }
|
|
|
+ XXH_ASSERT(0);
|
|
|
+ return hash; /* reaching this point is deemed impossible */
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#ifdef XXH_OLD_NAMES
|
|
|
+# define PROCESS1 XXH_PROCESS1
|
|
|
+# define PROCESS4 XXH_PROCESS4
|
|
|
+#else
|
|
|
+# undef XXH_PROCESS1
|
|
|
+# undef XXH_PROCESS4
|
|
|
+#endif
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief The implementation for @ref XXH32().
|
|
|
+ *
|
|
|
+ * @param input , len , seed Directly passed from @ref XXH32().
|
|
|
+ * @param align Whether @p input is aligned.
|
|
|
+ * @return The calculated hash.
|
|
|
+ */
|
|
|
+XXH_FORCE_INLINE XXH_PUREF xxh_u32
|
|
|
+XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
|
|
|
+{
|
|
|
+ xxh_u32 h32;
|
|
|
+
|
|
|
+ if (input==NULL) XXH_ASSERT(len == 0);
|
|
|
+
|
|
|
+ if (len>=16) {
|
|
|
+ const xxh_u8* const bEnd = input + len;
|
|
|
+ const xxh_u8* const limit = bEnd - 15;
|
|
|
+ xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
|
|
|
+ xxh_u32 v2 = seed + XXH_PRIME32_2;
|
|
|
+ xxh_u32 v3 = seed + 0;
|
|
|
+ xxh_u32 v4 = seed - XXH_PRIME32_1;
|
|
|
+
|
|
|
+ do {
|
|
|
+ v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
|
|
|
+ v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
|
|
|
+ v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
|
|
|
+ v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
|
|
|
+ } while (input < limit);
|
|
|
+
|
|
|
+ h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7)
|
|
|
+ + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
|
|
|
+ } else {
|
|
|
+ h32 = seed + XXH_PRIME32_5;
|
|
|
+ }
|
|
|
+
|
|
|
+ h32 += (xxh_u32)len;
|
|
|
+
|
|
|
+ return XXH32_finalize(h32, input, len&15, align);
|
|
|
+}
|
|
|
+
|
|
|
+/*! @ingroup XXH32_family */
|
|
|
+XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
|
|
|
+{
|
|
|
+#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
|
|
|
+ /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
|
|
|
+ XXH32_state_t state;
|
|
|
+ XXH32_reset(&state, seed);
|
|
|
+ XXH32_update(&state, (const xxh_u8*)input, len);
|
|
|
+ return XXH32_digest(&state);
|
|
|
+#else
|
|
|
+ if (XXH_FORCE_ALIGN_CHECK) {
|
|
|
+ if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
|
|
|
+ return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
|
|
|
+ } }
|
|
|
+
|
|
|
+ return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+/******* Hash streaming *******/
|
|
|
+#ifndef XXH_NO_STREAM
|
|
|
+/*! @ingroup XXH32_family */
|
|
|
+XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
|
|
|
+{
|
|
|
+ return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
|
|
|
+}
|
|
|
+/*! @ingroup XXH32_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
|
|
|
+{
|
|
|
+ XXH_free(statePtr);
|
|
|
+ return XXH_OK;
|
|
|
+}
|
|
|
+
|
|
|
+/*! @ingroup XXH32_family */
|
|
|
+XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
|
|
|
+{
|
|
|
+ XXH_memcpy(dstState, srcState, sizeof(*dstState));
|
|
|
+}
|
|
|
+
|
|
|
+/*! @ingroup XXH32_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
|
|
|
+{
|
|
|
+ XXH_ASSERT(statePtr != NULL);
|
|
|
+ memset(statePtr, 0, sizeof(*statePtr));
|
|
|
+ statePtr->v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
|
|
|
+ statePtr->v[1] = seed + XXH_PRIME32_2;
|
|
|
+ statePtr->v[2] = seed + 0;
|
|
|
+ statePtr->v[3] = seed - XXH_PRIME32_1;
|
|
|
+ return XXH_OK;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/*! @ingroup XXH32_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode
|
|
|
+XXH32_update(XXH32_state_t* state, const void* input, size_t len)
|
|
|
+{
|
|
|
+ if (input==NULL) {
|
|
|
+ XXH_ASSERT(len == 0);
|
|
|
+ return XXH_OK;
|
|
|
+ }
|
|
|
+
|
|
|
+ { const xxh_u8* p = (const xxh_u8*)input;
|
|
|
+ const xxh_u8* const bEnd = p + len;
|
|
|
+
|
|
|
+ state->total_len_32 += (XXH32_hash_t)len;
|
|
|
+ state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
|
|
|
+
|
|
|
+ if (state->memsize + len < 16) { /* fill in tmp buffer */
|
|
|
+ XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
|
|
|
+ state->memsize += (XXH32_hash_t)len;
|
|
|
+ return XXH_OK;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (state->memsize) { /* some data left from previous update */
|
|
|
+ XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
|
|
|
+ { const xxh_u32* p32 = state->mem32;
|
|
|
+ state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++;
|
|
|
+ state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++;
|
|
|
+ state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++;
|
|
|
+ state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32));
|
|
|
+ }
|
|
|
+ p += 16-state->memsize;
|
|
|
+ state->memsize = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (p <= bEnd-16) {
|
|
|
+ const xxh_u8* const limit = bEnd - 16;
|
|
|
+
|
|
|
+ do {
|
|
|
+ state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4;
|
|
|
+ state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4;
|
|
|
+ state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4;
|
|
|
+ state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4;
|
|
|
+ } while (p<=limit);
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ if (p < bEnd) {
|
|
|
+ XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
|
|
|
+ state->memsize = (unsigned)(bEnd-p);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return XXH_OK;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/*! @ingroup XXH32_family */
|
|
|
+XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
|
|
|
+{
|
|
|
+ xxh_u32 h32;
|
|
|
+
|
|
|
+ if (state->large_len) {
|
|
|
+ h32 = XXH_rotl32(state->v[0], 1)
|
|
|
+ + XXH_rotl32(state->v[1], 7)
|
|
|
+ + XXH_rotl32(state->v[2], 12)
|
|
|
+ + XXH_rotl32(state->v[3], 18);
|
|
|
+ } else {
|
|
|
+ h32 = state->v[2] /* == seed */ + XXH_PRIME32_5;
|
|
|
+ }
|
|
|
+
|
|
|
+ h32 += state->total_len_32;
|
|
|
+
|
|
|
+ return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
|
|
|
+}
|
|
|
+#endif /* !XXH_NO_STREAM */
|
|
|
+
|
|
|
+/******* Canonical representation *******/
|
|
|
+
|
|
|
+/*! @ingroup XXH32_family */
|
|
|
+XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
|
|
|
+{
|
|
|
+ XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
|
|
|
+ if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
|
|
|
+ XXH_memcpy(dst, &hash, sizeof(*dst));
|
|
|
+}
|
|
|
+/*! @ingroup XXH32_family */
|
|
|
+XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
|
|
|
+{
|
|
|
+ return XXH_readBE32(src);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+#ifndef XXH_NO_LONG_LONG
|
|
|
+
|
|
|
+/* *******************************************************************
|
|
|
+* 64-bit hash functions
|
|
|
+*********************************************************************/
|
|
|
+/*!
|
|
|
+ * @}
|
|
|
+ * @ingroup impl
|
|
|
+ * @{
|
|
|
+ */
|
|
|
+/******* Memory access *******/
|
|
|
+
|
|
|
+typedef XXH64_hash_t xxh_u64;
|
|
|
+
|
|
|
+#ifdef XXH_OLD_NAMES
|
|
|
+# define U64 xxh_u64
|
|
|
+#endif
|
|
|
+
|
|
|
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
|
|
|
+/*
|
|
|
+ * Manual byteshift. Best for old compilers which don't inline memcpy.
|
|
|
+ * We actually directly use XXH_readLE64 and XXH_readBE64.
|
|
|
+ */
|
|
|
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
|
|
|
+
|
|
|
+/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
|
|
|
+static xxh_u64 XXH_read64(const void* memPtr)
|
|
|
+{
|
|
|
+ return *(const xxh_u64*) memPtr;
|
|
|
+}
|
|
|
+
|
|
|
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
|
|
|
+
|
|
|
+/*
|
|
|
+ * __attribute__((aligned(1))) is supported by gcc and clang. Originally the
|
|
|
+ * documentation claimed that it only increased the alignment, but actually it
|
|
|
+ * can decrease it on gcc, clang, and icc:
|
|
|
+ * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
|
|
|
+ * https://gcc.godbolt.org/z/xYez1j67Y.
|
|
|
+ */
|
|
|
+#ifdef XXH_OLD_NAMES
|
|
|
+typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((__packed__)) unalign64;
|
|
|
+#endif
|
|
|
+static xxh_u64 XXH_read64(const void* ptr)
|
|
|
+{
|
|
|
+ typedef __attribute__((__aligned__(1))) xxh_u64 xxh_unalign64;
|
|
|
+ return *((const xxh_unalign64*)ptr);
|
|
|
+}
|
|
|
+
|
|
|
+#else
|
|
|
+
|
|
|
+/*
|
|
|
+ * Portable and safe solution. Generally efficient.
|
|
|
+ * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
|
|
|
+ */
|
|
|
+static xxh_u64 XXH_read64(const void* memPtr)
|
|
|
+{
|
|
|
+ xxh_u64 val;
|
|
|
+ XXH_memcpy(&val, memPtr, sizeof(val));
|
|
|
+ return val;
|
|
|
+}
|
|
|
+
|
|
|
+#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
|
|
|
+
|
|
|
+#if defined(_MSC_VER) /* Visual Studio */
|
|
|
+# define XXH_swap64 _byteswap_uint64
|
|
|
+#elif XXH_GCC_VERSION >= 403
|
|
|
+# define XXH_swap64 __builtin_bswap64
|
|
|
+#else
|
|
|
+static xxh_u64 XXH_swap64(xxh_u64 x)
|
|
|
+{
|
|
|
+ return ((x << 56) & 0xff00000000000000ULL) |
|
|
|
+ ((x << 40) & 0x00ff000000000000ULL) |
|
|
|
+ ((x << 24) & 0x0000ff0000000000ULL) |
|
|
|
+ ((x << 8) & 0x000000ff00000000ULL) |
|
|
|
+ ((x >> 8) & 0x00000000ff000000ULL) |
|
|
|
+ ((x >> 24) & 0x0000000000ff0000ULL) |
|
|
|
+ ((x >> 40) & 0x000000000000ff00ULL) |
|
|
|
+ ((x >> 56) & 0x00000000000000ffULL);
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+
|
|
|
+/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
|
|
|
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
|
|
|
+
|
|
|
+XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
|
|
|
+{
|
|
|
+ const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
|
|
|
+ return bytePtr[0]
|
|
|
+ | ((xxh_u64)bytePtr[1] << 8)
|
|
|
+ | ((xxh_u64)bytePtr[2] << 16)
|
|
|
+ | ((xxh_u64)bytePtr[3] << 24)
|
|
|
+ | ((xxh_u64)bytePtr[4] << 32)
|
|
|
+ | ((xxh_u64)bytePtr[5] << 40)
|
|
|
+ | ((xxh_u64)bytePtr[6] << 48)
|
|
|
+ | ((xxh_u64)bytePtr[7] << 56);
|
|
|
+}
|
|
|
+
|
|
|
+XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
|
|
|
+{
|
|
|
+ const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
|
|
|
+ return bytePtr[7]
|
|
|
+ | ((xxh_u64)bytePtr[6] << 8)
|
|
|
+ | ((xxh_u64)bytePtr[5] << 16)
|
|
|
+ | ((xxh_u64)bytePtr[4] << 24)
|
|
|
+ | ((xxh_u64)bytePtr[3] << 32)
|
|
|
+ | ((xxh_u64)bytePtr[2] << 40)
|
|
|
+ | ((xxh_u64)bytePtr[1] << 48)
|
|
|
+ | ((xxh_u64)bytePtr[0] << 56);
|
|
|
+}
|
|
|
+
|
|
|
+#else
|
|
|
+XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
|
|
|
+{
|
|
|
+ return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
|
|
|
+}
|
|
|
+
|
|
|
+static xxh_u64 XXH_readBE64(const void* ptr)
|
|
|
+{
|
|
|
+ return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+XXH_FORCE_INLINE xxh_u64
|
|
|
+XXH_readLE64_align(const void* ptr, XXH_alignment align)
|
|
|
+{
|
|
|
+ if (align==XXH_unaligned)
|
|
|
+ return XXH_readLE64(ptr);
|
|
|
+ else
|
|
|
+ return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/******* xxh64 *******/
|
|
|
+/*!
|
|
|
+ * @}
|
|
|
+ * @defgroup XXH64_impl XXH64 implementation
|
|
|
+ * @ingroup impl
|
|
|
+ *
|
|
|
+ * Details on the XXH64 implementation.
|
|
|
+ * @{
|
|
|
+ */
|
|
|
+/* #define rather that static const, to be used as initializers */
|
|
|
+#define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
|
|
|
+#define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
|
|
|
+#define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
|
|
|
+#define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
|
|
|
+#define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
|
|
|
+
|
|
|
+#ifdef XXH_OLD_NAMES
|
|
|
+# define PRIME64_1 XXH_PRIME64_1
|
|
|
+# define PRIME64_2 XXH_PRIME64_2
|
|
|
+# define PRIME64_3 XXH_PRIME64_3
|
|
|
+# define PRIME64_4 XXH_PRIME64_4
|
|
|
+# define PRIME64_5 XXH_PRIME64_5
|
|
|
+#endif
|
|
|
+
|
|
|
+/*! @copydoc XXH32_round */
|
|
|
+static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
|
|
|
+{
|
|
|
+ acc += input * XXH_PRIME64_2;
|
|
|
+ acc = XXH_rotl64(acc, 31);
|
|
|
+ acc *= XXH_PRIME64_1;
|
|
|
+#if (defined(__AVX512F__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
|
|
|
+ /*
|
|
|
+ * DISABLE AUTOVECTORIZATION:
|
|
|
+ * A compiler fence is used to prevent GCC and Clang from
|
|
|
+ * autovectorizing the XXH64 loop (pragmas and attributes don't work for some
|
|
|
+ * reason) without globally disabling AVX512.
|
|
|
+ *
|
|
|
+ * Autovectorization of XXH64 tends to be detrimental,
|
|
|
+ * though the exact outcome may change depending on exact cpu and compiler version.
|
|
|
+ * For information, it has been reported as detrimental for Skylake-X,
|
|
|
+ * but possibly beneficial for Zen4.
|
|
|
+ *
|
|
|
+ * The default is to disable auto-vectorization,
|
|
|
+ * but you can select to enable it instead using `XXH_ENABLE_AUTOVECTORIZE` build variable.
|
|
|
+ */
|
|
|
+ XXH_COMPILER_GUARD(acc);
|
|
|
+#endif
|
|
|
+ return acc;
|
|
|
+}
|
|
|
+
|
|
|
+static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
|
|
|
+{
|
|
|
+ val = XXH64_round(0, val);
|
|
|
+ acc ^= val;
|
|
|
+ acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
|
|
|
+ return acc;
|
|
|
+}
|
|
|
+
|
|
|
+/*! @copydoc XXH32_avalanche */
|
|
|
+static xxh_u64 XXH64_avalanche(xxh_u64 hash)
|
|
|
+{
|
|
|
+ hash ^= hash >> 33;
|
|
|
+ hash *= XXH_PRIME64_2;
|
|
|
+ hash ^= hash >> 29;
|
|
|
+ hash *= XXH_PRIME64_3;
|
|
|
+ hash ^= hash >> 32;
|
|
|
+ return hash;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+#define XXH_get64bits(p) XXH_readLE64_align(p, align)
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Processes the last 0-31 bytes of @p ptr.
|
|
|
+ *
|
|
|
+ * There may be up to 31 bytes remaining to consume from the input.
|
|
|
+ * This final stage will digest them to ensure that all input bytes are present
|
|
|
+ * in the final mix.
|
|
|
+ *
|
|
|
+ * @param hash The hash to finalize.
|
|
|
+ * @param ptr The pointer to the remaining input.
|
|
|
+ * @param len The remaining length, modulo 32.
|
|
|
+ * @param align Whether @p ptr is aligned.
|
|
|
+ * @return The finalized hash
|
|
|
+ * @see XXH32_finalize().
|
|
|
+ */
|
|
|
+static XXH_PUREF xxh_u64
|
|
|
+XXH64_finalize(xxh_u64 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
|
|
|
+{
|
|
|
+ if (ptr==NULL) XXH_ASSERT(len == 0);
|
|
|
+ len &= 31;
|
|
|
+ while (len >= 8) {
|
|
|
+ xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
|
|
|
+ ptr += 8;
|
|
|
+ hash ^= k1;
|
|
|
+ hash = XXH_rotl64(hash,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
|
|
|
+ len -= 8;
|
|
|
+ }
|
|
|
+ if (len >= 4) {
|
|
|
+ hash ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
|
|
|
+ ptr += 4;
|
|
|
+ hash = XXH_rotl64(hash, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
|
|
|
+ len -= 4;
|
|
|
+ }
|
|
|
+ while (len > 0) {
|
|
|
+ hash ^= (*ptr++) * XXH_PRIME64_5;
|
|
|
+ hash = XXH_rotl64(hash, 11) * XXH_PRIME64_1;
|
|
|
+ --len;
|
|
|
+ }
|
|
|
+ return XXH64_avalanche(hash);
|
|
|
+}
|
|
|
+
|
|
|
+#ifdef XXH_OLD_NAMES
|
|
|
+# define PROCESS1_64 XXH_PROCESS1_64
|
|
|
+# define PROCESS4_64 XXH_PROCESS4_64
|
|
|
+# define PROCESS8_64 XXH_PROCESS8_64
|
|
|
+#else
|
|
|
+# undef XXH_PROCESS1_64
|
|
|
+# undef XXH_PROCESS4_64
|
|
|
+# undef XXH_PROCESS8_64
|
|
|
+#endif
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief The implementation for @ref XXH64().
|
|
|
+ *
|
|
|
+ * @param input , len , seed Directly passed from @ref XXH64().
|
|
|
+ * @param align Whether @p input is aligned.
|
|
|
+ * @return The calculated hash.
|
|
|
+ */
|
|
|
+XXH_FORCE_INLINE XXH_PUREF xxh_u64
|
|
|
+XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
|
|
|
+{
|
|
|
+ xxh_u64 h64;
|
|
|
+ if (input==NULL) XXH_ASSERT(len == 0);
|
|
|
+
|
|
|
+ if (len>=32) {
|
|
|
+ const xxh_u8* const bEnd = input + len;
|
|
|
+ const xxh_u8* const limit = bEnd - 31;
|
|
|
+ xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
|
|
|
+ xxh_u64 v2 = seed + XXH_PRIME64_2;
|
|
|
+ xxh_u64 v3 = seed + 0;
|
|
|
+ xxh_u64 v4 = seed - XXH_PRIME64_1;
|
|
|
+
|
|
|
+ do {
|
|
|
+ v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
|
|
|
+ v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
|
|
|
+ v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
|
|
|
+ v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
|
|
|
+ } while (input<limit);
|
|
|
+
|
|
|
+ h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
|
|
|
+ h64 = XXH64_mergeRound(h64, v1);
|
|
|
+ h64 = XXH64_mergeRound(h64, v2);
|
|
|
+ h64 = XXH64_mergeRound(h64, v3);
|
|
|
+ h64 = XXH64_mergeRound(h64, v4);
|
|
|
+
|
|
|
+ } else {
|
|
|
+ h64 = seed + XXH_PRIME64_5;
|
|
|
+ }
|
|
|
+
|
|
|
+ h64 += (xxh_u64) len;
|
|
|
+
|
|
|
+ return XXH64_finalize(h64, input, len, align);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/*! @ingroup XXH64_family */
|
|
|
+XXH_PUBLIC_API XXH64_hash_t XXH64 (XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
|
|
|
+{
|
|
|
+#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
|
|
|
+ /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
|
|
|
+ XXH64_state_t state;
|
|
|
+ XXH64_reset(&state, seed);
|
|
|
+ XXH64_update(&state, (const xxh_u8*)input, len);
|
|
|
+ return XXH64_digest(&state);
|
|
|
+#else
|
|
|
+ if (XXH_FORCE_ALIGN_CHECK) {
|
|
|
+ if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
|
|
|
+ return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
|
|
|
+ } }
|
|
|
+
|
|
|
+ return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
|
|
|
+
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+/******* Hash Streaming *******/
|
|
|
+#ifndef XXH_NO_STREAM
|
|
|
+/*! @ingroup XXH64_family*/
|
|
|
+XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
|
|
|
+{
|
|
|
+ return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
|
|
|
+}
|
|
|
+/*! @ingroup XXH64_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
|
|
|
+{
|
|
|
+ XXH_free(statePtr);
|
|
|
+ return XXH_OK;
|
|
|
+}
|
|
|
+
|
|
|
+/*! @ingroup XXH64_family */
|
|
|
+XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState)
|
|
|
+{
|
|
|
+ XXH_memcpy(dstState, srcState, sizeof(*dstState));
|
|
|
+}
|
|
|
|
|
|
-/******* Canonical representation *******/
|
|
|
-typedef struct { unsigned char digest[8]; } XXH64_canonical_t;
|
|
|
-XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
|
|
|
-XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
|
|
|
+/*! @ingroup XXH64_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed)
|
|
|
+{
|
|
|
+ XXH_ASSERT(statePtr != NULL);
|
|
|
+ memset(statePtr, 0, sizeof(*statePtr));
|
|
|
+ statePtr->v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
|
|
|
+ statePtr->v[1] = seed + XXH_PRIME64_2;
|
|
|
+ statePtr->v[2] = seed + 0;
|
|
|
+ statePtr->v[3] = seed - XXH_PRIME64_1;
|
|
|
+ return XXH_OK;
|
|
|
+}
|
|
|
|
|
|
+/*! @ingroup XXH64_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode
|
|
|
+XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len)
|
|
|
+{
|
|
|
+ if (input==NULL) {
|
|
|
+ XXH_ASSERT(len == 0);
|
|
|
+ return XXH_OK;
|
|
|
+ }
|
|
|
|
|
|
-#endif /* XXH_NO_LONG_LONG */
|
|
|
+ { const xxh_u8* p = (const xxh_u8*)input;
|
|
|
+ const xxh_u8* const bEnd = p + len;
|
|
|
|
|
|
-#endif /* XXHASH_H_5627135585666179 */
|
|
|
+ state->total_len += len;
|
|
|
|
|
|
+ if (state->memsize + len < 32) { /* fill in tmp buffer */
|
|
|
+ XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
|
|
|
+ state->memsize += (xxh_u32)len;
|
|
|
+ return XXH_OK;
|
|
|
+ }
|
|
|
|
|
|
+ if (state->memsize) { /* tmp buffer is full */
|
|
|
+ XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
|
|
|
+ state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0));
|
|
|
+ state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1));
|
|
|
+ state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2));
|
|
|
+ state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3));
|
|
|
+ p += 32 - state->memsize;
|
|
|
+ state->memsize = 0;
|
|
|
+ }
|
|
|
|
|
|
-#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
|
|
|
-#define XXHASH_H_STATIC_13879238742
|
|
|
-/* ****************************************************************************
|
|
|
- * This section contains declarations which are not guaranteed to remain stable.
|
|
|
- * They may change in future versions, becoming incompatible with a different
|
|
|
- * version of the library.
|
|
|
- * These declarations should only be used with static linking.
|
|
|
- * Never use them in association with dynamic linking!
|
|
|
- ***************************************************************************** */
|
|
|
+ if (p+32 <= bEnd) {
|
|
|
+ const xxh_u8* const limit = bEnd - 32;
|
|
|
|
|
|
-/*
|
|
|
- * These definitions are only present to allow static allocation of an XXH
|
|
|
- * state, for example, on the stack or in a struct.
|
|
|
- * Never **ever** access members directly.
|
|
|
- */
|
|
|
+ do {
|
|
|
+ state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8;
|
|
|
+ state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8;
|
|
|
+ state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8;
|
|
|
+ state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8;
|
|
|
+ } while (p<=limit);
|
|
|
|
|
|
-struct XXH32_state_s {
|
|
|
- XXH32_hash_t total_len_32;
|
|
|
- XXH32_hash_t large_len;
|
|
|
- XXH32_hash_t v1;
|
|
|
- XXH32_hash_t v2;
|
|
|
- XXH32_hash_t v3;
|
|
|
- XXH32_hash_t v4;
|
|
|
- XXH32_hash_t mem32[4];
|
|
|
- XXH32_hash_t memsize;
|
|
|
- XXH32_hash_t reserved; /* never read nor write, might be removed in a future version */
|
|
|
-}; /* typedef'd to XXH32_state_t */
|
|
|
+ }
|
|
|
|
|
|
+ if (p < bEnd) {
|
|
|
+ XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
|
|
|
+ state->memsize = (unsigned)(bEnd-p);
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
|
|
|
+ return XXH_OK;
|
|
|
+}
|
|
|
|
|
|
-struct XXH64_state_s {
|
|
|
- XXH64_hash_t total_len;
|
|
|
- XXH64_hash_t v1;
|
|
|
- XXH64_hash_t v2;
|
|
|
- XXH64_hash_t v3;
|
|
|
- XXH64_hash_t v4;
|
|
|
- XXH64_hash_t mem64[4];
|
|
|
- XXH32_hash_t memsize;
|
|
|
- XXH32_hash_t reserved32; /* required for padding anyway */
|
|
|
- XXH64_hash_t reserved64; /* never read nor write, might be removed in a future version */
|
|
|
-}; /* typedef'd to XXH64_state_t */
|
|
|
|
|
|
+/*! @ingroup XXH64_family */
|
|
|
+XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state)
|
|
|
+{
|
|
|
+ xxh_u64 h64;
|
|
|
|
|
|
-/*-**********************************************************************
|
|
|
+ if (state->total_len >= 32) {
|
|
|
+ h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18);
|
|
|
+ h64 = XXH64_mergeRound(h64, state->v[0]);
|
|
|
+ h64 = XXH64_mergeRound(h64, state->v[1]);
|
|
|
+ h64 = XXH64_mergeRound(h64, state->v[2]);
|
|
|
+ h64 = XXH64_mergeRound(h64, state->v[3]);
|
|
|
+ } else {
|
|
|
+ h64 = state->v[2] /*seed*/ + XXH_PRIME64_5;
|
|
|
+ }
|
|
|
+
|
|
|
+ h64 += (xxh_u64) state->total_len;
|
|
|
+
|
|
|
+ return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
|
|
|
+}
|
|
|
+#endif /* !XXH_NO_STREAM */
|
|
|
+
|
|
|
+/******* Canonical representation *******/
|
|
|
+
|
|
|
+/*! @ingroup XXH64_family */
|
|
|
+XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash)
|
|
|
+{
|
|
|
+ XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
|
|
|
+ if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
|
|
|
+ XXH_memcpy(dst, &hash, sizeof(*dst));
|
|
|
+}
|
|
|
+
|
|
|
+/*! @ingroup XXH64_family */
|
|
|
+XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src)
|
|
|
+{
|
|
|
+ return XXH_readBE64(src);
|
|
|
+}
|
|
|
+
|
|
|
+#ifndef XXH_NO_XXH3
|
|
|
+
|
|
|
+/* *********************************************************************
|
|
|
* XXH3
|
|
|
-* New experimental hash
|
|
|
-************************************************************************/
|
|
|
+* New generation hash designed for speed on small keys and vectorization
|
|
|
+************************************************************************ */
|
|
|
+/*!
|
|
|
+ * @}
|
|
|
+ * @defgroup XXH3_impl XXH3 implementation
|
|
|
+ * @ingroup impl
|
|
|
+ * @{
|
|
|
+ */
|
|
|
|
|
|
-/* ************************************************************************
|
|
|
- * XXH3 is a new hash algorithm featuring:
|
|
|
- * - Improved speed for both small and large inputs
|
|
|
- * - True 64-bit and 128-bit outputs
|
|
|
- * - SIMD acceleration
|
|
|
- * - Improved 32-bit viability
|
|
|
+/* === Compiler specifics === */
|
|
|
+
|
|
|
+#if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
|
|
|
+# define XXH_RESTRICT /* disable */
|
|
|
+#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
|
|
|
+# define XXH_RESTRICT restrict
|
|
|
+#elif (defined (__GNUC__) && ((__GNUC__ > 3) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))) \
|
|
|
+ || (defined (__clang__)) \
|
|
|
+ || (defined (_MSC_VER) && (_MSC_VER >= 1400)) \
|
|
|
+ || (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300))
|
|
|
+/*
|
|
|
+ * There are a LOT more compilers that recognize __restrict but this
|
|
|
+ * covers the major ones.
|
|
|
+ */
|
|
|
+# define XXH_RESTRICT __restrict
|
|
|
+#else
|
|
|
+# define XXH_RESTRICT /* disable */
|
|
|
+#endif
|
|
|
+
|
|
|
+#if (defined(__GNUC__) && (__GNUC__ >= 3)) \
|
|
|
+ || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
|
|
|
+ || defined(__clang__)
|
|
|
+# define XXH_likely(x) __builtin_expect(x, 1)
|
|
|
+# define XXH_unlikely(x) __builtin_expect(x, 0)
|
|
|
+#else
|
|
|
+# define XXH_likely(x) (x)
|
|
|
+# define XXH_unlikely(x) (x)
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef XXH_HAS_INCLUDE
|
|
|
+# ifdef __has_include
|
|
|
+/*
|
|
|
+ * Not defined as XXH_HAS_INCLUDE(x) (function-like) because
|
|
|
+ * this causes segfaults in Apple Clang 4.2 (on Mac OS X 10.7 Lion)
|
|
|
+ */
|
|
|
+# define XXH_HAS_INCLUDE __has_include
|
|
|
+# else
|
|
|
+# define XXH_HAS_INCLUDE(x) 0
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+
|
|
|
+#if defined(__GNUC__) || defined(__clang__)
|
|
|
+# if defined(__ARM_FEATURE_SVE)
|
|
|
+# include <arm_sve.h>
|
|
|
+# endif
|
|
|
+# if defined(__ARM_NEON__) || defined(__ARM_NEON) \
|
|
|
+ || (defined(_M_ARM) && _M_ARM >= 7) \
|
|
|
+ || defined(_M_ARM64) || defined(_M_ARM64EC) \
|
|
|
+ || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* WASM SIMD128 via SIMDe */
|
|
|
+# define inline __inline__ /* circumvent a clang bug */
|
|
|
+# include <arm_neon.h>
|
|
|
+# undef inline
|
|
|
+# elif defined(__AVX2__)
|
|
|
+# include <immintrin.h>
|
|
|
+# elif defined(__SSE2__)
|
|
|
+# include <emmintrin.h>
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+
|
|
|
+#if defined(_MSC_VER)
|
|
|
+# include <intrin.h>
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+ * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
|
|
|
+ * remaining a true 64-bit/128-bit hash function.
|
|
|
*
|
|
|
- * Speed analysis methodology is explained here:
|
|
|
+ * This is done by prioritizing a subset of 64-bit operations that can be
|
|
|
+ * emulated without too many steps on the average 32-bit machine.
|
|
|
*
|
|
|
- * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
|
|
|
+ * For example, these two lines seem similar, and run equally fast on 64-bit:
|
|
|
*
|
|
|
- * In general, expect XXH3 to run about ~2x faster on large inputs and >3x
|
|
|
- * faster on small ones compared to XXH64, though exact differences depend on
|
|
|
- * the platform.
|
|
|
+ * xxh_u64 x;
|
|
|
+ * x ^= (x >> 47); // good
|
|
|
+ * x ^= (x >> 13); // bad
|
|
|
*
|
|
|
- * The algorithm is portable: Like XXH32 and XXH64, it generates the same hash
|
|
|
- * on all platforms.
|
|
|
+ * However, to a 32-bit machine, there is a major difference.
|
|
|
*
|
|
|
- * It benefits greatly from SIMD and 64-bit arithmetic, but does not require it.
|
|
|
+ * x ^= (x >> 47) looks like this:
|
|
|
*
|
|
|
- * Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run
|
|
|
- * XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are
|
|
|
- * explained in the implementation.
|
|
|
+ * x.lo ^= (x.hi >> (47 - 32));
|
|
|
*
|
|
|
- * Optimized implementations are provided for AVX2, SSE2, NEON, POWER8, ZVector,
|
|
|
- * and scalar targets. This can be controlled with the XXH_VECTOR macro.
|
|
|
+ * while x ^= (x >> 13) looks like this:
|
|
|
*
|
|
|
- * XXH3 offers 2 variants, _64bits and _128bits.
|
|
|
- * When only 64 bits are needed, prefer calling the _64bits variant, as it
|
|
|
- * reduces the amount of mixing, resulting in faster speed on small inputs.
|
|
|
+ * // note: funnel shifts are not usually cheap.
|
|
|
+ * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
|
|
|
+ * x.hi ^= (x.hi >> 13);
|
|
|
*
|
|
|
- * It's also generally simpler to manipulate a scalar return type than a struct.
|
|
|
+ * The first one is significantly faster than the second, simply because the
|
|
|
+ * shift is larger than 32. This means:
|
|
|
+ * - All the bits we need are in the upper 32 bits, so we can ignore the lower
|
|
|
+ * 32 bits in the shift.
|
|
|
+ * - The shift result will always fit in the lower 32 bits, and therefore,
|
|
|
+ * we can ignore the upper 32 bits in the xor.
|
|
|
*
|
|
|
- * The 128-bit version adds additional strength, but it is slightly slower.
|
|
|
+ * Thanks to this optimization, XXH3 only requires these features to be efficient:
|
|
|
*
|
|
|
- * The XXH3 algorithm is still in development.
|
|
|
- * The results it produces may still change in future versions.
|
|
|
+ * - Usable unaligned access
|
|
|
+ * - A 32-bit or 64-bit ALU
|
|
|
+ * - If 32-bit, a decent ADC instruction
|
|
|
+ * - A 32 or 64-bit multiply with a 64-bit result
|
|
|
+ * - For the 128-bit variant, a decent byteswap helps short inputs.
|
|
|
*
|
|
|
- * Results produced by v0.7.x are not comparable with results from v0.7.y.
|
|
|
- * However, the API is completely stable, and it can safely be used for
|
|
|
- * ephemeral data (local sessions).
|
|
|
+ * The first two are already required by XXH32, and almost all 32-bit and 64-bit
|
|
|
+ * platforms which can run XXH32 can run XXH3 efficiently.
|
|
|
*
|
|
|
- * Avoid storing values in long-term storage until the algorithm is finalized.
|
|
|
+ * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
|
|
|
+ * notable exception.
|
|
|
*
|
|
|
- * Since v0.7.3, XXH3 has reached "release candidate" status, meaning that, if
|
|
|
- * everything remains fine, its current format will be "frozen" and become the
|
|
|
- * final one.
|
|
|
+ * First of all, Thumb-1 lacks support for the UMULL instruction which
|
|
|
+ * performs the important long multiply. This means numerous __aeabi_lmul
|
|
|
+ * calls.
|
|
|
*
|
|
|
- * After which, return values of XXH3 and XXH128 will no longer change in
|
|
|
- * future versions.
|
|
|
+ * Second of all, the 8 functional registers are just not enough.
|
|
|
+ * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
|
|
|
+ * Lo registers, and this shuffling results in thousands more MOVs than A32.
|
|
|
*
|
|
|
- * XXH3's return values will be officially finalized upon reaching v0.8.0.
|
|
|
+ * A32 and T32 don't have this limitation. They can access all 14 registers,
|
|
|
+ * do a 32->64 multiply with UMULL, and the flexible operand allowing free
|
|
|
+ * shifts is helpful, too.
|
|
|
*
|
|
|
- * The API supports one-shot hashing, streaming mode, and custom secrets.
|
|
|
+ * Therefore, we do a quick sanity check.
|
|
|
+ *
|
|
|
+ * If compiling Thumb-1 for a target which supports ARM instructions, we will
|
|
|
+ * emit a warning, as it is not a "sane" platform to compile for.
|
|
|
+ *
|
|
|
+ * Usually, if this happens, it is because of an accident and you probably need
|
|
|
+ * to specify -march, as you likely meant to compile for a newer architecture.
|
|
|
+ *
|
|
|
+ * Credit: large sections of the vectorial and asm source code paths
|
|
|
+ * have been contributed by @easyaspi314
|
|
|
*/
|
|
|
+#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
|
|
|
+# warning "XXH3 is highly inefficient without ARM or Thumb-2."
|
|
|
+#endif
|
|
|
|
|
|
-#ifdef XXH_NAMESPACE
|
|
|
-# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
|
|
|
-# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
|
|
|
-# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
|
|
|
+/* ==========================================
|
|
|
+ * Vectorization detection
|
|
|
+ * ========================================== */
|
|
|
|
|
|
-# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
|
|
|
-# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
|
|
|
-# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
|
|
|
+#ifdef XXH_DOXYGEN
|
|
|
+/*!
|
|
|
+ * @ingroup tuning
|
|
|
+ * @brief Overrides the vectorization implementation chosen for XXH3.
|
|
|
+ *
|
|
|
+ * Can be defined to 0 to disable SIMD or any of the values mentioned in
|
|
|
+ * @ref XXH_VECTOR_TYPE.
|
|
|
+ *
|
|
|
+ * If this is not defined, it uses predefined macros to determine the best
|
|
|
+ * implementation.
|
|
|
+ */
|
|
|
+# define XXH_VECTOR XXH_SCALAR
|
|
|
+/*!
|
|
|
+ * @ingroup tuning
|
|
|
+ * @brief Possible values for @ref XXH_VECTOR.
|
|
|
+ *
|
|
|
+ * Note that these are actually implemented as macros.
|
|
|
+ *
|
|
|
+ * If this is not defined, it is detected automatically.
|
|
|
+ * internal macro XXH_X86DISPATCH overrides this.
|
|
|
+ */
|
|
|
+enum XXH_VECTOR_TYPE /* fake enum */ {
|
|
|
+ XXH_SCALAR = 0, /*!< Portable scalar version */
|
|
|
+ XXH_SSE2 = 1, /*!<
|
|
|
+ * SSE2 for Pentium 4, Opteron, all x86_64.
|
|
|
+ *
|
|
|
+ * @note SSE2 is also guaranteed on Windows 10, macOS, and
|
|
|
+ * Android x86.
|
|
|
+ */
|
|
|
+ XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */
|
|
|
+ XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */
|
|
|
+ XXH_NEON = 4, /*!<
|
|
|
+ * NEON for most ARMv7-A, all AArch64, and WASM SIMD128
|
|
|
+ * via the SIMDeverywhere polyfill provided with the
|
|
|
+ * Emscripten SDK.
|
|
|
+ */
|
|
|
+ XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */
|
|
|
+ XXH_SVE = 6, /*!< SVE for some ARMv8-A and ARMv9-A */
|
|
|
+};
|
|
|
+/*!
|
|
|
+ * @ingroup tuning
|
|
|
+ * @brief Selects the minimum alignment for XXH3's accumulators.
|
|
|
+ *
|
|
|
+ * When using SIMD, this should match the alignment required for said vector
|
|
|
+ * type, so, for example, 32 for AVX2.
|
|
|
+ *
|
|
|
+ * Default: Auto detected.
|
|
|
+ */
|
|
|
+# define XXH_ACC_ALIGN 8
|
|
|
+#endif
|
|
|
|
|
|
-# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
|
|
|
-# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
|
|
|
-# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
|
|
|
-# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
|
|
|
-# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
|
|
|
+/* Actual definition */
|
|
|
+#ifndef XXH_DOXYGEN
|
|
|
+# define XXH_SCALAR 0
|
|
|
+# define XXH_SSE2 1
|
|
|
+# define XXH_AVX2 2
|
|
|
+# define XXH_AVX512 3
|
|
|
+# define XXH_NEON 4
|
|
|
+# define XXH_VSX 5
|
|
|
+# define XXH_SVE 6
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef XXH_VECTOR /* can be defined on command line */
|
|
|
+# if defined(__ARM_FEATURE_SVE)
|
|
|
+# define XXH_VECTOR XXH_SVE
|
|
|
+# elif ( \
|
|
|
+ defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
|
|
|
+ || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \
|
|
|
+ || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* wasm simd128 via SIMDe */ \
|
|
|
+ ) && ( \
|
|
|
+ defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
|
|
|
+ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
|
|
|
+ )
|
|
|
+# define XXH_VECTOR XXH_NEON
|
|
|
+# elif defined(__AVX512F__)
|
|
|
+# define XXH_VECTOR XXH_AVX512
|
|
|
+# elif defined(__AVX2__)
|
|
|
+# define XXH_VECTOR XXH_AVX2
|
|
|
+# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
|
|
|
+# define XXH_VECTOR XXH_SSE2
|
|
|
+# elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
|
|
|
+ || (defined(__s390x__) && defined(__VEC__)) \
|
|
|
+ && defined(__GNUC__) /* TODO: IBM XL */
|
|
|
+# define XXH_VECTOR XXH_VSX
|
|
|
+# else
|
|
|
+# define XXH_VECTOR XXH_SCALAR
|
|
|
+# endif
|
|
|
#endif
|
|
|
|
|
|
-/* XXH3_64bits():
|
|
|
- * default 64-bit variant, using default secret and default seed of 0.
|
|
|
- * It's the fastest variant. */
|
|
|
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
|
|
|
+/* __ARM_FEATURE_SVE is only supported by GCC & Clang. */
|
|
|
+#if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE)
|
|
|
+# ifdef _MSC_VER
|
|
|
+# pragma warning(once : 4606)
|
|
|
+# else
|
|
|
+# warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead."
|
|
|
+# endif
|
|
|
+# undef XXH_VECTOR
|
|
|
+# define XXH_VECTOR XXH_SCALAR
|
|
|
+#endif
|
|
|
|
|
|
/*
|
|
|
- * XXH3_64bits_withSecret():
|
|
|
- * It's possible to provide any blob of bytes as a "secret" to generate the hash.
|
|
|
- * This makes it more difficult for an external actor to prepare an intentional
|
|
|
- * collision.
|
|
|
- * The secret *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
|
|
|
- * It should consist of random bytes.
|
|
|
- * Avoid trivial sequences, such as repeating sequences and especially '\0',
|
|
|
- * as this can cancel out itself.
|
|
|
- * Failure to respect these conditions will result in a poor quality hash.
|
|
|
+ * Controls the alignment of the accumulator,
|
|
|
+ * for compatibility with aligned vector loads, which are usually faster.
|
|
|
*/
|
|
|
-#define XXH3_SECRET_SIZE_MIN 136
|
|
|
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
|
|
|
+#ifndef XXH_ACC_ALIGN
|
|
|
+# if defined(XXH_X86DISPATCH)
|
|
|
+# define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */
|
|
|
+# elif XXH_VECTOR == XXH_SCALAR /* scalar */
|
|
|
+# define XXH_ACC_ALIGN 8
|
|
|
+# elif XXH_VECTOR == XXH_SSE2 /* sse2 */
|
|
|
+# define XXH_ACC_ALIGN 16
|
|
|
+# elif XXH_VECTOR == XXH_AVX2 /* avx2 */
|
|
|
+# define XXH_ACC_ALIGN 32
|
|
|
+# elif XXH_VECTOR == XXH_NEON /* neon */
|
|
|
+# define XXH_ACC_ALIGN 16
|
|
|
+# elif XXH_VECTOR == XXH_VSX /* vsx */
|
|
|
+# define XXH_ACC_ALIGN 16
|
|
|
+# elif XXH_VECTOR == XXH_AVX512 /* avx512 */
|
|
|
+# define XXH_ACC_ALIGN 64
|
|
|
+# elif XXH_VECTOR == XXH_SVE /* sve */
|
|
|
+# define XXH_ACC_ALIGN 64
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+
|
|
|
+#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
|
|
|
+ || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
|
|
|
+# define XXH_SEC_ALIGN XXH_ACC_ALIGN
|
|
|
+#elif XXH_VECTOR == XXH_SVE
|
|
|
+# define XXH_SEC_ALIGN XXH_ACC_ALIGN
|
|
|
+#else
|
|
|
+# define XXH_SEC_ALIGN 8
|
|
|
+#endif
|
|
|
+
|
|
|
+#if defined(__GNUC__) || defined(__clang__)
|
|
|
+# define XXH_ALIASING __attribute__((__may_alias__))
|
|
|
+#else
|
|
|
+# define XXH_ALIASING /* nothing */
|
|
|
+#endif
|
|
|
|
|
|
/*
|
|
|
- * XXH3_64bits_withSeed():
|
|
|
- * This variant generates a custom secret on the fly based on the default
|
|
|
- * secret, altered using the `seed` value.
|
|
|
- * While this operation is decently fast, note that it's not completely free.
|
|
|
- * Note: seed==0 produces the same results as XXH3_64bits().
|
|
|
+ * UGLY HACK:
|
|
|
+ * GCC usually generates the best code with -O3 for xxHash.
|
|
|
+ *
|
|
|
+ * However, when targeting AVX2, it is overzealous in its unrolling resulting
|
|
|
+ * in code roughly 3/4 the speed of Clang.
|
|
|
+ *
|
|
|
+ * There are other issues, such as GCC splitting _mm256_loadu_si256 into
|
|
|
+ * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
|
|
|
+ * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
|
|
|
+ *
|
|
|
+ * That is why when compiling the AVX2 version, it is recommended to use either
|
|
|
+ * -O2 -mavx2 -march=haswell
|
|
|
+ * or
|
|
|
+ * -O2 -mavx2 -mno-avx256-split-unaligned-load
|
|
|
+ * for decent performance, or to use Clang instead.
|
|
|
+ *
|
|
|
+ * Fortunately, we can control the first one with a pragma that forces GCC into
|
|
|
+ * -O2, but the other one we can't control without "failed to inline always
|
|
|
+ * inline function due to target mismatch" warnings.
|
|
|
*/
|
|
|
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
|
|
|
+#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
|
|
|
+ && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
|
|
|
+ && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
|
|
|
+# pragma GCC push_options
|
|
|
+# pragma GCC optimize("-O2")
|
|
|
+#endif
|
|
|
|
|
|
+#if XXH_VECTOR == XXH_NEON
|
|
|
|
|
|
-/* streaming 64-bit */
|
|
|
+/*
|
|
|
+ * UGLY HACK: While AArch64 GCC on Linux does not seem to care, on macOS, GCC -O3
|
|
|
+ * optimizes out the entire hashLong loop because of the aliasing violation.
|
|
|
+ *
|
|
|
+ * However, GCC is also inefficient at load-store optimization with vld1q/vst1q,
|
|
|
+ * so the only option is to mark it as aliasing.
|
|
|
+ */
|
|
|
+typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING;
|
|
|
|
|
|
-#if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */
|
|
|
-# include <stdalign.h>
|
|
|
-# define XXH_ALIGN(n) alignas(n)
|
|
|
-#elif defined(__GNUC__)
|
|
|
-# define XXH_ALIGN(n) __attribute__ ((aligned(n)))
|
|
|
-#elif defined(_MSC_VER)
|
|
|
-# define XXH_ALIGN(n) __declspec(align(n))
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief `vld1q_u64` but faster and alignment-safe.
|
|
|
+ *
|
|
|
+ * On AArch64, unaligned access is always safe, but on ARMv7-a, it is only
|
|
|
+ * *conditionally* safe (`vld1` has an alignment bit like `movdq[ua]` in x86).
|
|
|
+ *
|
|
|
+ * GCC for AArch64 sees `vld1q_u8` as an intrinsic instead of a load, so it
|
|
|
+ * prohibits load-store optimizations. Therefore, a direct dereference is used.
|
|
|
+ *
|
|
|
+ * Otherwise, `vld1q_u8` is used with `vreinterpretq_u8_u64` to do a safe
|
|
|
+ * unaligned load.
|
|
|
+ */
|
|
|
+#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__)
|
|
|
+XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */
|
|
|
+{
|
|
|
+ return *(xxh_aliasing_uint64x2_t const *)ptr;
|
|
|
+}
|
|
|
#else
|
|
|
-# define XXH_ALIGN(n) /* disabled */
|
|
|
+XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr)
|
|
|
+{
|
|
|
+ return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr));
|
|
|
+}
|
|
|
#endif
|
|
|
|
|
|
-/* Old GCC versions only accept the attribute after the type in structures. */
|
|
|
-#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
|
|
|
- && defined(__GNUC__)
|
|
|
-# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief `vmlal_u32` on low and high halves of a vector.
|
|
|
+ *
|
|
|
+ * This is a workaround for AArch64 GCC < 11 which implemented arm_neon.h with
|
|
|
+ * inline assembly and were therefore incapable of merging the `vget_{low, high}_u32`
|
|
|
+ * with `vmlal_u32`.
|
|
|
+ */
|
|
|
+#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 11
|
|
|
+XXH_FORCE_INLINE uint64x2_t
|
|
|
+XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
|
|
|
+{
|
|
|
+ /* Inline assembly is the only way */
|
|
|
+ __asm__("umlal %0.2d, %1.2s, %2.2s" : "+w" (acc) : "w" (lhs), "w" (rhs));
|
|
|
+ return acc;
|
|
|
+}
|
|
|
+XXH_FORCE_INLINE uint64x2_t
|
|
|
+XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
|
|
|
+{
|
|
|
+ /* This intrinsic works as expected */
|
|
|
+ return vmlal_high_u32(acc, lhs, rhs);
|
|
|
+}
|
|
|
#else
|
|
|
-# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
|
|
|
+/* Portable intrinsic versions */
|
|
|
+XXH_FORCE_INLINE uint64x2_t
|
|
|
+XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
|
|
|
+{
|
|
|
+ return vmlal_u32(acc, vget_low_u32(lhs), vget_low_u32(rhs));
|
|
|
+}
|
|
|
+/*! @copydoc XXH_vmlal_low_u32
|
|
|
+ * Assume the compiler converts this to vmlal_high_u32 on aarch64 */
|
|
|
+XXH_FORCE_INLINE uint64x2_t
|
|
|
+XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
|
|
|
+{
|
|
|
+ return vmlal_u32(acc, vget_high_u32(lhs), vget_high_u32(rhs));
|
|
|
+}
|
|
|
#endif
|
|
|
|
|
|
-typedef struct XXH3_state_s XXH3_state_t;
|
|
|
-
|
|
|
-#define XXH3_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
|
|
|
-#define XXH3_INTERNALBUFFER_SIZE 256
|
|
|
-struct XXH3_state_s {
|
|
|
- XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
|
|
|
- /* used to store a custom secret generated from the seed. Makes state larger.
|
|
|
- * Design might change */
|
|
|
- XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
|
|
|
- XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
|
|
|
- XXH32_hash_t bufferedSize;
|
|
|
- XXH32_hash_t nbStripesPerBlock;
|
|
|
- XXH32_hash_t nbStripesSoFar;
|
|
|
- XXH32_hash_t secretLimit;
|
|
|
- XXH32_hash_t reserved32;
|
|
|
- XXH32_hash_t reserved32_2;
|
|
|
- XXH64_hash_t totalLen;
|
|
|
- XXH64_hash_t seed;
|
|
|
- XXH64_hash_t reserved64;
|
|
|
- /* note: there is some padding after due to alignment on 64 bytes */
|
|
|
- const unsigned char* secret;
|
|
|
-}; /* typedef'd to XXH3_state_t */
|
|
|
-
|
|
|
-#undef XXH_ALIGN_MEMBER
|
|
|
+/*!
|
|
|
+ * @ingroup tuning
|
|
|
+ * @brief Controls the NEON to scalar ratio for XXH3
|
|
|
+ *
|
|
|
+ * This can be set to 2, 4, 6, or 8.
|
|
|
+ *
|
|
|
+ * ARM Cortex CPUs are _very_ sensitive to how their pipelines are used.
|
|
|
+ *
|
|
|
+ * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but only 2 of those
|
|
|
+ * can be NEON. If you are only using NEON instructions, you are only using 2/3 of the CPU
|
|
|
+ * bandwidth.
|
|
|
+ *
|
|
|
+ * This is even more noticeable on the more advanced cores like the Cortex-A76 which
|
|
|
+ * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once.
|
|
|
+ *
|
|
|
+ * Therefore, to make the most out of the pipeline, it is beneficial to run 6 NEON lanes
|
|
|
+ * and 2 scalar lanes, which is chosen by default.
|
|
|
+ *
|
|
|
+ * This does not apply to Apple processors or 32-bit processors, which run better with
|
|
|
+ * full NEON. These will default to 8. Additionally, size-optimized builds run 8 lanes.
|
|
|
+ *
|
|
|
+ * This change benefits CPUs with large micro-op buffers without negatively affecting
|
|
|
+ * most other CPUs:
|
|
|
+ *
|
|
|
+ * | Chipset | Dispatch type | NEON only | 6:2 hybrid | Diff. |
|
|
|
+ * |:----------------------|:--------------------|----------:|-----------:|------:|
|
|
|
+ * | Snapdragon 730 (A76) | 2 NEON/8 micro-ops | 8.8 GB/s | 10.1 GB/s | ~16% |
|
|
|
+ * | Snapdragon 835 (A73) | 2 NEON/3 micro-ops | 5.1 GB/s | 5.3 GB/s | ~5% |
|
|
|
+ * | Marvell PXA1928 (A53) | In-order dual-issue | 1.9 GB/s | 1.9 GB/s | 0% |
|
|
|
+ * | Apple M1 | 4 NEON/8 micro-ops | 37.3 GB/s | 36.1 GB/s | ~-3% |
|
|
|
+ *
|
|
|
+ * It also seems to fix some bad codegen on GCC, making it almost as fast as clang.
|
|
|
+ *
|
|
|
+ * When using WASM SIMD128, if this is 2 or 6, SIMDe will scalarize 2 of the lanes meaning
|
|
|
+ * it effectively becomes worse 4.
|
|
|
+ *
|
|
|
+ * @see XXH3_accumulate_512_neon()
|
|
|
+ */
|
|
|
+# ifndef XXH3_NEON_LANES
|
|
|
+# if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \
|
|
|
+ && !defined(__APPLE__) && XXH_SIZE_OPT <= 0
|
|
|
+# define XXH3_NEON_LANES 6
|
|
|
+# else
|
|
|
+# define XXH3_NEON_LANES XXH_ACC_NB
|
|
|
+# endif
|
|
|
+# endif
|
|
|
+#endif /* XXH_VECTOR == XXH_NEON */
|
|
|
|
|
|
/*
|
|
|
- * Streaming requires state maintenance.
|
|
|
- * This operation costs memory and CPU.
|
|
|
- * As a consequence, streaming is slower than one-shot hashing.
|
|
|
- * For better performance, prefer one-shot functions whenever possible.
|
|
|
+ * VSX and Z Vector helpers.
|
|
|
+ *
|
|
|
+ * This is very messy, and any pull requests to clean this up are welcome.
|
|
|
+ *
|
|
|
+ * There are a lot of problems with supporting VSX and s390x, due to
|
|
|
+ * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
|
|
|
*/
|
|
|
-XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
|
|
|
-XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
|
|
|
+#if XXH_VECTOR == XXH_VSX
|
|
|
+/* Annoyingly, these headers _may_ define three macros: `bool`, `vector`,
|
|
|
+ * and `pixel`. This is a problem for obvious reasons.
|
|
|
+ *
|
|
|
+ * These keywords are unnecessary; the spec literally says they are
|
|
|
+ * equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd
|
|
|
+ * after including the header.
|
|
|
+ *
|
|
|
+ * We use pragma push_macro/pop_macro to keep the namespace clean. */
|
|
|
+# pragma push_macro("bool")
|
|
|
+# pragma push_macro("vector")
|
|
|
+# pragma push_macro("pixel")
|
|
|
+/* silence potential macro redefined warnings */
|
|
|
+# undef bool
|
|
|
+# undef vector
|
|
|
+# undef pixel
|
|
|
+
|
|
|
+# if defined(__s390x__)
|
|
|
+# include <s390intrin.h>
|
|
|
+# else
|
|
|
+# include <altivec.h>
|
|
|
+# endif
|
|
|
+
|
|
|
+/* Restore the original macro values, if applicable. */
|
|
|
+# pragma pop_macro("pixel")
|
|
|
+# pragma pop_macro("vector")
|
|
|
+# pragma pop_macro("bool")
|
|
|
|
|
|
+typedef __vector unsigned long long xxh_u64x2;
|
|
|
+typedef __vector unsigned char xxh_u8x16;
|
|
|
+typedef __vector unsigned xxh_u32x4;
|
|
|
|
|
|
/*
|
|
|
- * XXH3_64bits_reset():
|
|
|
- * Initialize with the default parameters.
|
|
|
- * The result will be equivalent to `XXH3_64bits()`.
|
|
|
+ * UGLY HACK: Similar to aarch64 macOS GCC, s390x GCC has the same aliasing issue.
|
|
|
*/
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
|
|
|
-/*
|
|
|
- * XXH3_64bits_reset_withSeed():
|
|
|
- * Generate a custom secret from `seed`, and store it into `statePtr`.
|
|
|
- * digest will be equivalent to `XXH3_64bits_withSeed()`.
|
|
|
+typedef xxh_u64x2 xxh_aliasing_u64x2 XXH_ALIASING;
|
|
|
+
|
|
|
+# ifndef XXH_VSX_BE
|
|
|
+# if defined(__BIG_ENDIAN__) \
|
|
|
+ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
|
|
|
+# define XXH_VSX_BE 1
|
|
|
+# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
|
|
|
+# warning "-maltivec=be is not recommended. Please use native endianness."
|
|
|
+# define XXH_VSX_BE 1
|
|
|
+# else
|
|
|
+# define XXH_VSX_BE 0
|
|
|
+# endif
|
|
|
+# endif /* !defined(XXH_VSX_BE) */
|
|
|
+
|
|
|
+# if XXH_VSX_BE
|
|
|
+# if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
|
|
|
+# define XXH_vec_revb vec_revb
|
|
|
+# else
|
|
|
+/*!
|
|
|
+ * A polyfill for POWER9's vec_revb().
|
|
|
*/
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
|
|
|
-/*
|
|
|
- * XXH3_64bits_reset_withSecret():
|
|
|
- * `secret` is referenced, and must outlive the hash streaming session, so
|
|
|
- * be careful when using stack arrays.
|
|
|
- * `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`.
|
|
|
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
|
|
|
+{
|
|
|
+ xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
|
|
|
+ 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
|
|
|
+ return vec_perm(val, val, vByteSwap);
|
|
|
+}
|
|
|
+# endif
|
|
|
+# endif /* XXH_VSX_BE */
|
|
|
+
|
|
|
+/*!
|
|
|
+ * Performs an unaligned vector load and byte swaps it on big endian.
|
|
|
*/
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
|
|
|
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
|
|
|
+{
|
|
|
+ xxh_u64x2 ret;
|
|
|
+ XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2));
|
|
|
+# if XXH_VSX_BE
|
|
|
+ ret = XXH_vec_revb(ret);
|
|
|
+# endif
|
|
|
+ return ret;
|
|
|
+}
|
|
|
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
|
|
|
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr);
|
|
|
+/*
|
|
|
+ * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
|
|
|
+ *
|
|
|
+ * These intrinsics weren't added until GCC 8, despite existing for a while,
|
|
|
+ * and they are endian dependent. Also, their meaning swap depending on version.
|
|
|
+ * */
|
|
|
+# if defined(__s390x__)
|
|
|
+ /* s390x is always big endian, no issue on this platform */
|
|
|
+# define XXH_vec_mulo vec_mulo
|
|
|
+# define XXH_vec_mule vec_mule
|
|
|
+# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__)
|
|
|
+/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
|
|
|
+ /* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */
|
|
|
+# define XXH_vec_mulo __builtin_altivec_vmulouw
|
|
|
+# define XXH_vec_mule __builtin_altivec_vmuleuw
|
|
|
+# else
|
|
|
+/* gcc needs inline assembly */
|
|
|
+/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
|
|
|
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
|
|
|
+{
|
|
|
+ xxh_u64x2 result;
|
|
|
+ __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
|
|
|
+ return result;
|
|
|
+}
|
|
|
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
|
|
|
+{
|
|
|
+ xxh_u64x2 result;
|
|
|
+ __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
|
|
|
+ return result;
|
|
|
+}
|
|
|
+# endif /* XXH_vec_mulo, XXH_vec_mule */
|
|
|
+#endif /* XXH_VECTOR == XXH_VSX */
|
|
|
+
|
|
|
+#if XXH_VECTOR == XXH_SVE
|
|
|
+#define ACCRND(acc, offset) \
|
|
|
+do { \
|
|
|
+ svuint64_t input_vec = svld1_u64(mask, xinput + offset); \
|
|
|
+ svuint64_t secret_vec = svld1_u64(mask, xsecret + offset); \
|
|
|
+ svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec); \
|
|
|
+ svuint64_t swapped = svtbl_u64(input_vec, kSwap); \
|
|
|
+ svuint64_t mixed_lo = svextw_u64_x(mask, mixed); \
|
|
|
+ svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32); \
|
|
|
+ svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \
|
|
|
+ acc = svadd_u64_x(mask, acc, mul); \
|
|
|
+} while (0)
|
|
|
+#endif /* XXH_VECTOR == XXH_SVE */
|
|
|
|
|
|
+/* prefetch
|
|
|
+ * can be disabled, by declaring XXH_NO_PREFETCH build macro */
|
|
|
+#if defined(XXH_NO_PREFETCH)
|
|
|
+# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
|
|
|
+#else
|
|
|
+# if XXH_SIZE_OPT >= 1
|
|
|
+# define XXH_PREFETCH(ptr) (void)(ptr)
|
|
|
+# elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */
|
|
|
+# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
|
|
|
+# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
|
|
|
+# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
|
|
|
+# define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
|
|
|
+# else
|
|
|
+# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
|
|
|
+# endif
|
|
|
+#endif /* XXH_NO_PREFETCH */
|
|
|
|
|
|
-/* 128-bit */
|
|
|
|
|
|
-#ifdef XXH_NAMESPACE
|
|
|
-# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
|
|
|
-# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
|
|
|
-# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
|
|
|
-# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
|
|
|
+/* ==========================================
|
|
|
+ * XXH3 default settings
|
|
|
+ * ========================================== */
|
|
|
|
|
|
-# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
|
|
|
-# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
|
|
|
-# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
|
|
|
-# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
|
|
|
-# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
|
|
|
+#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
|
|
|
|
|
|
-# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
|
|
|
-# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
|
|
|
-# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
|
|
|
-# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
|
|
|
+#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
|
|
|
+# error "default keyset is not large enough"
|
|
|
#endif
|
|
|
|
|
|
-typedef struct {
|
|
|
- XXH64_hash_t low64;
|
|
|
- XXH64_hash_t high64;
|
|
|
-} XXH128_hash_t;
|
|
|
-
|
|
|
-XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
|
|
|
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
|
|
|
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); /* == XXH128() */
|
|
|
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
|
|
|
-
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
|
|
|
-
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
|
|
|
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
|
|
|
-
|
|
|
-
|
|
|
-/* Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
|
|
|
+/*! Pseudorandom secret taken directly from FARSH. */
|
|
|
+XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
|
|
|
+ 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
|
|
|
+ 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
|
|
|
+ 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
|
|
|
+ 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
|
|
|
+ 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
|
|
|
+ 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
|
|
|
+ 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
|
|
|
+ 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
|
|
|
+ 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
|
|
|
+ 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
|
|
|
+ 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
|
|
|
+ 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
|
|
|
+};
|
|
|
+
|
|
|
+static const xxh_u64 PRIME_MX1 = 0x165667919E3779F9ULL; /*!< 0b0001011001010110011001111001000110011110001101110111100111111001 */
|
|
|
+static const xxh_u64 PRIME_MX2 = 0x9FB21C651E98DF25ULL; /*!< 0b1001111110110010000111000110010100011110100110001101111100100101 */
|
|
|
+
|
|
|
+#ifdef XXH_OLD_NAMES
|
|
|
+# define kSecret XXH3_kSecret
|
|
|
+#endif
|
|
|
|
|
|
+#ifdef XXH_DOXYGEN
|
|
|
/*!
|
|
|
- * XXH128_isEqual():
|
|
|
- * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
|
|
|
+ * @brief Calculates a 32-bit to 64-bit long multiply.
|
|
|
+ *
|
|
|
+ * Implemented as a macro.
|
|
|
+ *
|
|
|
+ * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
|
|
|
+ * need to (but it shouldn't need to anyways, it is about 7 instructions to do
|
|
|
+ * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
|
|
|
+ * use that instead of the normal method.
|
|
|
+ *
|
|
|
+ * If you are compiling for platforms like Thumb-1 and don't have a better option,
|
|
|
+ * you may also want to write your own long multiply routine here.
|
|
|
+ *
|
|
|
+ * @param x, y Numbers to be multiplied
|
|
|
+ * @return 64-bit product of the low 32 bits of @p x and @p y.
|
|
|
+ */
|
|
|
+XXH_FORCE_INLINE xxh_u64
|
|
|
+XXH_mult32to64(xxh_u64 x, xxh_u64 y)
|
|
|
+{
|
|
|
+ return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
|
|
|
+}
|
|
|
+#elif defined(_MSC_VER) && defined(_M_IX86)
|
|
|
+# define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
|
|
|
+#else
|
|
|
+/*
|
|
|
+ * Downcast + upcast is usually better than masking on older compilers like
|
|
|
+ * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
|
|
|
+ *
|
|
|
+ * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
|
|
|
+ * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
|
|
|
*/
|
|
|
-XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
|
|
|
+# define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
|
|
|
+#endif
|
|
|
|
|
|
/*!
|
|
|
- * XXH128_cmp():
|
|
|
+ * @brief Calculates a 64->128-bit long multiply.
|
|
|
*
|
|
|
- * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
|
|
|
+ * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
|
|
|
+ * version.
|
|
|
*
|
|
|
- * return: >0 if *h128_1 > *h128_2
|
|
|
- * <0 if *h128_1 < *h128_2
|
|
|
- * =0 if *h128_1 == *h128_2
|
|
|
+ * @param lhs , rhs The 64-bit integers to be multiplied
|
|
|
+ * @return The 128-bit result represented in an @ref XXH128_hash_t.
|
|
|
*/
|
|
|
-XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
|
|
|
-
|
|
|
-
|
|
|
-/******* Canonical representation *******/
|
|
|
-typedef struct { unsigned char digest[16]; } XXH128_canonical_t;
|
|
|
-XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
|
|
|
-XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
|
|
|
+static XXH128_hash_t
|
|
|
+XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * GCC/Clang __uint128_t method.
|
|
|
+ *
|
|
|
+ * On most 64-bit targets, GCC and Clang define a __uint128_t type.
|
|
|
+ * This is usually the best way as it usually uses a native long 64-bit
|
|
|
+ * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
|
|
|
+ *
|
|
|
+ * Usually.
|
|
|
+ *
|
|
|
+ * Despite being a 32-bit platform, Clang (and emscripten) define this type
|
|
|
+ * despite not having the arithmetic for it. This results in a laggy
|
|
|
+ * compiler builtin call which calculates a full 128-bit multiply.
|
|
|
+ * In that case it is best to use the portable one.
|
|
|
+ * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
|
|
|
+ */
|
|
|
+#if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \
|
|
|
+ && defined(__SIZEOF_INT128__) \
|
|
|
+ || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
|
|
|
|
|
|
+ __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
|
|
|
+ XXH128_hash_t r128;
|
|
|
+ r128.low64 = (xxh_u64)(product);
|
|
|
+ r128.high64 = (xxh_u64)(product >> 64);
|
|
|
+ return r128;
|
|
|
|
|
|
-#endif /* XXH_NO_LONG_LONG */
|
|
|
+ /*
|
|
|
+ * MSVC for x64's _umul128 method.
|
|
|
+ *
|
|
|
+ * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
|
|
|
+ *
|
|
|
+ * This compiles to single operand MUL on x64.
|
|
|
+ */
|
|
|
+#elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC)
|
|
|
|
|
|
-#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
|
|
|
-# define XXH_IMPLEMENTATION
|
|
|
+#ifndef _MSC_VER
|
|
|
+# pragma intrinsic(_umul128)
|
|
|
#endif
|
|
|
+ xxh_u64 product_high;
|
|
|
+ xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
|
|
|
+ XXH128_hash_t r128;
|
|
|
+ r128.low64 = product_low;
|
|
|
+ r128.high64 = product_high;
|
|
|
+ return r128;
|
|
|
|
|
|
-#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
|
|
|
+ /*
|
|
|
+ * MSVC for ARM64's __umulh method.
|
|
|
+ *
|
|
|
+ * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
|
|
|
+ */
|
|
|
+#elif defined(_M_ARM64) || defined(_M_ARM64EC)
|
|
|
|
|
|
+#ifndef _MSC_VER
|
|
|
+# pragma intrinsic(__umulh)
|
|
|
+#endif
|
|
|
+ XXH128_hash_t r128;
|
|
|
+ r128.low64 = lhs * rhs;
|
|
|
+ r128.high64 = __umulh(lhs, rhs);
|
|
|
+ return r128;
|
|
|
|
|
|
-/* ======================================================================== */
|
|
|
-/* ======================================================================== */
|
|
|
-/* ======================================================================== */
|
|
|
+#else
|
|
|
+ /*
|
|
|
+ * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
|
|
|
+ *
|
|
|
+ * This is a fast and simple grade school multiply, which is shown below
|
|
|
+ * with base 10 arithmetic instead of base 0x100000000.
|
|
|
+ *
|
|
|
+ * 9 3 // D2 lhs = 93
|
|
|
+ * x 7 5 // D2 rhs = 75
|
|
|
+ * ----------
|
|
|
+ * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
|
|
|
+ * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
|
|
|
+ * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
|
|
|
+ * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
|
|
|
+ * ---------
|
|
|
+ * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
|
|
|
+ * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
|
|
|
+ * ---------
|
|
|
+ * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
|
|
|
+ *
|
|
|
+ * The reasons for adding the products like this are:
|
|
|
+ * 1. It avoids manual carry tracking. Just like how
|
|
|
+ * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
|
|
|
+ * This avoids a lot of complexity.
|
|
|
+ *
|
|
|
+ * 2. It hints for, and on Clang, compiles to, the powerful UMAAL
|
|
|
+ * instruction available in ARM's Digital Signal Processing extension
|
|
|
+ * in 32-bit ARMv6 and later, which is shown below:
|
|
|
+ *
|
|
|
+ * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
|
|
|
+ * {
|
|
|
+ * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
|
|
|
+ * *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
|
|
|
+ * *RdHi = (xxh_u32)(product >> 32);
|
|
|
+ * }
|
|
|
+ *
|
|
|
+ * This instruction was designed for efficient long multiplication, and
|
|
|
+ * allows this to be calculated in only 4 instructions at speeds
|
|
|
+ * comparable to some 64-bit ALUs.
|
|
|
+ *
|
|
|
+ * 3. It isn't terrible on other platforms. Usually this will be a couple
|
|
|
+ * of 32-bit ADD/ADCs.
|
|
|
+ */
|
|
|
|
|
|
+ /* First calculate all of the cross products. */
|
|
|
+ xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
|
|
|
+ xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
|
|
|
+ xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
|
|
|
+ xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
|
|
|
+
|
|
|
+ /* Now add the products together. These will never overflow. */
|
|
|
+ xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
|
|
|
+ xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
|
|
|
+ xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
|
|
|
+
|
|
|
+ XXH128_hash_t r128;
|
|
|
+ r128.low64 = lower;
|
|
|
+ r128.high64 = upper;
|
|
|
+ return r128;
|
|
|
+#endif
|
|
|
+}
|
|
|
|
|
|
-/*-**********************************************************************
|
|
|
- * xxHash implementation
|
|
|
- *-**********************************************************************
|
|
|
- * xxHash's implementation used to be found in xxhash.c.
|
|
|
- *
|
|
|
- * However, code inlining requires the implementation to be visible to the
|
|
|
- * compiler, usually within the header.
|
|
|
+/*!
|
|
|
+ * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
|
|
|
*
|
|
|
- * As a workaround, xxhash.c used to be included within xxhash.h. This caused
|
|
|
- * some issues with some build systems, especially ones which treat .c files
|
|
|
- * as source files.
|
|
|
+ * The reason for the separate function is to prevent passing too many structs
|
|
|
+ * around by value. This will hopefully inline the multiply, but we don't force it.
|
|
|
*
|
|
|
- * Therefore, the implementation is now directly integrated within xxhash.h.
|
|
|
- * Another small advantage is that xxhash.c is no longer needed in /include.
|
|
|
- ************************************************************************/
|
|
|
+ * @param lhs , rhs The 64-bit integers to multiply
|
|
|
+ * @return The low 64 bits of the product XOR'd by the high 64 bits.
|
|
|
+ * @see XXH_mult64to128()
|
|
|
+ */
|
|
|
+static xxh_u64
|
|
|
+XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
|
|
|
+{
|
|
|
+ XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
|
|
|
+ return product.low64 ^ product.high64;
|
|
|
+}
|
|
|
|
|
|
-#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
|
|
|
- || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
|
|
|
-# define XXH_IMPLEM_13a8737387
|
|
|
+/*! Seems to produce slightly better code on GCC for some reason. */
|
|
|
+XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
|
|
|
+{
|
|
|
+ XXH_ASSERT(0 <= shift && shift < 64);
|
|
|
+ return v64 ^ (v64 >> shift);
|
|
|
+}
|
|
|
|
|
|
-/* *************************************
|
|
|
-* Tuning parameters
|
|
|
-***************************************/
|
|
|
-/*!
|
|
|
- * XXH_FORCE_MEMORY_ACCESS:
|
|
|
- * By default, access to unaligned memory is controlled by `memcpy()`, which is
|
|
|
- * safe and portable.
|
|
|
- *
|
|
|
- * Unfortunately, on some target/compiler combinations, the generated assembly
|
|
|
- * is sub-optimal.
|
|
|
- *
|
|
|
- * The below switch allow to select a different access method for improved
|
|
|
- * performance.
|
|
|
- * Method 0 (default):
|
|
|
- * Use `memcpy()`. Safe and portable.
|
|
|
- * Method 1:
|
|
|
- * `__attribute__((packed))` statement. It depends on compiler extensions
|
|
|
- * and is therefore not portable.
|
|
|
- * This method is safe if your compiler supports it, and *generally* as
|
|
|
- * fast or faster than `memcpy`.
|
|
|
- * Method 2:
|
|
|
- * Direct access via cast. This method doesn't depend on the compiler but
|
|
|
- * violates the C standard.
|
|
|
- * It can generate buggy code on targets which do not support unaligned
|
|
|
- * memory accesses.
|
|
|
- * But in some circumstances, it's the only known way to get the most
|
|
|
- * performance (ie GCC + ARMv6)
|
|
|
- * Method 3:
|
|
|
- * Byteshift. This can generate the best code on old compilers which don't
|
|
|
- * inline small `memcpy()` calls, and it might also be faster on big-endian
|
|
|
- * systems which lack a native byteswap instruction.
|
|
|
- * See https://stackoverflow.com/a/32095106/646947 for details.
|
|
|
- * Prefer these methods in priority order (0 > 1 > 2 > 3)
|
|
|
+/*
|
|
|
+ * This is a fast avalanche stage,
|
|
|
+ * suitable when input bits are already partially mixed
|
|
|
*/
|
|
|
-#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
|
|
|
-# if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6)
|
|
|
-# define XXH_FORCE_MEMORY_ACCESS 2
|
|
|
-# elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
|
|
|
- (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7)))
|
|
|
-# define XXH_FORCE_MEMORY_ACCESS 1
|
|
|
-# endif
|
|
|
-#endif
|
|
|
+static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
|
|
|
+{
|
|
|
+ h64 = XXH_xorshift64(h64, 37);
|
|
|
+ h64 *= PRIME_MX1;
|
|
|
+ h64 = XXH_xorshift64(h64, 32);
|
|
|
+ return h64;
|
|
|
+}
|
|
|
|
|
|
-/*!
|
|
|
- *XXH_ACCEPT_NULL_INPUT_POINTER:
|
|
|
- * If the input pointer is NULL, xxHash's default behavior is to dereference it,
|
|
|
- * triggering a segfault.
|
|
|
- * When this macro is enabled, xxHash actively checks the input for a null pointer.
|
|
|
- * If it is, the result for null input pointers is the same as a zero-length input.
|
|
|
+/*
|
|
|
+ * This is a stronger avalanche,
|
|
|
+ * inspired by Pelle Evensen's rrmxmx
|
|
|
+ * preferable when input has not been previously mixed
|
|
|
*/
|
|
|
-#ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */
|
|
|
-# define XXH_ACCEPT_NULL_INPUT_POINTER 0
|
|
|
-#endif
|
|
|
+static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
|
|
|
+{
|
|
|
+ /* this mix is inspired by Pelle Evensen's rrmxmx */
|
|
|
+ h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
|
|
|
+ h64 *= PRIME_MX2;
|
|
|
+ h64 ^= (h64 >> 35) + len ;
|
|
|
+ h64 *= PRIME_MX2;
|
|
|
+ return XXH_xorshift64(h64, 28);
|
|
|
+}
|
|
|
|
|
|
-/*!
|
|
|
- * XXH_FORCE_ALIGN_CHECK:
|
|
|
- * This is a minor performance trick, only useful with lots of very small keys.
|
|
|
- * It means: check for aligned/unaligned input.
|
|
|
- * The check costs one initial branch per hash;
|
|
|
- * Set it to 0 when the input is guaranteed to be aligned or when alignment
|
|
|
- * doesn't matter for performance.
|
|
|
+
|
|
|
+/* ==========================================
|
|
|
+ * Short keys
|
|
|
+ * ==========================================
|
|
|
+ * One of the shortcomings of XXH32 and XXH64 was that their performance was
|
|
|
+ * sub-optimal on short lengths. It used an iterative algorithm which strongly
|
|
|
+ * favored lengths that were a multiple of 4 or 8.
|
|
|
*
|
|
|
- * This option does not affect XXH3.
|
|
|
+ * Instead of iterating over individual inputs, we use a set of single shot
|
|
|
+ * functions which piece together a range of lengths and operate in constant time.
|
|
|
+ *
|
|
|
+ * Additionally, the number of multiplies has been significantly reduced. This
|
|
|
+ * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
|
|
|
+ *
|
|
|
+ * Depending on the platform, this may or may not be faster than XXH32, but it
|
|
|
+ * is almost guaranteed to be faster than XXH64.
|
|
|
*/
|
|
|
-#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
|
|
|
-# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
|
|
|
-# define XXH_FORCE_ALIGN_CHECK 0
|
|
|
-# else
|
|
|
-# define XXH_FORCE_ALIGN_CHECK 1
|
|
|
-# endif
|
|
|
-#endif
|
|
|
|
|
|
-/*!
|
|
|
- * XXH_NO_INLINE_HINTS:
|
|
|
- *
|
|
|
- * By default, xxHash tries to force the compiler to inline almost all internal
|
|
|
- * functions.
|
|
|
+/*
|
|
|
+ * At very short lengths, there isn't enough input to fully hide secrets, or use
|
|
|
+ * the entire secret.
|
|
|
*
|
|
|
- * This can usually improve performance due to reduced jumping and improved
|
|
|
- * constant folding, but significantly increases the size of the binary which
|
|
|
- * might not be favorable.
|
|
|
+ * There is also only a limited amount of mixing we can do before significantly
|
|
|
+ * impacting performance.
|
|
|
*
|
|
|
- * Additionally, sometimes the forced inlining can be detrimental to performance,
|
|
|
- * depending on the architecture.
|
|
|
+ * Therefore, we use different sections of the secret and always mix two secret
|
|
|
+ * samples with an XOR. This should have no effect on performance on the
|
|
|
+ * seedless or withSeed variants because everything _should_ be constant folded
|
|
|
+ * by modern compilers.
|
|
|
*
|
|
|
- * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
|
|
|
- * compiler full control on whether to inline or not.
|
|
|
+ * The XOR mixing hides individual parts of the secret and increases entropy.
|
|
|
*
|
|
|
- * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
|
|
|
- * -fno-inline with GCC or Clang, this will automatically be defined.
|
|
|
+ * This adds an extra layer of strength for custom secrets.
|
|
|
*/
|
|
|
-#ifndef XXH_NO_INLINE_HINTS
|
|
|
-# if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
|
|
|
- || defined(__NO_INLINE__) /* -O0, -fno-inline */
|
|
|
-# define XXH_NO_INLINE_HINTS 1
|
|
|
-# else
|
|
|
-# define XXH_NO_INLINE_HINTS 0
|
|
|
-# endif
|
|
|
-#endif
|
|
|
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
|
|
|
+XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
|
|
|
+{
|
|
|
+ XXH_ASSERT(input != NULL);
|
|
|
+ XXH_ASSERT(1 <= len && len <= 3);
|
|
|
+ XXH_ASSERT(secret != NULL);
|
|
|
+ /*
|
|
|
+ * len = 1: combined = { input[0], 0x01, input[0], input[0] }
|
|
|
+ * len = 2: combined = { input[1], 0x02, input[0], input[1] }
|
|
|
+ * len = 3: combined = { input[2], 0x03, input[0], input[1] }
|
|
|
+ */
|
|
|
+ { xxh_u8 const c1 = input[0];
|
|
|
+ xxh_u8 const c2 = input[len >> 1];
|
|
|
+ xxh_u8 const c3 = input[len - 1];
|
|
|
+ xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24)
|
|
|
+ | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
|
|
|
+ xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
|
|
|
+ xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
|
|
|
+ return XXH64_avalanche(keyed);
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
-/*!
|
|
|
- * XXH_REROLL:
|
|
|
- * Whether to reroll XXH32_finalize, and XXH64_finalize,
|
|
|
- * instead of using an unrolled jump table/if statement loop.
|
|
|
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
|
|
|
+XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
|
|
|
+{
|
|
|
+ XXH_ASSERT(input != NULL);
|
|
|
+ XXH_ASSERT(secret != NULL);
|
|
|
+ XXH_ASSERT(4 <= len && len <= 8);
|
|
|
+ seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
|
|
|
+ { xxh_u32 const input1 = XXH_readLE32(input);
|
|
|
+ xxh_u32 const input2 = XXH_readLE32(input + len - 4);
|
|
|
+ xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
|
|
|
+ xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
|
|
|
+ xxh_u64 const keyed = input64 ^ bitflip;
|
|
|
+ return XXH3_rrmxmx(keyed, len);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
|
|
|
+XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
|
|
|
+{
|
|
|
+ XXH_ASSERT(input != NULL);
|
|
|
+ XXH_ASSERT(secret != NULL);
|
|
|
+ XXH_ASSERT(9 <= len && len <= 16);
|
|
|
+ { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
|
|
|
+ xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
|
|
|
+ xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
|
|
|
+ xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
|
|
|
+ xxh_u64 const acc = len
|
|
|
+ + XXH_swap64(input_lo) + input_hi
|
|
|
+ + XXH3_mul128_fold64(input_lo, input_hi);
|
|
|
+ return XXH3_avalanche(acc);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
|
|
|
+XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
|
|
|
+{
|
|
|
+ XXH_ASSERT(len <= 16);
|
|
|
+ { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed);
|
|
|
+ if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
|
|
|
+ if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
|
|
|
+ return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
|
|
|
+ * multiplication by zero, affecting hashes of lengths 17 to 240.
|
|
|
+ *
|
|
|
+ * However, they are very unlikely.
|
|
|
+ *
|
|
|
+ * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
|
|
|
+ * unseeded non-cryptographic hashes, it does not attempt to defend itself
|
|
|
+ * against specially crafted inputs, only random inputs.
|
|
|
+ *
|
|
|
+ * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
|
|
|
+ * cancelling out the secret is taken an arbitrary number of times (addressed
|
|
|
+ * in XXH3_accumulate_512), this collision is very unlikely with random inputs
|
|
|
+ * and/or proper seeding:
|
|
|
+ *
|
|
|
+ * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
|
|
|
+ * function that is only called up to 16 times per hash with up to 240 bytes of
|
|
|
+ * input.
|
|
|
*
|
|
|
- * This is automatically defined on -Os/-Oz on GCC and Clang.
|
|
|
+ * This is not too bad for a non-cryptographic hash function, especially with
|
|
|
+ * only 64 bit outputs.
|
|
|
+ *
|
|
|
+ * The 128-bit variant (which trades some speed for strength) is NOT affected
|
|
|
+ * by this, although it is always a good idea to use a proper seed if you care
|
|
|
+ * about strength.
|
|
|
*/
|
|
|
-#ifndef XXH_REROLL
|
|
|
-# if defined(__OPTIMIZE_SIZE__)
|
|
|
-# define XXH_REROLL 1
|
|
|
-# else
|
|
|
-# define XXH_REROLL 0
|
|
|
-# endif
|
|
|
+XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
|
|
|
+ const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
|
|
|
+{
|
|
|
+#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
|
|
|
+ && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \
|
|
|
+ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
|
|
|
+ /*
|
|
|
+ * UGLY HACK:
|
|
|
+ * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
|
|
|
+ * slower code.
|
|
|
+ *
|
|
|
+ * By forcing seed64 into a register, we disrupt the cost model and
|
|
|
+ * cause it to scalarize. See `XXH32_round()`
|
|
|
+ *
|
|
|
+ * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
|
|
|
+ * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
|
|
|
+ * GCC 9.2, despite both emitting scalar code.
|
|
|
+ *
|
|
|
+ * GCC generates much better scalar code than Clang for the rest of XXH3,
|
|
|
+ * which is why finding a more optimal codepath is an interest.
|
|
|
+ */
|
|
|
+ XXH_COMPILER_GUARD(seed64);
|
|
|
#endif
|
|
|
+ { xxh_u64 const input_lo = XXH_readLE64(input);
|
|
|
+ xxh_u64 const input_hi = XXH_readLE64(input+8);
|
|
|
+ return XXH3_mul128_fold64(
|
|
|
+ input_lo ^ (XXH_readLE64(secret) + seed64),
|
|
|
+ input_hi ^ (XXH_readLE64(secret+8) - seed64)
|
|
|
+ );
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
+/* For mid range keys, XXH3 uses a Mum-hash variant. */
|
|
|
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
|
|
|
+XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
|
|
|
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
|
|
|
+ XXH64_hash_t seed)
|
|
|
+{
|
|
|
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
|
|
|
+ XXH_ASSERT(16 < len && len <= 128);
|
|
|
|
|
|
-/* *************************************
|
|
|
-* Includes & Memory related functions
|
|
|
-***************************************/
|
|
|
-/*!
|
|
|
- * Modify the local functions below should you wish to use some other memory
|
|
|
- * routines for malloc() and free()
|
|
|
- */
|
|
|
-#include <stdlib.h>
|
|
|
-
|
|
|
-static void* XXH_malloc(size_t s) { return malloc(s); }
|
|
|
-static void XXH_free(void* p) { free(p); }
|
|
|
+ { xxh_u64 acc = len * XXH_PRIME64_1;
|
|
|
+#if XXH_SIZE_OPT >= 1
|
|
|
+ /* Smaller and cleaner, but slightly slower. */
|
|
|
+ unsigned int i = (unsigned int)(len - 1) / 32;
|
|
|
+ do {
|
|
|
+ acc += XXH3_mix16B(input+16 * i, secret+32*i, seed);
|
|
|
+ acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed);
|
|
|
+ } while (i-- != 0);
|
|
|
+#else
|
|
|
+ if (len > 32) {
|
|
|
+ if (len > 64) {
|
|
|
+ if (len > 96) {
|
|
|
+ acc += XXH3_mix16B(input+48, secret+96, seed);
|
|
|
+ acc += XXH3_mix16B(input+len-64, secret+112, seed);
|
|
|
+ }
|
|
|
+ acc += XXH3_mix16B(input+32, secret+64, seed);
|
|
|
+ acc += XXH3_mix16B(input+len-48, secret+80, seed);
|
|
|
+ }
|
|
|
+ acc += XXH3_mix16B(input+16, secret+32, seed);
|
|
|
+ acc += XXH3_mix16B(input+len-32, secret+48, seed);
|
|
|
+ }
|
|
|
+ acc += XXH3_mix16B(input+0, secret+0, seed);
|
|
|
+ acc += XXH3_mix16B(input+len-16, secret+16, seed);
|
|
|
+#endif
|
|
|
+ return XXH3_avalanche(acc);
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
-/*! and for memcpy() */
|
|
|
-#include <string.h>
|
|
|
-static void* XXH_memcpy(void* dest, const void* src, size_t size)
|
|
|
+XXH_NO_INLINE XXH_PUREF XXH64_hash_t
|
|
|
+XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
|
|
|
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
|
|
|
+ XXH64_hash_t seed)
|
|
|
{
|
|
|
- return memcpy(dest,src,size);
|
|
|
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
|
|
|
+ XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
|
|
|
+
|
|
|
+ #define XXH3_MIDSIZE_STARTOFFSET 3
|
|
|
+ #define XXH3_MIDSIZE_LASTOFFSET 17
|
|
|
+
|
|
|
+ { xxh_u64 acc = len * XXH_PRIME64_1;
|
|
|
+ xxh_u64 acc_end;
|
|
|
+ unsigned int const nbRounds = (unsigned int)len / 16;
|
|
|
+ unsigned int i;
|
|
|
+ XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
|
|
|
+ for (i=0; i<8; i++) {
|
|
|
+ acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
|
|
|
+ }
|
|
|
+ /* last bytes */
|
|
|
+ acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
|
|
|
+ XXH_ASSERT(nbRounds >= 8);
|
|
|
+ acc = XXH3_avalanche(acc);
|
|
|
+#if defined(__clang__) /* Clang */ \
|
|
|
+ && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
|
|
|
+ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
|
|
|
+ /*
|
|
|
+ * UGLY HACK:
|
|
|
+ * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
|
|
|
+ * In everywhere else, it uses scalar code.
|
|
|
+ *
|
|
|
+ * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
|
|
|
+ * would still be slower than UMAAL (see XXH_mult64to128).
|
|
|
+ *
|
|
|
+ * Unfortunately, Clang doesn't handle the long multiplies properly and
|
|
|
+ * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
|
|
|
+ * scalarized into an ugly mess of VMOV.32 instructions.
|
|
|
+ *
|
|
|
+ * This mess is difficult to avoid without turning autovectorization
|
|
|
+ * off completely, but they are usually relatively minor and/or not
|
|
|
+ * worth it to fix.
|
|
|
+ *
|
|
|
+ * This loop is the easiest to fix, as unlike XXH32, this pragma
|
|
|
+ * _actually works_ because it is a loop vectorization instead of an
|
|
|
+ * SLP vectorization.
|
|
|
+ */
|
|
|
+ #pragma clang loop vectorize(disable)
|
|
|
+#endif
|
|
|
+ for (i=8 ; i < nbRounds; i++) {
|
|
|
+ /*
|
|
|
+ * Prevents clang for unrolling the acc loop and interleaving with this one.
|
|
|
+ */
|
|
|
+ XXH_COMPILER_GUARD(acc);
|
|
|
+ acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
|
|
|
+ }
|
|
|
+ return XXH3_avalanche(acc + acc_end);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-#include <limits.h> /* ULLONG_MAX */
|
|
|
|
|
|
+/* ======= Long Keys ======= */
|
|
|
|
|
|
-/* *************************************
|
|
|
-* Compiler Specific Options
|
|
|
-***************************************/
|
|
|
-#ifdef _MSC_VER /* Visual Studio warning fix */
|
|
|
-# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
|
|
+#define XXH_STRIPE_LEN 64
|
|
|
+#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
|
|
|
+#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
|
|
|
+
|
|
|
+#ifdef XXH_OLD_NAMES
|
|
|
+# define STRIPE_LEN XXH_STRIPE_LEN
|
|
|
+# define ACC_NB XXH_ACC_NB
|
|
|
#endif
|
|
|
|
|
|
-#if XXH_NO_INLINE_HINTS /* disable inlining hints */
|
|
|
-# define XXH_FORCE_INLINE static
|
|
|
-# define XXH_NO_INLINE static
|
|
|
-#elif defined(_MSC_VER) /* Visual Studio */
|
|
|
-# define XXH_FORCE_INLINE static __forceinline
|
|
|
-# define XXH_NO_INLINE static __declspec(noinline)
|
|
|
-#else
|
|
|
-# if defined (__cplusplus) \
|
|
|
- || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
|
|
|
-# ifdef __GNUC__
|
|
|
-# define XXH_FORCE_INLINE static inline __attribute__((always_inline))
|
|
|
-# define XXH_NO_INLINE static __attribute__((noinline))
|
|
|
+#ifndef XXH_PREFETCH_DIST
|
|
|
+# ifdef __clang__
|
|
|
+# define XXH_PREFETCH_DIST 320
|
|
|
+# else
|
|
|
+# if (XXH_VECTOR == XXH_AVX512)
|
|
|
+# define XXH_PREFETCH_DIST 512
|
|
|
# else
|
|
|
-# define XXH_FORCE_INLINE static inline
|
|
|
-# define XXH_NO_INLINE static
|
|
|
+# define XXH_PREFETCH_DIST 384
|
|
|
# endif
|
|
|
-# else
|
|
|
-# define XXH_FORCE_INLINE static
|
|
|
-# define XXH_NO_INLINE static
|
|
|
-# endif /* __STDC_VERSION__ */
|
|
|
-#endif
|
|
|
-
|
|
|
+# endif /* __clang__ */
|
|
|
+#endif /* XXH_PREFETCH_DIST */
|
|
|
|
|
|
-
|
|
|
-/* *************************************
|
|
|
-* Debug
|
|
|
-***************************************/
|
|
|
/*
|
|
|
- * DEBUGLEVEL is expected to be defined externally, typically via the compiler's
|
|
|
- * command line options. The value must be a number.
|
|
|
+ * These macros are to generate an XXH3_accumulate() function.
|
|
|
+ * The two arguments select the name suffix and target attribute.
|
|
|
+ *
|
|
|
+ * The name of this symbol is XXH3_accumulate_<name>() and it calls
|
|
|
+ * XXH3_accumulate_512_<name>().
|
|
|
+ *
|
|
|
+ * It may be useful to hand implement this function if the compiler fails to
|
|
|
+ * optimize the inline function.
|
|
|
*/
|
|
|
-#ifndef DEBUGLEVEL
|
|
|
-# define DEBUGLEVEL 0
|
|
|
-#endif
|
|
|
-
|
|
|
-#if (DEBUGLEVEL>=1)
|
|
|
-# include <assert.h> /* note: can still be disabled with NDEBUG */
|
|
|
-# define XXH_ASSERT(c) assert(c)
|
|
|
-#else
|
|
|
-# define XXH_ASSERT(c) ((void)0)
|
|
|
-#endif
|
|
|
+#define XXH3_ACCUMULATE_TEMPLATE(name) \
|
|
|
+void \
|
|
|
+XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc, \
|
|
|
+ const xxh_u8* XXH_RESTRICT input, \
|
|
|
+ const xxh_u8* XXH_RESTRICT secret, \
|
|
|
+ size_t nbStripes) \
|
|
|
+{ \
|
|
|
+ size_t n; \
|
|
|
+ for (n = 0; n < nbStripes; n++ ) { \
|
|
|
+ const xxh_u8* const in = input + n*XXH_STRIPE_LEN; \
|
|
|
+ XXH_PREFETCH(in + XXH_PREFETCH_DIST); \
|
|
|
+ XXH3_accumulate_512_##name( \
|
|
|
+ acc, \
|
|
|
+ in, \
|
|
|
+ secret + n*XXH_SECRET_CONSUME_RATE); \
|
|
|
+ } \
|
|
|
+}
|
|
|
|
|
|
-/* note: use after variable declarations */
|
|
|
-#define XXH_STATIC_ASSERT(c) do { enum { XXH_sa = 1/(int)(!!(c)) }; } while (0)
|
|
|
|
|
|
+XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
|
|
|
+{
|
|
|
+ if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
|
|
|
+ XXH_memcpy(dst, &v64, sizeof(v64));
|
|
|
+}
|
|
|
|
|
|
-/* *************************************
|
|
|
-* Basic Types
|
|
|
-***************************************/
|
|
|
+/* Several intrinsic functions below are supposed to accept __int64 as argument,
|
|
|
+ * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
|
|
|
+ * However, several environments do not define __int64 type,
|
|
|
+ * requiring a workaround.
|
|
|
+ */
|
|
|
#if !defined (__VMS) \
|
|
|
- && (defined (__cplusplus) \
|
|
|
- || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
|
-# include <stdint.h>
|
|
|
- typedef uint8_t xxh_u8;
|
|
|
+ && (defined (__cplusplus) \
|
|
|
+ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
|
+ typedef int64_t xxh_i64;
|
|
|
#else
|
|
|
- typedef unsigned char xxh_u8;
|
|
|
-#endif
|
|
|
-typedef XXH32_hash_t xxh_u32;
|
|
|
-
|
|
|
+ /* the following type must have a width of 64-bit */
|
|
|
+ typedef long long xxh_i64;
|
|
|
+#endif
|
|
|
|
|
|
-/* *** Memory access *** */
|
|
|
|
|
|
-#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
|
|
|
/*
|
|
|
- * Manual byteshift. Best for old compilers which don't inline memcpy.
|
|
|
- * We actually directly use XXH_readLE32 and XXH_readBE32.
|
|
|
+ * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
|
|
|
+ *
|
|
|
+ * It is a hardened version of UMAC, based off of FARSH's implementation.
|
|
|
+ *
|
|
|
+ * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
|
|
|
+ * implementations, and it is ridiculously fast.
|
|
|
+ *
|
|
|
+ * We harden it by mixing the original input to the accumulators as well as the product.
|
|
|
+ *
|
|
|
+ * This means that in the (relatively likely) case of a multiply by zero, the
|
|
|
+ * original input is preserved.
|
|
|
+ *
|
|
|
+ * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
|
|
|
+ * cross-pollination, as otherwise the upper and lower halves would be
|
|
|
+ * essentially independent.
|
|
|
+ *
|
|
|
+ * This doesn't matter on 64-bit hashes since they all get merged together in
|
|
|
+ * the end, so we skip the extra step.
|
|
|
+ *
|
|
|
+ * Both XXH3_64bits and XXH3_128bits use this subroutine.
|
|
|
*/
|
|
|
-#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
|
|
|
|
|
|
-/*
|
|
|
- * Force direct memory access. Only works on CPU which support unaligned memory
|
|
|
- * access in hardware.
|
|
|
- */
|
|
|
-static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
|
|
|
+#if (XXH_VECTOR == XXH_AVX512) \
|
|
|
+ || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
|
|
|
|
|
|
-#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
|
|
|
+#ifndef XXH_TARGET_AVX512
|
|
|
+# define XXH_TARGET_AVX512 /* disable attribute target */
|
|
|
+#endif
|
|
|
+
|
|
|
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void
|
|
|
+XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
|
|
|
+ const void* XXH_RESTRICT input,
|
|
|
+ const void* XXH_RESTRICT secret)
|
|
|
+{
|
|
|
+ __m512i* const xacc = (__m512i *) acc;
|
|
|
+ XXH_ASSERT((((size_t)acc) & 63) == 0);
|
|
|
+ XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
|
|
|
+
|
|
|
+ {
|
|
|
+ /* data_vec = input[0]; */
|
|
|
+ __m512i const data_vec = _mm512_loadu_si512 (input);
|
|
|
+ /* key_vec = secret[0]; */
|
|
|
+ __m512i const key_vec = _mm512_loadu_si512 (secret);
|
|
|
+ /* data_key = data_vec ^ key_vec; */
|
|
|
+ __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
|
|
|
+ /* data_key_lo = data_key >> 32; */
|
|
|
+ __m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32);
|
|
|
+ /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
|
|
|
+ __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo);
|
|
|
+ /* xacc[0] += swap(data_vec); */
|
|
|
+ __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
|
|
|
+ __m512i const sum = _mm512_add_epi64(*xacc, data_swap);
|
|
|
+ /* xacc[0] += product; */
|
|
|
+ *xacc = _mm512_add_epi64(product, sum);
|
|
|
+ }
|
|
|
+}
|
|
|
+XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512)
|
|
|
|
|
|
/*
|
|
|
- * __pack instructions are safer but compiler specific, hence potentially
|
|
|
- * problematic for some compilers.
|
|
|
+ * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
|
|
|
*
|
|
|
- * Currently only defined for GCC and ICC.
|
|
|
+ * Multiplication isn't perfect, as explained by Google in HighwayHash:
|
|
|
+ *
|
|
|
+ * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
|
|
|
+ * // varying degrees. In descending order of goodness, bytes
|
|
|
+ * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
|
|
|
+ * // As expected, the upper and lower bytes are much worse.
|
|
|
+ *
|
|
|
+ * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
|
|
|
+ *
|
|
|
+ * Since our algorithm uses a pseudorandom secret to add some variance into the
|
|
|
+ * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
|
|
|
+ *
|
|
|
+ * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
|
|
|
+ * extraction.
|
|
|
+ *
|
|
|
+ * Both XXH3_64bits and XXH3_128bits use this subroutine.
|
|
|
*/
|
|
|
-typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
|
|
|
-static xxh_u32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
|
|
|
|
|
|
-#else
|
|
|
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void
|
|
|
+XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
|
|
|
+{
|
|
|
+ XXH_ASSERT((((size_t)acc) & 63) == 0);
|
|
|
+ XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
|
|
|
+ { __m512i* const xacc = (__m512i*) acc;
|
|
|
+ const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
|
|
|
+
|
|
|
+ /* xacc[0] ^= (xacc[0] >> 47) */
|
|
|
+ __m512i const acc_vec = *xacc;
|
|
|
+ __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47);
|
|
|
+ /* xacc[0] ^= secret; */
|
|
|
+ __m512i const key_vec = _mm512_loadu_si512 (secret);
|
|
|
+ __m512i const data_key = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */);
|
|
|
+
|
|
|
+ /* xacc[0] *= XXH_PRIME32_1; */
|
|
|
+ __m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32);
|
|
|
+ __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32);
|
|
|
+ __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32);
|
|
|
+ *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
-/*
|
|
|
- * Portable and safe solution. Generally efficient.
|
|
|
- * see: https://stackoverflow.com/a/32095106/646947
|
|
|
- */
|
|
|
-static xxh_u32 XXH_read32(const void* memPtr)
|
|
|
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void
|
|
|
+XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
|
|
|
{
|
|
|
- xxh_u32 val;
|
|
|
- memcpy(&val, memPtr, sizeof(val));
|
|
|
- return val;
|
|
|
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
|
|
|
+ XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
|
|
|
+ XXH_ASSERT(((size_t)customSecret & 63) == 0);
|
|
|
+ (void)(&XXH_writeLE64);
|
|
|
+ { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
|
|
|
+ __m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64);
|
|
|
+ __m512i const seed = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos);
|
|
|
+
|
|
|
+ const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret);
|
|
|
+ __m512i* const dest = ( __m512i*) customSecret;
|
|
|
+ int i;
|
|
|
+ XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
|
|
|
+ XXH_ASSERT(((size_t)dest & 63) == 0);
|
|
|
+ for (i=0; i < nbRounds; ++i) {
|
|
|
+ dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed);
|
|
|
+ } }
|
|
|
}
|
|
|
|
|
|
-#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
|
|
|
+#endif
|
|
|
|
|
|
+#if (XXH_VECTOR == XXH_AVX2) \
|
|
|
+ || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
|
|
|
|
|
|
-/* *** Endianess *** */
|
|
|
-typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
|
|
|
+#ifndef XXH_TARGET_AVX2
|
|
|
+# define XXH_TARGET_AVX2 /* disable attribute target */
|
|
|
+#endif
|
|
|
|
|
|
-/*!
|
|
|
- * XXH_CPU_LITTLE_ENDIAN:
|
|
|
- * Defined to 1 if the target is little endian, or 0 if it is big endian.
|
|
|
- * It can be defined externally, for example on the compiler command line.
|
|
|
- *
|
|
|
- * If it is not defined, a runtime check (which is usually constant folded)
|
|
|
- * is used instead.
|
|
|
- */
|
|
|
-#ifndef XXH_CPU_LITTLE_ENDIAN
|
|
|
-/*
|
|
|
- * Try to detect endianness automatically, to avoid the nonstandard behavior
|
|
|
- * in `XXH_isLittleEndian()`
|
|
|
- */
|
|
|
-# if defined(_WIN32) /* Windows is always little endian */ \
|
|
|
- || defined(__LITTLE_ENDIAN__) \
|
|
|
- || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
|
|
|
-# define XXH_CPU_LITTLE_ENDIAN 1
|
|
|
-# elif defined(__BIG_ENDIAN__) \
|
|
|
- || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
|
|
|
-# define XXH_CPU_LITTLE_ENDIAN 0
|
|
|
-# else
|
|
|
-static int XXH_isLittleEndian(void)
|
|
|
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void
|
|
|
+XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
|
|
|
+ const void* XXH_RESTRICT input,
|
|
|
+ const void* XXH_RESTRICT secret)
|
|
|
{
|
|
|
- /*
|
|
|
- * Nonstandard, but well-defined behavior in practice.
|
|
|
- * Don't use static: it is detrimental to performance.
|
|
|
- */
|
|
|
- const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
|
|
|
- return one.c[0];
|
|
|
+ XXH_ASSERT((((size_t)acc) & 31) == 0);
|
|
|
+ { __m256i* const xacc = (__m256i *) acc;
|
|
|
+ /* Unaligned. This is mainly for pointer arithmetic, and because
|
|
|
+ * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
|
|
|
+ const __m256i* const xinput = (const __m256i *) input;
|
|
|
+ /* Unaligned. This is mainly for pointer arithmetic, and because
|
|
|
+ * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
|
|
|
+ const __m256i* const xsecret = (const __m256i *) secret;
|
|
|
+
|
|
|
+ size_t i;
|
|
|
+ for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
|
|
|
+ /* data_vec = xinput[i]; */
|
|
|
+ __m256i const data_vec = _mm256_loadu_si256 (xinput+i);
|
|
|
+ /* key_vec = xsecret[i]; */
|
|
|
+ __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
|
|
|
+ /* data_key = data_vec ^ key_vec; */
|
|
|
+ __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
|
|
|
+ /* data_key_lo = data_key >> 32; */
|
|
|
+ __m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32);
|
|
|
+ /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
|
|
|
+ __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo);
|
|
|
+ /* xacc[i] += swap(data_vec); */
|
|
|
+ __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
|
|
|
+ __m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
|
|
|
+ /* xacc[i] += product; */
|
|
|
+ xacc[i] = _mm256_add_epi64(product, sum);
|
|
|
+ } }
|
|
|
}
|
|
|
-# define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
|
|
|
-# endif
|
|
|
-#endif
|
|
|
+XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2)
|
|
|
|
|
|
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void
|
|
|
+XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
|
|
|
+{
|
|
|
+ XXH_ASSERT((((size_t)acc) & 31) == 0);
|
|
|
+ { __m256i* const xacc = (__m256i*) acc;
|
|
|
+ /* Unaligned. This is mainly for pointer arithmetic, and because
|
|
|
+ * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
|
|
|
+ const __m256i* const xsecret = (const __m256i *) secret;
|
|
|
+ const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
|
|
|
+
|
|
|
+ size_t i;
|
|
|
+ for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
|
|
|
+ /* xacc[i] ^= (xacc[i] >> 47) */
|
|
|
+ __m256i const acc_vec = xacc[i];
|
|
|
+ __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47);
|
|
|
+ __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted);
|
|
|
+ /* xacc[i] ^= xsecret; */
|
|
|
+ __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
|
|
|
+ __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
|
|
|
+
|
|
|
+ /* xacc[i] *= XXH_PRIME32_1; */
|
|
|
+ __m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32);
|
|
|
+ __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
|
|
|
+ __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
|
|
|
+ xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
|
|
|
+{
|
|
|
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
|
|
|
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
|
|
|
+ XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
|
|
|
+ (void)(&XXH_writeLE64);
|
|
|
+ XXH_PREFETCH(customSecret);
|
|
|
+ { __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64);
|
|
|
+
|
|
|
+ const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret);
|
|
|
+ __m256i* dest = ( __m256i*) customSecret;
|
|
|
+
|
|
|
+# if defined(__GNUC__) || defined(__clang__)
|
|
|
+ /*
|
|
|
+ * On GCC & Clang, marking 'dest' as modified will cause the compiler:
|
|
|
+ * - do not extract the secret from sse registers in the internal loop
|
|
|
+ * - use less common registers, and avoid pushing these reg into stack
|
|
|
+ */
|
|
|
+ XXH_COMPILER_GUARD(dest);
|
|
|
+# endif
|
|
|
+ XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */
|
|
|
+ XXH_ASSERT(((size_t)dest & 31) == 0);
|
|
|
+
|
|
|
+ /* GCC -O2 need unroll loop manually */
|
|
|
+ dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed);
|
|
|
+ dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed);
|
|
|
+ dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed);
|
|
|
+ dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed);
|
|
|
+ dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed);
|
|
|
+ dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed);
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
+#endif
|
|
|
|
|
|
-/* ****************************************
|
|
|
-* Compiler-specific Functions and Macros
|
|
|
-******************************************/
|
|
|
-#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
|
|
|
+/* x86dispatch always generates SSE2 */
|
|
|
+#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
|
|
|
|
|
|
-#ifndef __has_builtin
|
|
|
-# define __has_builtin(x) 0
|
|
|
+#ifndef XXH_TARGET_SSE2
|
|
|
+# define XXH_TARGET_SSE2 /* disable attribute target */
|
|
|
#endif
|
|
|
|
|
|
-#if !defined(NO_CLANG_BUILTIN) && __has_builtin(__builtin_rotateleft32) \
|
|
|
- && __has_builtin(__builtin_rotateleft64)
|
|
|
-# define XXH_rotl32 __builtin_rotateleft32
|
|
|
-# define XXH_rotl64 __builtin_rotateleft64
|
|
|
-/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
|
|
|
-#elif defined(_MSC_VER)
|
|
|
-# define XXH_rotl32(x,r) _rotl(x,r)
|
|
|
-# define XXH_rotl64(x,r) _rotl64(x,r)
|
|
|
-#else
|
|
|
-# define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
|
|
|
-# define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
|
|
|
-#endif
|
|
|
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void
|
|
|
+XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
|
|
|
+ const void* XXH_RESTRICT input,
|
|
|
+ const void* XXH_RESTRICT secret)
|
|
|
+{
|
|
|
+ /* SSE2 is just a half-scale version of the AVX2 version. */
|
|
|
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
|
|
|
+ { __m128i* const xacc = (__m128i *) acc;
|
|
|
+ /* Unaligned. This is mainly for pointer arithmetic, and because
|
|
|
+ * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
|
|
|
+ const __m128i* const xinput = (const __m128i *) input;
|
|
|
+ /* Unaligned. This is mainly for pointer arithmetic, and because
|
|
|
+ * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
|
|
|
+ const __m128i* const xsecret = (const __m128i *) secret;
|
|
|
+
|
|
|
+ size_t i;
|
|
|
+ for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
|
|
|
+ /* data_vec = xinput[i]; */
|
|
|
+ __m128i const data_vec = _mm_loadu_si128 (xinput+i);
|
|
|
+ /* key_vec = xsecret[i]; */
|
|
|
+ __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
|
|
|
+ /* data_key = data_vec ^ key_vec; */
|
|
|
+ __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
|
|
|
+ /* data_key_lo = data_key >> 32; */
|
|
|
+ __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
|
|
|
+ /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
|
|
|
+ __m128i const product = _mm_mul_epu32 (data_key, data_key_lo);
|
|
|
+ /* xacc[i] += swap(data_vec); */
|
|
|
+ __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
|
|
|
+ __m128i const sum = _mm_add_epi64(xacc[i], data_swap);
|
|
|
+ /* xacc[i] += product; */
|
|
|
+ xacc[i] = _mm_add_epi64(product, sum);
|
|
|
+ } }
|
|
|
+}
|
|
|
+XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2)
|
|
|
|
|
|
-#if defined(_MSC_VER) /* Visual Studio */
|
|
|
-# define XXH_swap32 _byteswap_ulong
|
|
|
-#elif XXH_GCC_VERSION >= 403
|
|
|
-# define XXH_swap32 __builtin_bswap32
|
|
|
-#else
|
|
|
-static xxh_u32 XXH_swap32 (xxh_u32 x)
|
|
|
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void
|
|
|
+XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
|
|
|
{
|
|
|
- return ((x << 24) & 0xff000000 ) |
|
|
|
- ((x << 8) & 0x00ff0000 ) |
|
|
|
- ((x >> 8) & 0x0000ff00 ) |
|
|
|
- ((x >> 24) & 0x000000ff );
|
|
|
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
|
|
|
+ { __m128i* const xacc = (__m128i*) acc;
|
|
|
+ /* Unaligned. This is mainly for pointer arithmetic, and because
|
|
|
+ * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
|
|
|
+ const __m128i* const xsecret = (const __m128i *) secret;
|
|
|
+ const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
|
|
|
+
|
|
|
+ size_t i;
|
|
|
+ for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
|
|
|
+ /* xacc[i] ^= (xacc[i] >> 47) */
|
|
|
+ __m128i const acc_vec = xacc[i];
|
|
|
+ __m128i const shifted = _mm_srli_epi64 (acc_vec, 47);
|
|
|
+ __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted);
|
|
|
+ /* xacc[i] ^= xsecret[i]; */
|
|
|
+ __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
|
|
|
+ __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
|
|
|
+
|
|
|
+ /* xacc[i] *= XXH_PRIME32_1; */
|
|
|
+ __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
|
|
|
+ __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32);
|
|
|
+ __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32);
|
|
|
+ xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
|
|
|
+{
|
|
|
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
|
|
|
+ (void)(&XXH_writeLE64);
|
|
|
+ { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
|
|
|
+
|
|
|
+# if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
|
|
|
+ /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */
|
|
|
+ XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) };
|
|
|
+ __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
|
|
|
+# else
|
|
|
+ __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64);
|
|
|
+# endif
|
|
|
+ int i;
|
|
|
+
|
|
|
+ const void* const src16 = XXH3_kSecret;
|
|
|
+ __m128i* dst16 = (__m128i*) customSecret;
|
|
|
+# if defined(__GNUC__) || defined(__clang__)
|
|
|
+ /*
|
|
|
+ * On GCC & Clang, marking 'dest' as modified will cause the compiler:
|
|
|
+ * - do not extract the secret from sse registers in the internal loop
|
|
|
+ * - use less common registers, and avoid pushing these reg into stack
|
|
|
+ */
|
|
|
+ XXH_COMPILER_GUARD(dst16);
|
|
|
+# endif
|
|
|
+ XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */
|
|
|
+ XXH_ASSERT(((size_t)dst16 & 15) == 0);
|
|
|
+
|
|
|
+ for (i=0; i < nbRounds; ++i) {
|
|
|
+ dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed);
|
|
|
+ } }
|
|
|
}
|
|
|
+
|
|
|
#endif
|
|
|
|
|
|
+#if (XXH_VECTOR == XXH_NEON)
|
|
|
|
|
|
-/* ***************************
|
|
|
-* Memory reads
|
|
|
-*****************************/
|
|
|
-typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
|
|
|
+/* forward declarations for the scalar routines */
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input,
|
|
|
+ void const* XXH_RESTRICT secret, size_t lane);
|
|
|
|
|
|
-/*
|
|
|
- * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
|
|
|
+ void const* XXH_RESTRICT secret, size_t lane);
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief The bulk processing loop for NEON and WASM SIMD128.
|
|
|
*
|
|
|
- * This is ideal for older compilers which don't inline memcpy.
|
|
|
+ * The NEON code path is actually partially scalar when running on AArch64. This
|
|
|
+ * is to optimize the pipelining and can have up to 15% speedup depending on the
|
|
|
+ * CPU, and it also mitigates some GCC codegen issues.
|
|
|
+ *
|
|
|
+ * @see XXH3_NEON_LANES for configuring this and details about this optimization.
|
|
|
+ *
|
|
|
+ * NEON's 32-bit to 64-bit long multiply takes a half vector of 32-bit
|
|
|
+ * integers instead of the other platforms which mask full 64-bit vectors,
|
|
|
+ * so the setup is more complicated than just shifting right.
|
|
|
+ *
|
|
|
+ * Additionally, there is an optimization for 4 lanes at once noted below.
|
|
|
+ *
|
|
|
+ * Since, as stated, the most optimal amount of lanes for Cortexes is 6,
|
|
|
+ * there needs to be *three* versions of the accumulate operation used
|
|
|
+ * for the remaining 2 lanes.
|
|
|
+ *
|
|
|
+ * WASM's SIMD128 uses SIMDe's arm_neon.h polyfill because the intrinsics overlap
|
|
|
+ * nearly perfectly.
|
|
|
*/
|
|
|
-#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
|
|
|
|
|
|
-XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
|
|
|
+ const void* XXH_RESTRICT input,
|
|
|
+ const void* XXH_RESTRICT secret)
|
|
|
{
|
|
|
- const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
|
|
|
- return bytePtr[0]
|
|
|
- | ((xxh_u32)bytePtr[1] << 8)
|
|
|
- | ((xxh_u32)bytePtr[2] << 16)
|
|
|
- | ((xxh_u32)bytePtr[3] << 24);
|
|
|
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
|
|
|
+ XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0);
|
|
|
+ { /* GCC for darwin arm64 does not like aliasing here */
|
|
|
+ xxh_aliasing_uint64x2_t* const xacc = (xxh_aliasing_uint64x2_t*) acc;
|
|
|
+ /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
|
|
|
+ uint8_t const* xinput = (const uint8_t *) input;
|
|
|
+ uint8_t const* xsecret = (const uint8_t *) secret;
|
|
|
+
|
|
|
+ size_t i;
|
|
|
+#ifdef __wasm_simd128__
|
|
|
+ /*
|
|
|
+ * On WASM SIMD128, Clang emits direct address loads when XXH3_kSecret
|
|
|
+ * is constant propagated, which results in it converting it to this
|
|
|
+ * inside the loop:
|
|
|
+ *
|
|
|
+ * a = v128.load(XXH3_kSecret + 0 + $secret_offset, offset = 0)
|
|
|
+ * b = v128.load(XXH3_kSecret + 16 + $secret_offset, offset = 0)
|
|
|
+ * ...
|
|
|
+ *
|
|
|
+ * This requires a full 32-bit address immediate (and therefore a 6 byte
|
|
|
+ * instruction) as well as an add for each offset.
|
|
|
+ *
|
|
|
+ * Putting an asm guard prevents it from folding (at the cost of losing
|
|
|
+ * the alignment hint), and uses the free offset in `v128.load` instead
|
|
|
+ * of adding secret_offset each time which overall reduces code size by
|
|
|
+ * about a kilobyte and improves performance.
|
|
|
+ */
|
|
|
+ XXH_COMPILER_GUARD(xsecret);
|
|
|
+#endif
|
|
|
+ /* Scalar lanes use the normal scalarRound routine */
|
|
|
+ for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
|
|
|
+ XXH3_scalarRound(acc, input, secret, i);
|
|
|
+ }
|
|
|
+ i = 0;
|
|
|
+ /* 4 NEON lanes at a time. */
|
|
|
+ for (; i+1 < XXH3_NEON_LANES / 2; i+=2) {
|
|
|
+ /* data_vec = xinput[i]; */
|
|
|
+ uint64x2_t data_vec_1 = XXH_vld1q_u64(xinput + (i * 16));
|
|
|
+ uint64x2_t data_vec_2 = XXH_vld1q_u64(xinput + ((i+1) * 16));
|
|
|
+ /* key_vec = xsecret[i]; */
|
|
|
+ uint64x2_t key_vec_1 = XXH_vld1q_u64(xsecret + (i * 16));
|
|
|
+ uint64x2_t key_vec_2 = XXH_vld1q_u64(xsecret + ((i+1) * 16));
|
|
|
+ /* data_swap = swap(data_vec) */
|
|
|
+ uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1);
|
|
|
+ uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1);
|
|
|
+ /* data_key = data_vec ^ key_vec; */
|
|
|
+ uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1);
|
|
|
+ uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a
|
|
|
+ * de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to
|
|
|
+ * get one vector with the low 32 bits of each lane, and one vector
|
|
|
+ * with the high 32 bits of each lane.
|
|
|
+ *
|
|
|
+ * The intrinsic returns a double vector because the original ARMv7-a
|
|
|
+ * instruction modified both arguments in place. AArch64 and SIMD128 emit
|
|
|
+ * two instructions from this intrinsic.
|
|
|
+ *
|
|
|
+ * [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ]
|
|
|
+ * [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ]
|
|
|
+ */
|
|
|
+ uint32x4x2_t unzipped = vuzpq_u32(
|
|
|
+ vreinterpretq_u32_u64(data_key_1),
|
|
|
+ vreinterpretq_u32_u64(data_key_2)
|
|
|
+ );
|
|
|
+ /* data_key_lo = data_key & 0xFFFFFFFF */
|
|
|
+ uint32x4_t data_key_lo = unzipped.val[0];
|
|
|
+ /* data_key_hi = data_key >> 32 */
|
|
|
+ uint32x4_t data_key_hi = unzipped.val[1];
|
|
|
+ /*
|
|
|
+ * Then, we can split the vectors horizontally and multiply which, as for most
|
|
|
+ * widening intrinsics, have a variant that works on both high half vectors
|
|
|
+ * for free on AArch64. A similar instruction is available on SIMD128.
|
|
|
+ *
|
|
|
+ * sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi
|
|
|
+ */
|
|
|
+ uint64x2_t sum_1 = XXH_vmlal_low_u32(data_swap_1, data_key_lo, data_key_hi);
|
|
|
+ uint64x2_t sum_2 = XXH_vmlal_high_u32(data_swap_2, data_key_lo, data_key_hi);
|
|
|
+ /*
|
|
|
+ * Clang reorders
|
|
|
+ * a += b * c; // umlal swap.2d, dkl.2s, dkh.2s
|
|
|
+ * c += a; // add acc.2d, acc.2d, swap.2d
|
|
|
+ * to
|
|
|
+ * c += a; // add acc.2d, acc.2d, swap.2d
|
|
|
+ * c += b * c; // umlal acc.2d, dkl.2s, dkh.2s
|
|
|
+ *
|
|
|
+ * While it would make sense in theory since the addition is faster,
|
|
|
+ * for reasons likely related to umlal being limited to certain NEON
|
|
|
+ * pipelines, this is worse. A compiler guard fixes this.
|
|
|
+ */
|
|
|
+ XXH_COMPILER_GUARD_CLANG_NEON(sum_1);
|
|
|
+ XXH_COMPILER_GUARD_CLANG_NEON(sum_2);
|
|
|
+ /* xacc[i] = acc_vec + sum; */
|
|
|
+ xacc[i] = vaddq_u64(xacc[i], sum_1);
|
|
|
+ xacc[i+1] = vaddq_u64(xacc[i+1], sum_2);
|
|
|
+ }
|
|
|
+ /* Operate on the remaining NEON lanes 2 at a time. */
|
|
|
+ for (; i < XXH3_NEON_LANES / 2; i++) {
|
|
|
+ /* data_vec = xinput[i]; */
|
|
|
+ uint64x2_t data_vec = XXH_vld1q_u64(xinput + (i * 16));
|
|
|
+ /* key_vec = xsecret[i]; */
|
|
|
+ uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16));
|
|
|
+ /* acc_vec_2 = swap(data_vec) */
|
|
|
+ uint64x2_t data_swap = vextq_u64(data_vec, data_vec, 1);
|
|
|
+ /* data_key = data_vec ^ key_vec; */
|
|
|
+ uint64x2_t data_key = veorq_u64(data_vec, key_vec);
|
|
|
+ /* For two lanes, just use VMOVN and VSHRN. */
|
|
|
+ /* data_key_lo = data_key & 0xFFFFFFFF; */
|
|
|
+ uint32x2_t data_key_lo = vmovn_u64(data_key);
|
|
|
+ /* data_key_hi = data_key >> 32; */
|
|
|
+ uint32x2_t data_key_hi = vshrn_n_u64(data_key, 32);
|
|
|
+ /* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi; */
|
|
|
+ uint64x2_t sum = vmlal_u32(data_swap, data_key_lo, data_key_hi);
|
|
|
+ /* Same Clang workaround as before */
|
|
|
+ XXH_COMPILER_GUARD_CLANG_NEON(sum);
|
|
|
+ /* xacc[i] = acc_vec + sum; */
|
|
|
+ xacc[i] = vaddq_u64 (xacc[i], sum);
|
|
|
+ }
|
|
|
+ }
|
|
|
}
|
|
|
+XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon)
|
|
|
|
|
|
-XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
|
|
|
{
|
|
|
- const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
|
|
|
- return bytePtr[3]
|
|
|
- | ((xxh_u32)bytePtr[2] << 8)
|
|
|
- | ((xxh_u32)bytePtr[1] << 16)
|
|
|
- | ((xxh_u32)bytePtr[0] << 24);
|
|
|
-}
|
|
|
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
|
|
|
+
|
|
|
+ { xxh_aliasing_uint64x2_t* xacc = (xxh_aliasing_uint64x2_t*) acc;
|
|
|
+ uint8_t const* xsecret = (uint8_t const*) secret;
|
|
|
+
|
|
|
+ size_t i;
|
|
|
+ /* WASM uses operator overloads and doesn't need these. */
|
|
|
+#ifndef __wasm_simd128__
|
|
|
+ /* { prime32_1, prime32_1 } */
|
|
|
+ uint32x2_t const kPrimeLo = vdup_n_u32(XXH_PRIME32_1);
|
|
|
+ /* { 0, prime32_1, 0, prime32_1 } */
|
|
|
+ uint32x4_t const kPrimeHi = vreinterpretq_u32_u64(vdupq_n_u64((xxh_u64)XXH_PRIME32_1 << 32));
|
|
|
+#endif
|
|
|
|
|
|
+ /* AArch64 uses both scalar and neon at the same time */
|
|
|
+ for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
|
|
|
+ XXH3_scalarScrambleRound(acc, secret, i);
|
|
|
+ }
|
|
|
+ for (i=0; i < XXH3_NEON_LANES / 2; i++) {
|
|
|
+ /* xacc[i] ^= (xacc[i] >> 47); */
|
|
|
+ uint64x2_t acc_vec = xacc[i];
|
|
|
+ uint64x2_t shifted = vshrq_n_u64(acc_vec, 47);
|
|
|
+ uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
|
|
|
+
|
|
|
+ /* xacc[i] ^= xsecret[i]; */
|
|
|
+ uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16));
|
|
|
+ uint64x2_t data_key = veorq_u64(data_vec, key_vec);
|
|
|
+ /* xacc[i] *= XXH_PRIME32_1 */
|
|
|
+#ifdef __wasm_simd128__
|
|
|
+ /* SIMD128 has multiply by u64x2, use it instead of expanding and scalarizing */
|
|
|
+ xacc[i] = data_key * XXH_PRIME32_1;
|
|
|
#else
|
|
|
-XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
|
|
|
+ /*
|
|
|
+ * Expanded version with portable NEON intrinsics
|
|
|
+ *
|
|
|
+ * lo(x) * lo(y) + (hi(x) * lo(y) << 32)
|
|
|
+ *
|
|
|
+ * prod_hi = hi(data_key) * lo(prime) << 32
|
|
|
+ *
|
|
|
+ * Since we only need 32 bits of this multiply a trick can be used, reinterpreting the vector
|
|
|
+ * as a uint32x4_t and multiplying by { 0, prime, 0, prime } to cancel out the unwanted bits
|
|
|
+ * and avoid the shift.
|
|
|
+ */
|
|
|
+ uint32x4_t prod_hi = vmulq_u32 (vreinterpretq_u32_u64(data_key), kPrimeHi);
|
|
|
+ /* Extract low bits for vmlal_u32 */
|
|
|
+ uint32x2_t data_key_lo = vmovn_u64(data_key);
|
|
|
+ /* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */
|
|
|
+ xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo);
|
|
|
+#endif
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+#if (XXH_VECTOR == XXH_VSX)
|
|
|
+
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc,
|
|
|
+ const void* XXH_RESTRICT input,
|
|
|
+ const void* XXH_RESTRICT secret)
|
|
|
{
|
|
|
- return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
|
|
|
+ /* presumed aligned */
|
|
|
+ xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
|
|
|
+ xxh_u8 const* const xinput = (xxh_u8 const*) input; /* no alignment restriction */
|
|
|
+ xxh_u8 const* const xsecret = (xxh_u8 const*) secret; /* no alignment restriction */
|
|
|
+ xxh_u64x2 const v32 = { 32, 32 };
|
|
|
+ size_t i;
|
|
|
+ for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
|
|
|
+ /* data_vec = xinput[i]; */
|
|
|
+ xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + 16*i);
|
|
|
+ /* key_vec = xsecret[i]; */
|
|
|
+ xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i);
|
|
|
+ xxh_u64x2 const data_key = data_vec ^ key_vec;
|
|
|
+ /* shuffled = (data_key << 32) | (data_key >> 32); */
|
|
|
+ xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
|
|
|
+ /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
|
|
|
+ xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
|
|
|
+ /* acc_vec = xacc[i]; */
|
|
|
+ xxh_u64x2 acc_vec = xacc[i];
|
|
|
+ acc_vec += product;
|
|
|
+
|
|
|
+ /* swap high and low halves */
|
|
|
+#ifdef __s390x__
|
|
|
+ acc_vec += vec_permi(data_vec, data_vec, 2);
|
|
|
+#else
|
|
|
+ acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
|
|
|
+#endif
|
|
|
+ xacc[i] = acc_vec;
|
|
|
+ }
|
|
|
}
|
|
|
+XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx)
|
|
|
|
|
|
-static xxh_u32 XXH_readBE32(const void* ptr)
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
|
|
|
{
|
|
|
- return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
|
|
|
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
|
|
|
+
|
|
|
+ { xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
|
|
|
+ const xxh_u8* const xsecret = (const xxh_u8*) secret;
|
|
|
+ /* constants */
|
|
|
+ xxh_u64x2 const v32 = { 32, 32 };
|
|
|
+ xxh_u64x2 const v47 = { 47, 47 };
|
|
|
+ xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
|
|
|
+ size_t i;
|
|
|
+ for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
|
|
|
+ /* xacc[i] ^= (xacc[i] >> 47); */
|
|
|
+ xxh_u64x2 const acc_vec = xacc[i];
|
|
|
+ xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
|
|
|
+
|
|
|
+ /* xacc[i] ^= xsecret[i]; */
|
|
|
+ xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i);
|
|
|
+ xxh_u64x2 const data_key = data_vec ^ key_vec;
|
|
|
+
|
|
|
+ /* xacc[i] *= XXH_PRIME32_1 */
|
|
|
+ /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */
|
|
|
+ xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
|
|
|
+ /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */
|
|
|
+ xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
|
|
|
+ xacc[i] = prod_odd + (prod_even << v32);
|
|
|
+ } }
|
|
|
}
|
|
|
+
|
|
|
#endif
|
|
|
|
|
|
-XXH_FORCE_INLINE xxh_u32
|
|
|
-XXH_readLE32_align(const void* ptr, XXH_alignment align)
|
|
|
+#if (XXH_VECTOR == XXH_SVE)
|
|
|
+
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_accumulate_512_sve( void* XXH_RESTRICT acc,
|
|
|
+ const void* XXH_RESTRICT input,
|
|
|
+ const void* XXH_RESTRICT secret)
|
|
|
{
|
|
|
- if (align==XXH_unaligned) {
|
|
|
- return XXH_readLE32(ptr);
|
|
|
+ uint64_t *xacc = (uint64_t *)acc;
|
|
|
+ const uint64_t *xinput = (const uint64_t *)(const void *)input;
|
|
|
+ const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
|
|
|
+ svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
|
|
|
+ uint64_t element_count = svcntd();
|
|
|
+ if (element_count >= 8) {
|
|
|
+ svbool_t mask = svptrue_pat_b64(SV_VL8);
|
|
|
+ svuint64_t vacc = svld1_u64(mask, xacc);
|
|
|
+ ACCRND(vacc, 0);
|
|
|
+ svst1_u64(mask, xacc, vacc);
|
|
|
+ } else if (element_count == 2) { /* sve128 */
|
|
|
+ svbool_t mask = svptrue_pat_b64(SV_VL2);
|
|
|
+ svuint64_t acc0 = svld1_u64(mask, xacc + 0);
|
|
|
+ svuint64_t acc1 = svld1_u64(mask, xacc + 2);
|
|
|
+ svuint64_t acc2 = svld1_u64(mask, xacc + 4);
|
|
|
+ svuint64_t acc3 = svld1_u64(mask, xacc + 6);
|
|
|
+ ACCRND(acc0, 0);
|
|
|
+ ACCRND(acc1, 2);
|
|
|
+ ACCRND(acc2, 4);
|
|
|
+ ACCRND(acc3, 6);
|
|
|
+ svst1_u64(mask, xacc + 0, acc0);
|
|
|
+ svst1_u64(mask, xacc + 2, acc1);
|
|
|
+ svst1_u64(mask, xacc + 4, acc2);
|
|
|
+ svst1_u64(mask, xacc + 6, acc3);
|
|
|
} else {
|
|
|
- return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
|
|
|
+ svbool_t mask = svptrue_pat_b64(SV_VL4);
|
|
|
+ svuint64_t acc0 = svld1_u64(mask, xacc + 0);
|
|
|
+ svuint64_t acc1 = svld1_u64(mask, xacc + 4);
|
|
|
+ ACCRND(acc0, 0);
|
|
|
+ ACCRND(acc1, 4);
|
|
|
+ svst1_u64(mask, xacc + 0, acc0);
|
|
|
+ svst1_u64(mask, xacc + 4, acc1);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc,
|
|
|
+ const xxh_u8* XXH_RESTRICT input,
|
|
|
+ const xxh_u8* XXH_RESTRICT secret,
|
|
|
+ size_t nbStripes)
|
|
|
+{
|
|
|
+ if (nbStripes != 0) {
|
|
|
+ uint64_t *xacc = (uint64_t *)acc;
|
|
|
+ const uint64_t *xinput = (const uint64_t *)(const void *)input;
|
|
|
+ const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
|
|
|
+ svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
|
|
|
+ uint64_t element_count = svcntd();
|
|
|
+ if (element_count >= 8) {
|
|
|
+ svbool_t mask = svptrue_pat_b64(SV_VL8);
|
|
|
+ svuint64_t vacc = svld1_u64(mask, xacc + 0);
|
|
|
+ do {
|
|
|
+ /* svprfd(svbool_t, void *, enum svfprop); */
|
|
|
+ svprfd(mask, xinput + 128, SV_PLDL1STRM);
|
|
|
+ ACCRND(vacc, 0);
|
|
|
+ xinput += 8;
|
|
|
+ xsecret += 1;
|
|
|
+ nbStripes--;
|
|
|
+ } while (nbStripes != 0);
|
|
|
+
|
|
|
+ svst1_u64(mask, xacc + 0, vacc);
|
|
|
+ } else if (element_count == 2) { /* sve128 */
|
|
|
+ svbool_t mask = svptrue_pat_b64(SV_VL2);
|
|
|
+ svuint64_t acc0 = svld1_u64(mask, xacc + 0);
|
|
|
+ svuint64_t acc1 = svld1_u64(mask, xacc + 2);
|
|
|
+ svuint64_t acc2 = svld1_u64(mask, xacc + 4);
|
|
|
+ svuint64_t acc3 = svld1_u64(mask, xacc + 6);
|
|
|
+ do {
|
|
|
+ svprfd(mask, xinput + 128, SV_PLDL1STRM);
|
|
|
+ ACCRND(acc0, 0);
|
|
|
+ ACCRND(acc1, 2);
|
|
|
+ ACCRND(acc2, 4);
|
|
|
+ ACCRND(acc3, 6);
|
|
|
+ xinput += 8;
|
|
|
+ xsecret += 1;
|
|
|
+ nbStripes--;
|
|
|
+ } while (nbStripes != 0);
|
|
|
+
|
|
|
+ svst1_u64(mask, xacc + 0, acc0);
|
|
|
+ svst1_u64(mask, xacc + 2, acc1);
|
|
|
+ svst1_u64(mask, xacc + 4, acc2);
|
|
|
+ svst1_u64(mask, xacc + 6, acc3);
|
|
|
+ } else {
|
|
|
+ svbool_t mask = svptrue_pat_b64(SV_VL4);
|
|
|
+ svuint64_t acc0 = svld1_u64(mask, xacc + 0);
|
|
|
+ svuint64_t acc1 = svld1_u64(mask, xacc + 4);
|
|
|
+ do {
|
|
|
+ svprfd(mask, xinput + 128, SV_PLDL1STRM);
|
|
|
+ ACCRND(acc0, 0);
|
|
|
+ ACCRND(acc1, 4);
|
|
|
+ xinput += 8;
|
|
|
+ xsecret += 1;
|
|
|
+ nbStripes--;
|
|
|
+ } while (nbStripes != 0);
|
|
|
+
|
|
|
+ svst1_u64(mask, xacc + 0, acc0);
|
|
|
+ svst1_u64(mask, xacc + 4, acc1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
-/* *************************************
|
|
|
-* Misc
|
|
|
-***************************************/
|
|
|
-XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
|
|
|
-
|
|
|
+#endif
|
|
|
|
|
|
-/* *******************************************************************
|
|
|
-* 32-bit hash functions
|
|
|
-*********************************************************************/
|
|
|
-static const xxh_u32 PRIME32_1 = 0x9E3779B1U; /* 0b10011110001101110111100110110001 */
|
|
|
-static const xxh_u32 PRIME32_2 = 0x85EBCA77U; /* 0b10000101111010111100101001110111 */
|
|
|
-static const xxh_u32 PRIME32_3 = 0xC2B2AE3DU; /* 0b11000010101100101010111000111101 */
|
|
|
-static const xxh_u32 PRIME32_4 = 0x27D4EB2FU; /* 0b00100111110101001110101100101111 */
|
|
|
-static const xxh_u32 PRIME32_5 = 0x165667B1U; /* 0b00010110010101100110011110110001 */
|
|
|
+/* scalar variants - universal */
|
|
|
|
|
|
-static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
|
|
|
+#if defined(__aarch64__) && (defined(__GNUC__) || defined(__clang__))
|
|
|
+/*
|
|
|
+ * In XXH3_scalarRound(), GCC and Clang have a similar codegen issue, where they
|
|
|
+ * emit an excess mask and a full 64-bit multiply-add (MADD X-form).
|
|
|
+ *
|
|
|
+ * While this might not seem like much, as AArch64 is a 64-bit architecture, only
|
|
|
+ * big Cortex designs have a full 64-bit multiplier.
|
|
|
+ *
|
|
|
+ * On the little cores, the smaller 32-bit multiplier is used, and full 64-bit
|
|
|
+ * multiplies expand to 2-3 multiplies in microcode. This has a major penalty
|
|
|
+ * of up to 4 latency cycles and 2 stall cycles in the multiply pipeline.
|
|
|
+ *
|
|
|
+ * Thankfully, AArch64 still provides the 32-bit long multiply-add (UMADDL) which does
|
|
|
+ * not have this penalty and does the mask automatically.
|
|
|
+ */
|
|
|
+XXH_FORCE_INLINE xxh_u64
|
|
|
+XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
|
|
|
{
|
|
|
- acc += input * PRIME32_2;
|
|
|
- acc = XXH_rotl32(acc, 13);
|
|
|
- acc *= PRIME32_1;
|
|
|
-#if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE)
|
|
|
- /*
|
|
|
- * UGLY HACK:
|
|
|
- * This inline assembly hack forces acc into a normal register. This is the
|
|
|
- * only thing that prevents GCC and Clang from autovectorizing the XXH32
|
|
|
- * loop (pragmas and attributes don't work for some resason) without globally
|
|
|
- * disabling SSE4.1.
|
|
|
- *
|
|
|
- * The reason we want to avoid vectorization is because despite working on
|
|
|
- * 4 integers at a time, there are multiple factors slowing XXH32 down on
|
|
|
- * SSE4:
|
|
|
- * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
|
|
|
- * newer chips!) making it slightly slower to multiply four integers at
|
|
|
- * once compared to four integers independently. Even when pmulld was
|
|
|
- * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
|
|
|
- * just to multiply unless doing a long operation.
|
|
|
- *
|
|
|
- * - Four instructions are required to rotate,
|
|
|
- * movqda tmp, v // not required with VEX encoding
|
|
|
- * pslld tmp, 13 // tmp <<= 13
|
|
|
- * psrld v, 19 // x >>= 19
|
|
|
- * por v, tmp // x |= tmp
|
|
|
- * compared to one for scalar:
|
|
|
- * roll v, 13 // reliably fast across the board
|
|
|
- * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason
|
|
|
- *
|
|
|
- * - Instruction level parallelism is actually more beneficial here because
|
|
|
- * the SIMD actually serializes this operation: While v1 is rotating, v2
|
|
|
- * can load data, while v3 can multiply. SSE forces them to operate
|
|
|
- * together.
|
|
|
- *
|
|
|
- * How this hack works:
|
|
|
- * __asm__("" // Declare an assembly block but don't declare any instructions
|
|
|
- * : // However, as an Input/Output Operand,
|
|
|
- * "+r" // constrain a read/write operand (+) as a general purpose register (r).
|
|
|
- * (acc) // and set acc as the operand
|
|
|
- * );
|
|
|
- *
|
|
|
- * Because of the 'r', the compiler has promised that seed will be in a
|
|
|
- * general purpose register and the '+' says that it will be 'read/write',
|
|
|
- * so it has to assume it has changed. It is like volatile without all the
|
|
|
- * loads and stores.
|
|
|
- *
|
|
|
- * Since the argument has to be in a normal register (not an SSE register),
|
|
|
- * each time XXH32_round is called, it is impossible to vectorize.
|
|
|
- */
|
|
|
- __asm__("" : "+r" (acc));
|
|
|
-#endif
|
|
|
- return acc;
|
|
|
+ xxh_u64 ret;
|
|
|
+ /* note: %x = 64-bit register, %w = 32-bit register */
|
|
|
+ __asm__("umaddl %x0, %w1, %w2, %x3" : "=r" (ret) : "r" (lhs), "r" (rhs), "r" (acc));
|
|
|
+ return ret;
|
|
|
}
|
|
|
-
|
|
|
-/* mix all bits */
|
|
|
-static xxh_u32 XXH32_avalanche(xxh_u32 h32)
|
|
|
+#else
|
|
|
+XXH_FORCE_INLINE xxh_u64
|
|
|
+XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
|
|
|
{
|
|
|
- h32 ^= h32 >> 15;
|
|
|
- h32 *= PRIME32_2;
|
|
|
- h32 ^= h32 >> 13;
|
|
|
- h32 *= PRIME32_3;
|
|
|
- h32 ^= h32 >> 16;
|
|
|
- return(h32);
|
|
|
+ return XXH_mult32to64((xxh_u32)lhs, (xxh_u32)rhs) + acc;
|
|
|
}
|
|
|
+#endif
|
|
|
|
|
|
-#define XXH_get32bits(p) XXH_readLE32_align(p, align)
|
|
|
-
|
|
|
-static xxh_u32
|
|
|
-XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Scalar round for @ref XXH3_accumulate_512_scalar().
|
|
|
+ *
|
|
|
+ * This is extracted to its own function because the NEON path uses a combination
|
|
|
+ * of NEON and scalar.
|
|
|
+ */
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_scalarRound(void* XXH_RESTRICT acc,
|
|
|
+ void const* XXH_RESTRICT input,
|
|
|
+ void const* XXH_RESTRICT secret,
|
|
|
+ size_t lane)
|
|
|
{
|
|
|
-#define PROCESS1 do { \
|
|
|
- h32 += (*ptr++) * PRIME32_5; \
|
|
|
- h32 = XXH_rotl32(h32, 11) * PRIME32_1; \
|
|
|
-} while (0)
|
|
|
+ xxh_u64* xacc = (xxh_u64*) acc;
|
|
|
+ xxh_u8 const* xinput = (xxh_u8 const*) input;
|
|
|
+ xxh_u8 const* xsecret = (xxh_u8 const*) secret;
|
|
|
+ XXH_ASSERT(lane < XXH_ACC_NB);
|
|
|
+ XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
|
|
|
+ {
|
|
|
+ xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8);
|
|
|
+ xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8);
|
|
|
+ xacc[lane ^ 1] += data_val; /* swap adjacent lanes */
|
|
|
+ xacc[lane] = XXH_mult32to64_add64(data_key /* & 0xFFFFFFFF */, data_key >> 32, xacc[lane]);
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
-#define PROCESS4 do { \
|
|
|
- h32 += XXH_get32bits(ptr) * PRIME32_3; \
|
|
|
- ptr += 4; \
|
|
|
- h32 = XXH_rotl32(h32, 17) * PRIME32_4; \
|
|
|
-} while (0)
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Processes a 64 byte block of data using the scalar path.
|
|
|
+ */
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
|
|
|
+ const void* XXH_RESTRICT input,
|
|
|
+ const void* XXH_RESTRICT secret)
|
|
|
+{
|
|
|
+ size_t i;
|
|
|
+ /* ARM GCC refuses to unroll this loop, resulting in a 24% slowdown on ARMv6. */
|
|
|
+#if defined(__GNUC__) && !defined(__clang__) \
|
|
|
+ && (defined(__arm__) || defined(__thumb2__)) \
|
|
|
+ && defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \
|
|
|
+ && XXH_SIZE_OPT <= 0
|
|
|
+# pragma GCC unroll 8
|
|
|
+#endif
|
|
|
+ for (i=0; i < XXH_ACC_NB; i++) {
|
|
|
+ XXH3_scalarRound(acc, input, secret, i);
|
|
|
+ }
|
|
|
+}
|
|
|
+XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar)
|
|
|
|
|
|
- /* Compact rerolled version */
|
|
|
- if (XXH_REROLL) {
|
|
|
- len &= 15;
|
|
|
- while (len >= 4) {
|
|
|
- PROCESS4;
|
|
|
- len -= 4;
|
|
|
- }
|
|
|
- while (len > 0) {
|
|
|
- PROCESS1;
|
|
|
- --len;
|
|
|
- }
|
|
|
- return XXH32_avalanche(h32);
|
|
|
- } else {
|
|
|
- switch(len&15) /* or switch(bEnd - p) */ {
|
|
|
- case 12: PROCESS4;
|
|
|
- /* fallthrough */
|
|
|
- case 8: PROCESS4;
|
|
|
- /* fallthrough */
|
|
|
- case 4: PROCESS4;
|
|
|
- return XXH32_avalanche(h32);
|
|
|
-
|
|
|
- case 13: PROCESS4;
|
|
|
- /* fallthrough */
|
|
|
- case 9: PROCESS4;
|
|
|
- /* fallthrough */
|
|
|
- case 5: PROCESS4;
|
|
|
- PROCESS1;
|
|
|
- return XXH32_avalanche(h32);
|
|
|
-
|
|
|
- case 14: PROCESS4;
|
|
|
- /* fallthrough */
|
|
|
- case 10: PROCESS4;
|
|
|
- /* fallthrough */
|
|
|
- case 6: PROCESS4;
|
|
|
- PROCESS1;
|
|
|
- PROCESS1;
|
|
|
- return XXH32_avalanche(h32);
|
|
|
-
|
|
|
- case 15: PROCESS4;
|
|
|
- /* fallthrough */
|
|
|
- case 11: PROCESS4;
|
|
|
- /* fallthrough */
|
|
|
- case 7: PROCESS4;
|
|
|
- /* fallthrough */
|
|
|
- case 3: PROCESS1;
|
|
|
- /* fallthrough */
|
|
|
- case 2: PROCESS1;
|
|
|
- /* fallthrough */
|
|
|
- case 1: PROCESS1;
|
|
|
- /* fallthrough */
|
|
|
- case 0: return XXH32_avalanche(h32);
|
|
|
- }
|
|
|
- XXH_ASSERT(0);
|
|
|
- return h32; /* reaching this point is deemed impossible */
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar().
|
|
|
+ *
|
|
|
+ * This is extracted to its own function because the NEON path uses a combination
|
|
|
+ * of NEON and scalar.
|
|
|
+ */
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
|
|
|
+ void const* XXH_RESTRICT secret,
|
|
|
+ size_t lane)
|
|
|
+{
|
|
|
+ xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
|
|
|
+ const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
|
|
|
+ XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
|
|
|
+ XXH_ASSERT(lane < XXH_ACC_NB);
|
|
|
+ {
|
|
|
+ xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8);
|
|
|
+ xxh_u64 acc64 = xacc[lane];
|
|
|
+ acc64 = XXH_xorshift64(acc64, 47);
|
|
|
+ acc64 ^= key64;
|
|
|
+ acc64 *= XXH_PRIME32_1;
|
|
|
+ xacc[lane] = acc64;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-XXH_FORCE_INLINE xxh_u32
|
|
|
-XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Scrambles the accumulators after a large chunk has been read
|
|
|
+ */
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
|
|
|
{
|
|
|
- const xxh_u8* bEnd = input + len;
|
|
|
- xxh_u32 h32;
|
|
|
-
|
|
|
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
|
|
|
- if (input==NULL) {
|
|
|
- len=0;
|
|
|
- bEnd=input=(const xxh_u8*)(size_t)16;
|
|
|
+ size_t i;
|
|
|
+ for (i=0; i < XXH_ACC_NB; i++) {
|
|
|
+ XXH3_scalarScrambleRound(acc, secret, i);
|
|
|
}
|
|
|
+}
|
|
|
+
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * We need a separate pointer for the hack below,
|
|
|
+ * which requires a non-const pointer.
|
|
|
+ * Any decent compiler will optimize this out otherwise.
|
|
|
+ */
|
|
|
+ const xxh_u8* kSecretPtr = XXH3_kSecret;
|
|
|
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
|
|
|
+
|
|
|
+#if defined(__GNUC__) && defined(__aarch64__)
|
|
|
+ /*
|
|
|
+ * UGLY HACK:
|
|
|
+ * GCC and Clang generate a bunch of MOV/MOVK pairs for aarch64, and they are
|
|
|
+ * placed sequentially, in order, at the top of the unrolled loop.
|
|
|
+ *
|
|
|
+ * While MOVK is great for generating constants (2 cycles for a 64-bit
|
|
|
+ * constant compared to 4 cycles for LDR), it fights for bandwidth with
|
|
|
+ * the arithmetic instructions.
|
|
|
+ *
|
|
|
+ * I L S
|
|
|
+ * MOVK
|
|
|
+ * MOVK
|
|
|
+ * MOVK
|
|
|
+ * MOVK
|
|
|
+ * ADD
|
|
|
+ * SUB STR
|
|
|
+ * STR
|
|
|
+ * By forcing loads from memory (as the asm line causes the compiler to assume
|
|
|
+ * that XXH3_kSecretPtr has been changed), the pipelines are used more
|
|
|
+ * efficiently:
|
|
|
+ * I L S
|
|
|
+ * LDR
|
|
|
+ * ADD LDR
|
|
|
+ * SUB STR
|
|
|
+ * STR
|
|
|
+ *
|
|
|
+ * See XXH3_NEON_LANES for details on the pipsline.
|
|
|
+ *
|
|
|
+ * XXH3_64bits_withSeed, len == 256, Snapdragon 835
|
|
|
+ * without hack: 2654.4 MB/s
|
|
|
+ * with hack: 3202.9 MB/s
|
|
|
+ */
|
|
|
+ XXH_COMPILER_GUARD(kSecretPtr);
|
|
|
#endif
|
|
|
+ { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
|
|
|
+ int i;
|
|
|
+ for (i=0; i < nbRounds; i++) {
|
|
|
+ /*
|
|
|
+ * The asm hack causes the compiler to assume that kSecretPtr aliases with
|
|
|
+ * customSecret, and on aarch64, this prevented LDP from merging two
|
|
|
+ * loads together for free. Putting the loads together before the stores
|
|
|
+ * properly generates LDP.
|
|
|
+ */
|
|
|
+ xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64;
|
|
|
+ xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
|
|
|
+ XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo);
|
|
|
+ XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
|
|
|
+ } }
|
|
|
+}
|
|
|
|
|
|
- if (len>=16) {
|
|
|
- const xxh_u8* const limit = bEnd - 15;
|
|
|
- xxh_u32 v1 = seed + PRIME32_1 + PRIME32_2;
|
|
|
- xxh_u32 v2 = seed + PRIME32_2;
|
|
|
- xxh_u32 v3 = seed + 0;
|
|
|
- xxh_u32 v4 = seed - PRIME32_1;
|
|
|
|
|
|
- do {
|
|
|
- v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
|
|
|
- v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
|
|
|
- v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
|
|
|
- v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
|
|
|
- } while (input < limit);
|
|
|
+typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t);
|
|
|
+typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
|
|
|
+typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
|
|
|
|
|
|
- h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7)
|
|
|
- + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
|
|
|
- } else {
|
|
|
- h32 = seed + PRIME32_5;
|
|
|
- }
|
|
|
|
|
|
- h32 += (xxh_u32)len;
|
|
|
+#if (XXH_VECTOR == XXH_AVX512)
|
|
|
|
|
|
- return XXH32_finalize(h32, input, len&15, align);
|
|
|
-}
|
|
|
+#define XXH3_accumulate_512 XXH3_accumulate_512_avx512
|
|
|
+#define XXH3_accumulate XXH3_accumulate_avx512
|
|
|
+#define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
|
|
|
+#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
|
|
|
|
|
|
+#elif (XXH_VECTOR == XXH_AVX2)
|
|
|
|
|
|
-XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
|
|
|
-{
|
|
|
-#if 0
|
|
|
- /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
|
|
|
- XXH32_state_t state;
|
|
|
- XXH32_reset(&state, seed);
|
|
|
- XXH32_update(&state, (const xxh_u8*)input, len);
|
|
|
- return XXH32_digest(&state);
|
|
|
+#define XXH3_accumulate_512 XXH3_accumulate_512_avx2
|
|
|
+#define XXH3_accumulate XXH3_accumulate_avx2
|
|
|
+#define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
|
|
|
+#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
|
|
|
|
|
|
-#else
|
|
|
+#elif (XXH_VECTOR == XXH_SSE2)
|
|
|
|
|
|
- if (XXH_FORCE_ALIGN_CHECK) {
|
|
|
- if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
|
|
|
- return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
|
|
|
- } }
|
|
|
+#define XXH3_accumulate_512 XXH3_accumulate_512_sse2
|
|
|
+#define XXH3_accumulate XXH3_accumulate_sse2
|
|
|
+#define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
|
|
|
+#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
|
|
|
|
|
|
- return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
|
|
|
-#endif
|
|
|
-}
|
|
|
+#elif (XXH_VECTOR == XXH_NEON)
|
|
|
|
|
|
+#define XXH3_accumulate_512 XXH3_accumulate_512_neon
|
|
|
+#define XXH3_accumulate XXH3_accumulate_neon
|
|
|
+#define XXH3_scrambleAcc XXH3_scrambleAcc_neon
|
|
|
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
|
|
|
|
|
|
+#elif (XXH_VECTOR == XXH_VSX)
|
|
|
|
|
|
-/******* Hash streaming *******/
|
|
|
+#define XXH3_accumulate_512 XXH3_accumulate_512_vsx
|
|
|
+#define XXH3_accumulate XXH3_accumulate_vsx
|
|
|
+#define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
|
|
|
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
|
|
|
|
|
|
-XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
|
|
|
-{
|
|
|
- return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
|
|
|
-}
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
|
|
|
-{
|
|
|
- XXH_free(statePtr);
|
|
|
- return XXH_OK;
|
|
|
-}
|
|
|
+#elif (XXH_VECTOR == XXH_SVE)
|
|
|
+#define XXH3_accumulate_512 XXH3_accumulate_512_sve
|
|
|
+#define XXH3_accumulate XXH3_accumulate_sve
|
|
|
+#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
|
|
|
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
|
|
|
|
|
|
-XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
|
|
|
-{
|
|
|
- memcpy(dstState, srcState, sizeof(*dstState));
|
|
|
-}
|
|
|
+#else /* scalar */
|
|
|
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
|
|
|
-{
|
|
|
- XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
|
|
|
- memset(&state, 0, sizeof(state));
|
|
|
- state.v1 = seed + PRIME32_1 + PRIME32_2;
|
|
|
- state.v2 = seed + PRIME32_2;
|
|
|
- state.v3 = seed + 0;
|
|
|
- state.v4 = seed - PRIME32_1;
|
|
|
- /* do not write into reserved, planned to be removed in a future version */
|
|
|
- memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
|
|
|
- return XXH_OK;
|
|
|
-}
|
|
|
+#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
|
|
|
+#define XXH3_accumulate XXH3_accumulate_scalar
|
|
|
+#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
|
|
|
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
|
|
|
|
|
|
+#endif
|
|
|
|
|
|
-XXH_PUBLIC_API XXH_errorcode
|
|
|
-XXH32_update(XXH32_state_t* state, const void* input, size_t len)
|
|
|
-{
|
|
|
- if (input==NULL)
|
|
|
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
|
|
|
- return XXH_OK;
|
|
|
-#else
|
|
|
- return XXH_ERROR;
|
|
|
+#if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */
|
|
|
+# undef XXH3_initCustomSecret
|
|
|
+# define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
|
|
|
#endif
|
|
|
|
|
|
- { const xxh_u8* p = (const xxh_u8*)input;
|
|
|
- const xxh_u8* const bEnd = p + len;
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
|
|
|
+ const xxh_u8* XXH_RESTRICT input, size_t len,
|
|
|
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
|
|
|
+ XXH3_f_accumulate f_acc,
|
|
|
+ XXH3_f_scrambleAcc f_scramble)
|
|
|
+{
|
|
|
+ size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
|
|
|
+ size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
|
|
|
+ size_t const nb_blocks = (len - 1) / block_len;
|
|
|
|
|
|
- state->total_len_32 += (XXH32_hash_t)len;
|
|
|
- state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
|
|
|
+ size_t n;
|
|
|
|
|
|
- if (state->memsize + len < 16) { /* fill in tmp buffer */
|
|
|
- XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
|
|
|
- state->memsize += (XXH32_hash_t)len;
|
|
|
- return XXH_OK;
|
|
|
- }
|
|
|
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
|
|
|
|
|
|
- if (state->memsize) { /* some data left from previous update */
|
|
|
- XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
|
|
|
- { const xxh_u32* p32 = state->mem32;
|
|
|
- state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++;
|
|
|
- state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++;
|
|
|
- state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++;
|
|
|
- state->v4 = XXH32_round(state->v4, XXH_readLE32(p32));
|
|
|
- }
|
|
|
- p += 16-state->memsize;
|
|
|
- state->memsize = 0;
|
|
|
- }
|
|
|
+ for (n = 0; n < nb_blocks; n++) {
|
|
|
+ f_acc(acc, input + n*block_len, secret, nbStripesPerBlock);
|
|
|
+ f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
|
|
|
+ }
|
|
|
|
|
|
- if (p <= bEnd-16) {
|
|
|
- const xxh_u8* const limit = bEnd - 16;
|
|
|
- xxh_u32 v1 = state->v1;
|
|
|
- xxh_u32 v2 = state->v2;
|
|
|
- xxh_u32 v3 = state->v3;
|
|
|
- xxh_u32 v4 = state->v4;
|
|
|
+ /* last partial block */
|
|
|
+ XXH_ASSERT(len > XXH_STRIPE_LEN);
|
|
|
+ { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
|
|
|
+ XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
|
|
|
+ f_acc(acc, input + nb_blocks*block_len, secret, nbStripes);
|
|
|
|
|
|
- do {
|
|
|
- v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4;
|
|
|
- v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4;
|
|
|
- v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4;
|
|
|
- v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4;
|
|
|
- } while (p<=limit);
|
|
|
+ /* last stripe */
|
|
|
+ { const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
|
|
|
+#define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */
|
|
|
+ XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
|
|
|
+ } }
|
|
|
+}
|
|
|
|
|
|
- state->v1 = v1;
|
|
|
- state->v2 = v2;
|
|
|
- state->v3 = v3;
|
|
|
- state->v4 = v4;
|
|
|
- }
|
|
|
+XXH_FORCE_INLINE xxh_u64
|
|
|
+XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
|
|
|
+{
|
|
|
+ return XXH3_mul128_fold64(
|
|
|
+ acc[0] ^ XXH_readLE64(secret),
|
|
|
+ acc[1] ^ XXH_readLE64(secret+8) );
|
|
|
+}
|
|
|
|
|
|
- if (p < bEnd) {
|
|
|
- XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
|
|
|
- state->memsize = (unsigned)(bEnd-p);
|
|
|
- }
|
|
|
+static XXH64_hash_t
|
|
|
+XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
|
|
|
+{
|
|
|
+ xxh_u64 result64 = start;
|
|
|
+ size_t i = 0;
|
|
|
+
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
+ result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
|
|
|
+#if defined(__clang__) /* Clang */ \
|
|
|
+ && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \
|
|
|
+ && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
|
|
|
+ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
|
|
|
+ /*
|
|
|
+ * UGLY HACK:
|
|
|
+ * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
|
|
|
+ * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
|
|
|
+ * XXH3_64bits, len == 256, Snapdragon 835:
|
|
|
+ * without hack: 2063.7 MB/s
|
|
|
+ * with hack: 2560.7 MB/s
|
|
|
+ */
|
|
|
+ XXH_COMPILER_GUARD(result64);
|
|
|
+#endif
|
|
|
}
|
|
|
|
|
|
- return XXH_OK;
|
|
|
+ return XXH3_avalanche(result64);
|
|
|
}
|
|
|
|
|
|
+#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
|
|
|
+ XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
|
|
|
|
|
|
-XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* state)
|
|
|
+XXH_FORCE_INLINE XXH64_hash_t
|
|
|
+XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
|
|
|
+ const void* XXH_RESTRICT secret, size_t secretSize,
|
|
|
+ XXH3_f_accumulate f_acc,
|
|
|
+ XXH3_f_scrambleAcc f_scramble)
|
|
|
{
|
|
|
- xxh_u32 h32;
|
|
|
-
|
|
|
- if (state->large_len) {
|
|
|
- h32 = XXH_rotl32(state->v1, 1)
|
|
|
- + XXH_rotl32(state->v2, 7)
|
|
|
- + XXH_rotl32(state->v3, 12)
|
|
|
- + XXH_rotl32(state->v4, 18);
|
|
|
- } else {
|
|
|
- h32 = state->v3 /* == seed */ + PRIME32_5;
|
|
|
- }
|
|
|
+ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
|
|
|
|
|
|
- h32 += state->total_len_32;
|
|
|
+ XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble);
|
|
|
|
|
|
- return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
|
|
|
+ /* converge into final hash */
|
|
|
+ XXH_STATIC_ASSERT(sizeof(acc) == 64);
|
|
|
+ /* do not align on 8, so that the secret is different from the accumulator */
|
|
|
+#define XXH_SECRET_MERGEACCS_START 11
|
|
|
+ XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
|
|
|
+ return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+ * It's important for performance to transmit secret's size (when it's static)
|
|
|
+ * so that the compiler can properly optimize the vectorized loop.
|
|
|
+ * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
|
|
|
+ * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
|
|
|
+ * breaks -Og, this is XXH_NO_INLINE.
|
|
|
+ */
|
|
|
+XXH3_WITH_SECRET_INLINE XXH64_hash_t
|
|
|
+XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
|
|
|
+ XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
|
|
|
+{
|
|
|
+ (void)seed64;
|
|
|
+ return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc);
|
|
|
+}
|
|
|
|
|
|
-/******* Canonical representation *******/
|
|
|
+/*
|
|
|
+ * It's preferable for performance that XXH3_hashLong is not inlined,
|
|
|
+ * as it results in a smaller function for small data, easier to the instruction cache.
|
|
|
+ * Note that inside this no_inline function, we do inline the internal loop,
|
|
|
+ * and provide a statically defined secret size to allow optimization of vector loop.
|
|
|
+ */
|
|
|
+XXH_NO_INLINE XXH_PUREF XXH64_hash_t
|
|
|
+XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
|
|
|
+ XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
|
|
|
+{
|
|
|
+ (void)seed64; (void)secret; (void)secretLen;
|
|
|
+ return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc);
|
|
|
+}
|
|
|
|
|
|
/*
|
|
|
- * The default return values from XXH functions are unsigned 32 and 64 bit
|
|
|
- * integers.
|
|
|
- *
|
|
|
- * The canonical representation uses big endian convention, the same convention
|
|
|
- * as human-readable numbers (large digits first).
|
|
|
+ * XXH3_hashLong_64b_withSeed():
|
|
|
+ * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
|
|
|
+ * and then use this key for long mode hashing.
|
|
|
*
|
|
|
- * This way, hash values can be written into a file or buffer, remaining
|
|
|
- * comparable across different systems.
|
|
|
+ * This operation is decently fast but nonetheless costs a little bit of time.
|
|
|
+ * Try to avoid it whenever possible (typically when seed==0).
|
|
|
*
|
|
|
- * The following functions allow transformation of hash values to and from their
|
|
|
- * canonical format.
|
|
|
+ * It's important for performance that XXH3_hashLong is not inlined. Not sure
|
|
|
+ * why (uop cache maybe?), but the difference is large and easily measurable.
|
|
|
*/
|
|
|
-XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
|
|
|
+XXH_FORCE_INLINE XXH64_hash_t
|
|
|
+XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
|
|
|
+ XXH64_hash_t seed,
|
|
|
+ XXH3_f_accumulate f_acc,
|
|
|
+ XXH3_f_scrambleAcc f_scramble,
|
|
|
+ XXH3_f_initCustomSecret f_initSec)
|
|
|
{
|
|
|
- XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
|
|
|
- if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
|
|
|
- memcpy(dst, &hash, sizeof(*dst));
|
|
|
+#if XXH_SIZE_OPT <= 0
|
|
|
+ if (seed == 0)
|
|
|
+ return XXH3_hashLong_64b_internal(input, len,
|
|
|
+ XXH3_kSecret, sizeof(XXH3_kSecret),
|
|
|
+ f_acc, f_scramble);
|
|
|
+#endif
|
|
|
+ { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
|
|
|
+ f_initSec(secret, seed);
|
|
|
+ return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
|
|
|
+ f_acc, f_scramble);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
|
|
|
+/*
|
|
|
+ * It's important for performance that XXH3_hashLong is not inlined.
|
|
|
+ */
|
|
|
+XXH_NO_INLINE XXH64_hash_t
|
|
|
+XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len,
|
|
|
+ XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
|
|
|
{
|
|
|
- return XXH_readBE32(src);
|
|
|
+ (void)secret; (void)secretLen;
|
|
|
+ return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
|
|
|
+ XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
|
|
|
}
|
|
|
|
|
|
|
|
|
-#ifndef XXH_NO_LONG_LONG
|
|
|
+typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
|
|
|
+ XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
|
|
|
|
|
|
-/* *******************************************************************
|
|
|
-* 64-bit hash functions
|
|
|
-*********************************************************************/
|
|
|
+XXH_FORCE_INLINE XXH64_hash_t
|
|
|
+XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
|
|
|
+ XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
|
|
|
+ XXH3_hashLong64_f f_hashLong)
|
|
|
+{
|
|
|
+ XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
|
|
|
+ /*
|
|
|
+ * If an action is to be taken if `secretLen` condition is not respected,
|
|
|
+ * it should be done here.
|
|
|
+ * For now, it's a contract pre-condition.
|
|
|
+ * Adding a check and a branch here would cost performance at every hash.
|
|
|
+ * Also, note that function signature doesn't offer room to return an error.
|
|
|
+ */
|
|
|
+ if (len <= 16)
|
|
|
+ return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
|
|
|
+ if (len <= 128)
|
|
|
+ return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
|
|
|
+ if (len <= XXH3_MIDSIZE_MAX)
|
|
|
+ return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
|
|
|
+ return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
|
|
|
+}
|
|
|
|
|
|
-/******* Memory access *******/
|
|
|
|
|
|
-typedef XXH64_hash_t xxh_u64;
|
|
|
+/* === Public entry point === */
|
|
|
+
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length)
|
|
|
+{
|
|
|
+ return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
|
|
|
+}
|
|
|
+
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH64_hash_t
|
|
|
+XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize)
|
|
|
+{
|
|
|
+ return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
|
|
|
+}
|
|
|
+
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH64_hash_t
|
|
|
+XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed)
|
|
|
+{
|
|
|
+ return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
|
|
|
+}
|
|
|
+
|
|
|
+XXH_PUBLIC_API XXH64_hash_t
|
|
|
+XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
|
|
|
+{
|
|
|
+ if (length <= XXH3_MIDSIZE_MAX)
|
|
|
+ return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
|
|
|
+ return XXH3_hashLong_64b_withSecret(input, length, seed, (const xxh_u8*)secret, secretSize);
|
|
|
+}
|
|
|
|
|
|
|
|
|
+/* === XXH3 streaming === */
|
|
|
+#ifndef XXH_NO_STREAM
|
|
|
+/*
|
|
|
+ * Malloc's a pointer that is always aligned to @align.
|
|
|
+ *
|
|
|
+ * This must be freed with `XXH_alignedFree()`.
|
|
|
+ *
|
|
|
+ * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
|
|
|
+ * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
|
|
|
+ * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
|
|
|
+ *
|
|
|
+ * This underalignment previously caused a rather obvious crash which went
|
|
|
+ * completely unnoticed due to XXH3_createState() not actually being tested.
|
|
|
+ * Credit to RedSpah for noticing this bug.
|
|
|
+ *
|
|
|
+ * The alignment is done manually: Functions like posix_memalign or _mm_malloc
|
|
|
+ * are avoided: To maintain portability, we would have to write a fallback
|
|
|
+ * like this anyways, and besides, testing for the existence of library
|
|
|
+ * functions without relying on external build tools is impossible.
|
|
|
+ *
|
|
|
+ * The method is simple: Overallocate, manually align, and store the offset
|
|
|
+ * to the original behind the returned pointer.
|
|
|
+ *
|
|
|
+ * Align must be a power of 2 and 8 <= align <= 128.
|
|
|
+ */
|
|
|
+static XXH_MALLOCF void* XXH_alignedMalloc(size_t s, size_t align)
|
|
|
+{
|
|
|
+ XXH_ASSERT(align <= 128 && align >= 8); /* range check */
|
|
|
+ XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */
|
|
|
+ XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */
|
|
|
+ { /* Overallocate to make room for manual realignment and an offset byte */
|
|
|
+ xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
|
|
|
+ if (base != NULL) {
|
|
|
+ /*
|
|
|
+ * Get the offset needed to align this pointer.
|
|
|
+ *
|
|
|
+ * Even if the returned pointer is aligned, there will always be
|
|
|
+ * at least one byte to store the offset to the original pointer.
|
|
|
+ */
|
|
|
+ size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
|
|
|
+ /* Add the offset for the now-aligned pointer */
|
|
|
+ xxh_u8* ptr = base + offset;
|
|
|
+
|
|
|
+ XXH_ASSERT((size_t)ptr % align == 0);
|
|
|
+
|
|
|
+ /* Store the offset immediately before the returned pointer. */
|
|
|
+ ptr[-1] = (xxh_u8)offset;
|
|
|
+ return ptr;
|
|
|
+ }
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+/*
|
|
|
+ * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
|
|
|
+ * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
|
|
|
+ */
|
|
|
+static void XXH_alignedFree(void* p)
|
|
|
+{
|
|
|
+ if (p != NULL) {
|
|
|
+ xxh_u8* ptr = (xxh_u8*)p;
|
|
|
+ /* Get the offset byte we added in XXH_malloc. */
|
|
|
+ xxh_u8 offset = ptr[-1];
|
|
|
+ /* Free the original malloc'd pointer */
|
|
|
+ xxh_u8* base = ptr - offset;
|
|
|
+ XXH_free(base);
|
|
|
+ }
|
|
|
+}
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
/*!
|
|
|
- * XXH_REROLL_XXH64:
|
|
|
- * Whether to reroll the XXH64_finalize() loop.
|
|
|
+ * @brief Allocate an @ref XXH3_state_t.
|
|
|
*
|
|
|
- * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a
|
|
|
- * performance gain on 64-bit hosts, as only one jump is required.
|
|
|
+ * @return An allocated pointer of @ref XXH3_state_t on success.
|
|
|
+ * @return `NULL` on failure.
|
|
|
*
|
|
|
- * However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit
|
|
|
- * registers, and 64-bit arithmetic needs to be simulated, it isn't beneficial
|
|
|
- * to unroll. The code becomes ridiculously large (the largest function in the
|
|
|
- * binary on i386!), and rerolling it saves anywhere from 3kB to 20kB. It is
|
|
|
- * also slightly faster because it fits into cache better and is more likely
|
|
|
- * to be inlined by the compiler.
|
|
|
+ * @note Must be freed with XXH3_freeState().
|
|
|
*
|
|
|
- * If XXH_REROLL is defined, this is ignored and the loop is always rerolled.
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
*/
|
|
|
-#ifndef XXH_REROLL_XXH64
|
|
|
-# if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \
|
|
|
- || !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \
|
|
|
- || defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \
|
|
|
- || defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \
|
|
|
- || defined(__mips64__) || defined(__mips64)) /* mips64 */ \
|
|
|
- || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */
|
|
|
-# define XXH_REROLL_XXH64 1
|
|
|
-# else
|
|
|
-# define XXH_REROLL_XXH64 0
|
|
|
-# endif
|
|
|
-#endif /* !defined(XXH_REROLL_XXH64) */
|
|
|
+XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
|
|
|
+{
|
|
|
+ XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
|
|
|
+ if (state==NULL) return NULL;
|
|
|
+ XXH3_INITSTATE(state);
|
|
|
+ return state;
|
|
|
+}
|
|
|
|
|
|
-#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
|
|
|
-/*
|
|
|
- * Manual byteshift. Best for old compilers which don't inline memcpy.
|
|
|
- * We actually directly use XXH_readLE64 and XXH_readBE64.
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+/*!
|
|
|
+ * @brief Frees an @ref XXH3_state_t.
|
|
|
+ *
|
|
|
+ * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
|
|
|
+ *
|
|
|
+ * @return @ref XXH_OK.
|
|
|
+ *
|
|
|
+ * @note Must be allocated with XXH3_createState().
|
|
|
+ *
|
|
|
+ * @see @ref streaming_example "Streaming Example"
|
|
|
*/
|
|
|
-#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
|
|
|
+XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
|
|
|
+{
|
|
|
+ XXH_alignedFree(statePtr);
|
|
|
+ return XXH_OK;
|
|
|
+}
|
|
|
|
|
|
-/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
|
|
|
-static xxh_u64 XXH_read64(const void* memPtr) { return *(const xxh_u64*) memPtr; }
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API void
|
|
|
+XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state)
|
|
|
+{
|
|
|
+ XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
|
|
|
+}
|
|
|
|
|
|
-#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
|
|
|
+static void
|
|
|
+XXH3_reset_internal(XXH3_state_t* statePtr,
|
|
|
+ XXH64_hash_t seed,
|
|
|
+ const void* secret, size_t secretSize)
|
|
|
+{
|
|
|
+ size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
|
|
|
+ size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
|
|
|
+ XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
|
|
|
+ XXH_ASSERT(statePtr != NULL);
|
|
|
+ /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
|
|
|
+ memset((char*)statePtr + initStart, 0, initLength);
|
|
|
+ statePtr->acc[0] = XXH_PRIME32_3;
|
|
|
+ statePtr->acc[1] = XXH_PRIME64_1;
|
|
|
+ statePtr->acc[2] = XXH_PRIME64_2;
|
|
|
+ statePtr->acc[3] = XXH_PRIME64_3;
|
|
|
+ statePtr->acc[4] = XXH_PRIME64_4;
|
|
|
+ statePtr->acc[5] = XXH_PRIME32_2;
|
|
|
+ statePtr->acc[6] = XXH_PRIME64_5;
|
|
|
+ statePtr->acc[7] = XXH_PRIME32_1;
|
|
|
+ statePtr->seed = seed;
|
|
|
+ statePtr->useSeed = (seed != 0);
|
|
|
+ statePtr->extSecret = (const unsigned char*)secret;
|
|
|
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
|
|
|
+ statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
|
|
|
+ statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
|
|
|
+}
|
|
|
|
|
|
-/*
|
|
|
- * __pack instructions are safer, but compiler specific, hence potentially
|
|
|
- * problematic for some compilers.
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode
|
|
|
+XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
|
|
|
+{
|
|
|
+ if (statePtr == NULL) return XXH_ERROR;
|
|
|
+ XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
|
|
|
+ return XXH_OK;
|
|
|
+}
|
|
|
+
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode
|
|
|
+XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
|
|
|
+{
|
|
|
+ if (statePtr == NULL) return XXH_ERROR;
|
|
|
+ XXH3_reset_internal(statePtr, 0, secret, secretSize);
|
|
|
+ if (secret == NULL) return XXH_ERROR;
|
|
|
+ if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
|
|
|
+ return XXH_OK;
|
|
|
+}
|
|
|
+
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode
|
|
|
+XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
|
|
|
+{
|
|
|
+ if (statePtr == NULL) return XXH_ERROR;
|
|
|
+ if (seed==0) return XXH3_64bits_reset(statePtr);
|
|
|
+ if ((seed != statePtr->seed) || (statePtr->extSecret != NULL))
|
|
|
+ XXH3_initCustomSecret(statePtr->customSecret, seed);
|
|
|
+ XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
|
|
|
+ return XXH_OK;
|
|
|
+}
|
|
|
+
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode
|
|
|
+XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64)
|
|
|
+{
|
|
|
+ if (statePtr == NULL) return XXH_ERROR;
|
|
|
+ if (secret == NULL) return XXH_ERROR;
|
|
|
+ if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
|
|
|
+ XXH3_reset_internal(statePtr, seed64, secret, secretSize);
|
|
|
+ statePtr->useSeed = 1; /* always, even if seed64==0 */
|
|
|
+ return XXH_OK;
|
|
|
+}
|
|
|
+
|
|
|
+/*!
|
|
|
+ * @internal
|
|
|
+ * @brief Processes a large input for XXH3_update() and XXH3_digest_long().
|
|
|
*
|
|
|
- * Currently only defined for GCC and ICC.
|
|
|
+ * Unlike XXH3_hashLong_internal_loop(), this can process data that overlaps a block.
|
|
|
+ *
|
|
|
+ * @param acc Pointer to the 8 accumulator lanes
|
|
|
+ * @param nbStripesSoFarPtr In/out pointer to the number of leftover stripes in the block*
|
|
|
+ * @param nbStripesPerBlock Number of stripes in a block
|
|
|
+ * @param input Input pointer
|
|
|
+ * @param nbStripes Number of stripes to process
|
|
|
+ * @param secret Secret pointer
|
|
|
+ * @param secretLimit Offset of the last block in @p secret
|
|
|
+ * @param f_acc Pointer to an XXH3_accumulate implementation
|
|
|
+ * @param f_scramble Pointer to an XXH3_scrambleAcc implementation
|
|
|
+ * @return Pointer past the end of @p input after processing
|
|
|
*/
|
|
|
-typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
|
|
|
-static xxh_u64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }
|
|
|
+XXH_FORCE_INLINE const xxh_u8 *
|
|
|
+XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
|
|
|
+ size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
|
|
|
+ const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
|
|
|
+ const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
|
|
|
+ XXH3_f_accumulate f_acc,
|
|
|
+ XXH3_f_scrambleAcc f_scramble)
|
|
|
+{
|
|
|
+ const xxh_u8* initialSecret = secret + *nbStripesSoFarPtr * XXH_SECRET_CONSUME_RATE;
|
|
|
+ /* Process full blocks */
|
|
|
+ if (nbStripes >= (nbStripesPerBlock - *nbStripesSoFarPtr)) {
|
|
|
+ /* Process the initial partial block... */
|
|
|
+ size_t nbStripesThisIter = nbStripesPerBlock - *nbStripesSoFarPtr;
|
|
|
|
|
|
-#else
|
|
|
+ do {
|
|
|
+ /* Accumulate and scramble */
|
|
|
+ f_acc(acc, input, initialSecret, nbStripesThisIter);
|
|
|
+ f_scramble(acc, secret + secretLimit);
|
|
|
+ input += nbStripesThisIter * XXH_STRIPE_LEN;
|
|
|
+ nbStripes -= nbStripesThisIter;
|
|
|
+ /* Then continue the loop with the full block size */
|
|
|
+ nbStripesThisIter = nbStripesPerBlock;
|
|
|
+ initialSecret = secret;
|
|
|
+ } while (nbStripes >= nbStripesPerBlock);
|
|
|
+ *nbStripesSoFarPtr = 0;
|
|
|
+ }
|
|
|
+ /* Process a partial block */
|
|
|
+ if (nbStripes > 0) {
|
|
|
+ f_acc(acc, input, initialSecret, nbStripes);
|
|
|
+ input += nbStripes * XXH_STRIPE_LEN;
|
|
|
+ *nbStripesSoFarPtr += nbStripes;
|
|
|
+ }
|
|
|
+ /* Return end pointer */
|
|
|
+ return input;
|
|
|
+}
|
|
|
|
|
|
+#ifndef XXH3_STREAM_USE_STACK
|
|
|
+# if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */
|
|
|
+# define XXH3_STREAM_USE_STACK 1
|
|
|
+# endif
|
|
|
+#endif
|
|
|
/*
|
|
|
- * Portable and safe solution. Generally efficient.
|
|
|
- * see: https://stackoverflow.com/a/32095106/646947
|
|
|
+ * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
|
|
|
*/
|
|
|
-static xxh_u64 XXH_read64(const void* memPtr)
|
|
|
+XXH_FORCE_INLINE XXH_errorcode
|
|
|
+XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
|
|
|
+ const xxh_u8* XXH_RESTRICT input, size_t len,
|
|
|
+ XXH3_f_accumulate f_acc,
|
|
|
+ XXH3_f_scrambleAcc f_scramble)
|
|
|
{
|
|
|
- xxh_u64 val;
|
|
|
- memcpy(&val, memPtr, sizeof(val));
|
|
|
- return val;
|
|
|
-}
|
|
|
-
|
|
|
-#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
|
|
|
+ if (input==NULL) {
|
|
|
+ XXH_ASSERT(len == 0);
|
|
|
+ return XXH_OK;
|
|
|
+ }
|
|
|
|
|
|
-#if defined(_MSC_VER) /* Visual Studio */
|
|
|
-# define XXH_swap64 _byteswap_uint64
|
|
|
-#elif XXH_GCC_VERSION >= 403
|
|
|
-# define XXH_swap64 __builtin_bswap64
|
|
|
+ XXH_ASSERT(state != NULL);
|
|
|
+ { const xxh_u8* const bEnd = input + len;
|
|
|
+ const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
|
|
|
+#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
|
|
|
+ /* For some reason, gcc and MSVC seem to suffer greatly
|
|
|
+ * when operating accumulators directly into state.
|
|
|
+ * Operating into stack space seems to enable proper optimization.
|
|
|
+ * clang, on the other hand, doesn't seem to need this trick */
|
|
|
+ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8];
|
|
|
+ XXH_memcpy(acc, state->acc, sizeof(acc));
|
|
|
#else
|
|
|
-static xxh_u64 XXH_swap64 (xxh_u64 x)
|
|
|
-{
|
|
|
- return ((x << 56) & 0xff00000000000000ULL) |
|
|
|
- ((x << 40) & 0x00ff000000000000ULL) |
|
|
|
- ((x << 24) & 0x0000ff0000000000ULL) |
|
|
|
- ((x << 8) & 0x000000ff00000000ULL) |
|
|
|
- ((x >> 8) & 0x00000000ff000000ULL) |
|
|
|
- ((x >> 24) & 0x0000000000ff0000ULL) |
|
|
|
- ((x >> 40) & 0x000000000000ff00ULL) |
|
|
|
- ((x >> 56) & 0x00000000000000ffULL);
|
|
|
-}
|
|
|
+ xxh_u64* XXH_RESTRICT const acc = state->acc;
|
|
|
#endif
|
|
|
+ state->totalLen += len;
|
|
|
+ XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
|
|
|
|
|
|
+ /* small input : just fill in tmp buffer */
|
|
|
+ if (len <= XXH3_INTERNALBUFFER_SIZE - state->bufferedSize) {
|
|
|
+ XXH_memcpy(state->buffer + state->bufferedSize, input, len);
|
|
|
+ state->bufferedSize += (XXH32_hash_t)len;
|
|
|
+ return XXH_OK;
|
|
|
+ }
|
|
|
|
|
|
-/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
|
|
|
-#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
|
|
|
+ /* total input is now > XXH3_INTERNALBUFFER_SIZE */
|
|
|
+ #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
|
|
|
+ XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Internal buffer is partially filled (always, except at beginning)
|
|
|
+ * Complete it, then consume it.
|
|
|
+ */
|
|
|
+ if (state->bufferedSize) {
|
|
|
+ size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
|
|
|
+ XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
|
|
|
+ input += loadSize;
|
|
|
+ XXH3_consumeStripes(acc,
|
|
|
+ &state->nbStripesSoFar, state->nbStripesPerBlock,
|
|
|
+ state->buffer, XXH3_INTERNALBUFFER_STRIPES,
|
|
|
+ secret, state->secretLimit,
|
|
|
+ f_acc, f_scramble);
|
|
|
+ state->bufferedSize = 0;
|
|
|
+ }
|
|
|
+ XXH_ASSERT(input < bEnd);
|
|
|
+ if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
|
|
|
+ size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
|
|
|
+ input = XXH3_consumeStripes(acc,
|
|
|
+ &state->nbStripesSoFar, state->nbStripesPerBlock,
|
|
|
+ input, nbStripes,
|
|
|
+ secret, state->secretLimit,
|
|
|
+ f_acc, f_scramble);
|
|
|
+ XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
|
|
|
|
|
|
-XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
|
|
|
-{
|
|
|
- const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
|
|
|
- return bytePtr[0]
|
|
|
- | ((xxh_u64)bytePtr[1] << 8)
|
|
|
- | ((xxh_u64)bytePtr[2] << 16)
|
|
|
- | ((xxh_u64)bytePtr[3] << 24)
|
|
|
- | ((xxh_u64)bytePtr[4] << 32)
|
|
|
- | ((xxh_u64)bytePtr[5] << 40)
|
|
|
- | ((xxh_u64)bytePtr[6] << 48)
|
|
|
- | ((xxh_u64)bytePtr[7] << 56);
|
|
|
-}
|
|
|
+ }
|
|
|
+ /* Some remaining input (always) : buffer it */
|
|
|
+ XXH_ASSERT(input < bEnd);
|
|
|
+ XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
|
|
|
+ XXH_ASSERT(state->bufferedSize == 0);
|
|
|
+ XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
|
|
|
+ state->bufferedSize = (XXH32_hash_t)(bEnd-input);
|
|
|
+#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
|
|
|
+ /* save stack accumulators into state */
|
|
|
+ XXH_memcpy(state->acc, acc, sizeof(acc));
|
|
|
+#endif
|
|
|
+ }
|
|
|
|
|
|
-XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
|
|
|
-{
|
|
|
- const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
|
|
|
- return bytePtr[7]
|
|
|
- | ((xxh_u64)bytePtr[6] << 8)
|
|
|
- | ((xxh_u64)bytePtr[5] << 16)
|
|
|
- | ((xxh_u64)bytePtr[4] << 24)
|
|
|
- | ((xxh_u64)bytePtr[3] << 32)
|
|
|
- | ((xxh_u64)bytePtr[2] << 40)
|
|
|
- | ((xxh_u64)bytePtr[1] << 48)
|
|
|
- | ((xxh_u64)bytePtr[0] << 56);
|
|
|
+ return XXH_OK;
|
|
|
}
|
|
|
|
|
|
-#else
|
|
|
-XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode
|
|
|
+XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
|
|
|
{
|
|
|
- return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
|
|
|
+ return XXH3_update(state, (const xxh_u8*)input, len,
|
|
|
+ XXH3_accumulate, XXH3_scrambleAcc);
|
|
|
}
|
|
|
|
|
|
-static xxh_u64 XXH_readBE64(const void* ptr)
|
|
|
+
|
|
|
+XXH_FORCE_INLINE void
|
|
|
+XXH3_digest_long (XXH64_hash_t* acc,
|
|
|
+ const XXH3_state_t* state,
|
|
|
+ const unsigned char* secret)
|
|
|
{
|
|
|
- return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
|
|
|
+ xxh_u8 lastStripe[XXH_STRIPE_LEN];
|
|
|
+ const xxh_u8* lastStripePtr;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Digest on a local copy. This way, the state remains unaltered, and it can
|
|
|
+ * continue ingesting more input afterwards.
|
|
|
+ */
|
|
|
+ XXH_memcpy(acc, state->acc, sizeof(state->acc));
|
|
|
+ if (state->bufferedSize >= XXH_STRIPE_LEN) {
|
|
|
+ /* Consume remaining stripes then point to remaining data in buffer */
|
|
|
+ size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
|
|
|
+ size_t nbStripesSoFar = state->nbStripesSoFar;
|
|
|
+ XXH3_consumeStripes(acc,
|
|
|
+ &nbStripesSoFar, state->nbStripesPerBlock,
|
|
|
+ state->buffer, nbStripes,
|
|
|
+ secret, state->secretLimit,
|
|
|
+ XXH3_accumulate, XXH3_scrambleAcc);
|
|
|
+ lastStripePtr = state->buffer + state->bufferedSize - XXH_STRIPE_LEN;
|
|
|
+ } else { /* bufferedSize < XXH_STRIPE_LEN */
|
|
|
+ /* Copy to temp buffer */
|
|
|
+ size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
|
|
|
+ XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */
|
|
|
+ XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
|
|
|
+ XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
|
|
|
+ lastStripePtr = lastStripe;
|
|
|
+ }
|
|
|
+ /* Last stripe */
|
|
|
+ XXH3_accumulate_512(acc,
|
|
|
+ lastStripePtr,
|
|
|
+ secret + state->secretLimit - XXH_SECRET_LASTACC_START);
|
|
|
}
|
|
|
-#endif
|
|
|
|
|
|
-XXH_FORCE_INLINE xxh_u64
|
|
|
-XXH_readLE64_align(const void* ptr, XXH_alignment align)
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
|
|
|
{
|
|
|
- if (align==XXH_unaligned)
|
|
|
- return XXH_readLE64(ptr);
|
|
|
- else
|
|
|
- return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
|
|
|
+ const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
|
|
|
+ if (state->totalLen > XXH3_MIDSIZE_MAX) {
|
|
|
+ XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
|
|
|
+ XXH3_digest_long(acc, state, secret);
|
|
|
+ return XXH3_mergeAccs(acc,
|
|
|
+ secret + XXH_SECRET_MERGEACCS_START,
|
|
|
+ (xxh_u64)state->totalLen * XXH_PRIME64_1);
|
|
|
+ }
|
|
|
+ /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
|
|
|
+ if (state->useSeed)
|
|
|
+ return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
|
|
|
+ return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
|
|
|
+ secret, state->secretLimit + XXH_STRIPE_LEN);
|
|
|
}
|
|
|
+#endif /* !XXH_NO_STREAM */
|
|
|
|
|
|
|
|
|
-/******* xxh64 *******/
|
|
|
+/* ==========================================
|
|
|
+ * XXH3 128 bits (a.k.a XXH128)
|
|
|
+ * ==========================================
|
|
|
+ * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
|
|
|
+ * even without counting the significantly larger output size.
|
|
|
+ *
|
|
|
+ * For example, extra steps are taken to avoid the seed-dependent collisions
|
|
|
+ * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
|
|
|
+ *
|
|
|
+ * This strength naturally comes at the cost of some speed, especially on short
|
|
|
+ * lengths. Note that longer hashes are about as fast as the 64-bit version
|
|
|
+ * due to it using only a slight modification of the 64-bit loop.
|
|
|
+ *
|
|
|
+ * XXH128 is also more oriented towards 64-bit machines. It is still extremely
|
|
|
+ * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
|
|
|
+ */
|
|
|
|
|
|
-static const xxh_u64 PRIME64_1 = 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 */
|
|
|
-static const xxh_u64 PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 */
|
|
|
-static const xxh_u64 PRIME64_3 = 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 */
|
|
|
-static const xxh_u64 PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011 */
|
|
|
-static const xxh_u64 PRIME64_5 = 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101 */
|
|
|
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
|
|
|
+XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
|
|
|
+{
|
|
|
+ /* A doubled version of 1to3_64b with different constants. */
|
|
|
+ XXH_ASSERT(input != NULL);
|
|
|
+ XXH_ASSERT(1 <= len && len <= 3);
|
|
|
+ XXH_ASSERT(secret != NULL);
|
|
|
+ /*
|
|
|
+ * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
|
|
|
+ * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
|
|
|
+ * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
|
|
|
+ */
|
|
|
+ { xxh_u8 const c1 = input[0];
|
|
|
+ xxh_u8 const c2 = input[len >> 1];
|
|
|
+ xxh_u8 const c3 = input[len - 1];
|
|
|
+ xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
|
|
|
+ | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
|
|
|
+ xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
|
|
|
+ xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
|
|
|
+ xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
|
|
|
+ xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
|
|
|
+ xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
|
|
|
+ XXH128_hash_t h128;
|
|
|
+ h128.low64 = XXH64_avalanche(keyed_lo);
|
|
|
+ h128.high64 = XXH64_avalanche(keyed_hi);
|
|
|
+ return h128;
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
-static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
|
|
|
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
|
|
|
+XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
|
|
|
{
|
|
|
- acc += input * PRIME64_2;
|
|
|
- acc = XXH_rotl64(acc, 31);
|
|
|
- acc *= PRIME64_1;
|
|
|
- return acc;
|
|
|
+ XXH_ASSERT(input != NULL);
|
|
|
+ XXH_ASSERT(secret != NULL);
|
|
|
+ XXH_ASSERT(4 <= len && len <= 8);
|
|
|
+ seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
|
|
|
+ { xxh_u32 const input_lo = XXH_readLE32(input);
|
|
|
+ xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
|
|
|
+ xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
|
|
|
+ xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
|
|
|
+ xxh_u64 const keyed = input_64 ^ bitflip;
|
|
|
+
|
|
|
+ /* Shift len to the left to ensure it is even, this avoids even multiplies. */
|
|
|
+ XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
|
|
|
+
|
|
|
+ m128.high64 += (m128.low64 << 1);
|
|
|
+ m128.low64 ^= (m128.high64 >> 3);
|
|
|
+
|
|
|
+ m128.low64 = XXH_xorshift64(m128.low64, 35);
|
|
|
+ m128.low64 *= PRIME_MX2;
|
|
|
+ m128.low64 = XXH_xorshift64(m128.low64, 28);
|
|
|
+ m128.high64 = XXH3_avalanche(m128.high64);
|
|
|
+ return m128;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
|
|
|
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
|
|
|
+XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
|
|
|
{
|
|
|
- val = XXH64_round(0, val);
|
|
|
- acc ^= val;
|
|
|
- acc = acc * PRIME64_1 + PRIME64_4;
|
|
|
- return acc;
|
|
|
+ XXH_ASSERT(input != NULL);
|
|
|
+ XXH_ASSERT(secret != NULL);
|
|
|
+ XXH_ASSERT(9 <= len && len <= 16);
|
|
|
+ { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
|
|
|
+ xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
|
|
|
+ xxh_u64 const input_lo = XXH_readLE64(input);
|
|
|
+ xxh_u64 input_hi = XXH_readLE64(input + len - 8);
|
|
|
+ XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
|
|
|
+ /*
|
|
|
+ * Put len in the middle of m128 to ensure that the length gets mixed to
|
|
|
+ * both the low and high bits in the 128x64 multiply below.
|
|
|
+ */
|
|
|
+ m128.low64 += (xxh_u64)(len - 1) << 54;
|
|
|
+ input_hi ^= bitfliph;
|
|
|
+ /*
|
|
|
+ * Add the high 32 bits of input_hi to the high 32 bits of m128, then
|
|
|
+ * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
|
|
|
+ * the high 64 bits of m128.
|
|
|
+ *
|
|
|
+ * The best approach to this operation is different on 32-bit and 64-bit.
|
|
|
+ */
|
|
|
+ if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
|
|
|
+ /*
|
|
|
+ * 32-bit optimized version, which is more readable.
|
|
|
+ *
|
|
|
+ * On 32-bit, it removes an ADC and delays a dependency between the two
|
|
|
+ * halves of m128.high64, but it generates an extra mask on 64-bit.
|
|
|
+ */
|
|
|
+ m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
|
|
|
+ } else {
|
|
|
+ /*
|
|
|
+ * 64-bit optimized (albeit more confusing) version.
|
|
|
+ *
|
|
|
+ * Uses some properties of addition and multiplication to remove the mask:
|
|
|
+ *
|
|
|
+ * Let:
|
|
|
+ * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
|
|
|
+ * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
|
|
|
+ * c = XXH_PRIME32_2
|
|
|
+ *
|
|
|
+ * a + (b * c)
|
|
|
+ * Inverse Property: x + y - x == y
|
|
|
+ * a + (b * (1 + c - 1))
|
|
|
+ * Distributive Property: x * (y + z) == (x * y) + (x * z)
|
|
|
+ * a + (b * 1) + (b * (c - 1))
|
|
|
+ * Identity Property: x * 1 == x
|
|
|
+ * a + b + (b * (c - 1))
|
|
|
+ *
|
|
|
+ * Substitute a, b, and c:
|
|
|
+ * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
|
|
|
+ *
|
|
|
+ * Since input_hi.hi + input_hi.lo == input_hi, we get this:
|
|
|
+ * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
|
|
|
+ */
|
|
|
+ m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
|
|
|
+ }
|
|
|
+ /* m128 ^= XXH_swap64(m128 >> 64); */
|
|
|
+ m128.low64 ^= XXH_swap64(m128.high64);
|
|
|
+
|
|
|
+ { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
|
|
|
+ XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
|
|
|
+ h128.high64 += m128.high64 * XXH_PRIME64_2;
|
|
|
+
|
|
|
+ h128.low64 = XXH3_avalanche(h128.low64);
|
|
|
+ h128.high64 = XXH3_avalanche(h128.high64);
|
|
|
+ return h128;
|
|
|
+ } }
|
|
|
}
|
|
|
|
|
|
-static xxh_u64 XXH64_avalanche(xxh_u64 h64)
|
|
|
+/*
|
|
|
+ * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
|
|
|
+ */
|
|
|
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
|
|
|
+XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
|
|
|
{
|
|
|
- h64 ^= h64 >> 33;
|
|
|
- h64 *= PRIME64_2;
|
|
|
- h64 ^= h64 >> 29;
|
|
|
- h64 *= PRIME64_3;
|
|
|
- h64 ^= h64 >> 32;
|
|
|
- return h64;
|
|
|
+ XXH_ASSERT(len <= 16);
|
|
|
+ { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
|
|
|
+ if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
|
|
|
+ if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
|
|
|
+ { XXH128_hash_t h128;
|
|
|
+ xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
|
|
|
+ xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
|
|
|
+ h128.low64 = XXH64_avalanche(seed ^ bitflipl);
|
|
|
+ h128.high64 = XXH64_avalanche( seed ^ bitfliph);
|
|
|
+ return h128;
|
|
|
+ } }
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+ * A bit slower than XXH3_mix16B, but handles multiply by zero better.
|
|
|
+ */
|
|
|
+XXH_FORCE_INLINE XXH128_hash_t
|
|
|
+XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
|
|
|
+ const xxh_u8* secret, XXH64_hash_t seed)
|
|
|
+{
|
|
|
+ acc.low64 += XXH3_mix16B (input_1, secret+0, seed);
|
|
|
+ acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
|
|
|
+ acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
|
|
|
+ acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
|
|
|
+ return acc;
|
|
|
+}
|
|
|
|
|
|
-#define XXH_get64bits(p) XXH_readLE64_align(p, align)
|
|
|
|
|
|
-static xxh_u64
|
|
|
-XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
|
|
|
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
|
|
|
+XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
|
|
|
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
|
|
|
+ XXH64_hash_t seed)
|
|
|
{
|
|
|
-#define PROCESS1_64 do { \
|
|
|
- h64 ^= (*ptr++) * PRIME64_5; \
|
|
|
- h64 = XXH_rotl64(h64, 11) * PRIME64_1; \
|
|
|
-} while (0)
|
|
|
-
|
|
|
-#define PROCESS4_64 do { \
|
|
|
- h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * PRIME64_1; \
|
|
|
- ptr += 4; \
|
|
|
- h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; \
|
|
|
-} while (0)
|
|
|
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
|
|
|
+ XXH_ASSERT(16 < len && len <= 128);
|
|
|
|
|
|
-#define PROCESS8_64 do { \
|
|
|
- xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \
|
|
|
- ptr += 8; \
|
|
|
- h64 ^= k1; \
|
|
|
- h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; \
|
|
|
-} while (0)
|
|
|
+ { XXH128_hash_t acc;
|
|
|
+ acc.low64 = len * XXH_PRIME64_1;
|
|
|
+ acc.high64 = 0;
|
|
|
|
|
|
- /* Rerolled version for 32-bit targets is faster and much smaller. */
|
|
|
- if (XXH_REROLL || XXH_REROLL_XXH64) {
|
|
|
- len &= 31;
|
|
|
- while (len >= 8) {
|
|
|
- PROCESS8_64;
|
|
|
- len -= 8;
|
|
|
- }
|
|
|
- if (len >= 4) {
|
|
|
- PROCESS4_64;
|
|
|
- len -= 4;
|
|
|
+#if XXH_SIZE_OPT >= 1
|
|
|
+ {
|
|
|
+ /* Smaller, but slightly slower. */
|
|
|
+ unsigned int i = (unsigned int)(len - 1) / 32;
|
|
|
+ do {
|
|
|
+ acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed);
|
|
|
+ } while (i-- != 0);
|
|
|
}
|
|
|
- while (len > 0) {
|
|
|
- PROCESS1_64;
|
|
|
- --len;
|
|
|
+#else
|
|
|
+ if (len > 32) {
|
|
|
+ if (len > 64) {
|
|
|
+ if (len > 96) {
|
|
|
+ acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
|
|
|
+ }
|
|
|
+ acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
|
|
|
+ }
|
|
|
+ acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
|
|
|
}
|
|
|
- return XXH64_avalanche(h64);
|
|
|
- } else {
|
|
|
- switch(len & 31) {
|
|
|
- case 24: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 16: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 8: PROCESS8_64;
|
|
|
- return XXH64_avalanche(h64);
|
|
|
-
|
|
|
- case 28: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 20: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 12: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 4: PROCESS4_64;
|
|
|
- return XXH64_avalanche(h64);
|
|
|
-
|
|
|
- case 25: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 17: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 9: PROCESS8_64;
|
|
|
- PROCESS1_64;
|
|
|
- return XXH64_avalanche(h64);
|
|
|
-
|
|
|
- case 29: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 21: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 13: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 5: PROCESS4_64;
|
|
|
- PROCESS1_64;
|
|
|
- return XXH64_avalanche(h64);
|
|
|
-
|
|
|
- case 26: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 18: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 10: PROCESS8_64;
|
|
|
- PROCESS1_64;
|
|
|
- PROCESS1_64;
|
|
|
- return XXH64_avalanche(h64);
|
|
|
-
|
|
|
- case 30: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 22: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 14: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 6: PROCESS4_64;
|
|
|
- PROCESS1_64;
|
|
|
- PROCESS1_64;
|
|
|
- return XXH64_avalanche(h64);
|
|
|
-
|
|
|
- case 27: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 19: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 11: PROCESS8_64;
|
|
|
- PROCESS1_64;
|
|
|
- PROCESS1_64;
|
|
|
- PROCESS1_64;
|
|
|
- return XXH64_avalanche(h64);
|
|
|
-
|
|
|
- case 31: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 23: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 15: PROCESS8_64;
|
|
|
- /* fallthrough */
|
|
|
- case 7: PROCESS4_64;
|
|
|
- /* fallthrough */
|
|
|
- case 3: PROCESS1_64;
|
|
|
- /* fallthrough */
|
|
|
- case 2: PROCESS1_64;
|
|
|
- /* fallthrough */
|
|
|
- case 1: PROCESS1_64;
|
|
|
- /* fallthrough */
|
|
|
- case 0: return XXH64_avalanche(h64);
|
|
|
+ acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
|
|
|
+#endif
|
|
|
+ { XXH128_hash_t h128;
|
|
|
+ h128.low64 = acc.low64 + acc.high64;
|
|
|
+ h128.high64 = (acc.low64 * XXH_PRIME64_1)
|
|
|
+ + (acc.high64 * XXH_PRIME64_4)
|
|
|
+ + ((len - seed) * XXH_PRIME64_2);
|
|
|
+ h128.low64 = XXH3_avalanche(h128.low64);
|
|
|
+ h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
|
|
|
+ return h128;
|
|
|
}
|
|
|
}
|
|
|
- /* impossible to reach */
|
|
|
- XXH_ASSERT(0);
|
|
|
- return 0; /* unreachable, but some compilers complain without it */
|
|
|
}
|
|
|
|
|
|
-XXH_FORCE_INLINE xxh_u64
|
|
|
-XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
|
|
|
+XXH_NO_INLINE XXH_PUREF XXH128_hash_t
|
|
|
+XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
|
|
|
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
|
|
|
+ XXH64_hash_t seed)
|
|
|
{
|
|
|
- const xxh_u8* bEnd = input + len;
|
|
|
- xxh_u64 h64;
|
|
|
-
|
|
|
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
|
|
|
- if (input==NULL) {
|
|
|
- len=0;
|
|
|
- bEnd=input=(const xxh_u8*)(size_t)32;
|
|
|
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
|
|
|
+ XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
|
|
|
+
|
|
|
+ { XXH128_hash_t acc;
|
|
|
+ unsigned i;
|
|
|
+ acc.low64 = len * XXH_PRIME64_1;
|
|
|
+ acc.high64 = 0;
|
|
|
+ /*
|
|
|
+ * We set as `i` as offset + 32. We do this so that unchanged
|
|
|
+ * `len` can be used as upper bound. This reaches a sweet spot
|
|
|
+ * where both x86 and aarch64 get simple agen and good codegen
|
|
|
+ * for the loop.
|
|
|
+ */
|
|
|
+ for (i = 32; i < 160; i += 32) {
|
|
|
+ acc = XXH128_mix32B(acc,
|
|
|
+ input + i - 32,
|
|
|
+ input + i - 16,
|
|
|
+ secret + i - 32,
|
|
|
+ seed);
|
|
|
+ }
|
|
|
+ acc.low64 = XXH3_avalanche(acc.low64);
|
|
|
+ acc.high64 = XXH3_avalanche(acc.high64);
|
|
|
+ /*
|
|
|
+ * NB: `i <= len` will duplicate the last 32-bytes if
|
|
|
+ * len % 32 was zero. This is an unfortunate necessity to keep
|
|
|
+ * the hash result stable.
|
|
|
+ */
|
|
|
+ for (i=160; i <= len; i += 32) {
|
|
|
+ acc = XXH128_mix32B(acc,
|
|
|
+ input + i - 32,
|
|
|
+ input + i - 16,
|
|
|
+ secret + XXH3_MIDSIZE_STARTOFFSET + i - 160,
|
|
|
+ seed);
|
|
|
+ }
|
|
|
+ /* last bytes */
|
|
|
+ acc = XXH128_mix32B(acc,
|
|
|
+ input + len - 16,
|
|
|
+ input + len - 32,
|
|
|
+ secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
|
|
|
+ (XXH64_hash_t)0 - seed);
|
|
|
+
|
|
|
+ { XXH128_hash_t h128;
|
|
|
+ h128.low64 = acc.low64 + acc.high64;
|
|
|
+ h128.high64 = (acc.low64 * XXH_PRIME64_1)
|
|
|
+ + (acc.high64 * XXH_PRIME64_4)
|
|
|
+ + ((len - seed) * XXH_PRIME64_2);
|
|
|
+ h128.low64 = XXH3_avalanche(h128.low64);
|
|
|
+ h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
|
|
|
+ return h128;
|
|
|
+ }
|
|
|
}
|
|
|
-#endif
|
|
|
+}
|
|
|
|
|
|
- if (len>=32) {
|
|
|
- const xxh_u8* const limit = bEnd - 32;
|
|
|
- xxh_u64 v1 = seed + PRIME64_1 + PRIME64_2;
|
|
|
- xxh_u64 v2 = seed + PRIME64_2;
|
|
|
- xxh_u64 v3 = seed + 0;
|
|
|
- xxh_u64 v4 = seed - PRIME64_1;
|
|
|
+XXH_FORCE_INLINE XXH128_hash_t
|
|
|
+XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
|
|
|
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
|
|
|
+ XXH3_f_accumulate f_acc,
|
|
|
+ XXH3_f_scrambleAcc f_scramble)
|
|
|
+{
|
|
|
+ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
|
|
|
+
|
|
|
+ XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble);
|
|
|
+
|
|
|
+ /* converge into final hash */
|
|
|
+ XXH_STATIC_ASSERT(sizeof(acc) == 64);
|
|
|
+ XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
|
|
|
+ { XXH128_hash_t h128;
|
|
|
+ h128.low64 = XXH3_mergeAccs(acc,
|
|
|
+ secret + XXH_SECRET_MERGEACCS_START,
|
|
|
+ (xxh_u64)len * XXH_PRIME64_1);
|
|
|
+ h128.high64 = XXH3_mergeAccs(acc,
|
|
|
+ secret + secretSize
|
|
|
+ - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
|
|
|
+ ~((xxh_u64)len * XXH_PRIME64_2));
|
|
|
+ return h128;
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
- do {
|
|
|
- v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
|
|
|
- v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
|
|
|
- v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
|
|
|
- v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
|
|
|
- } while (input<=limit);
|
|
|
+/*
|
|
|
+ * It's important for performance that XXH3_hashLong() is not inlined.
|
|
|
+ */
|
|
|
+XXH_NO_INLINE XXH_PUREF XXH128_hash_t
|
|
|
+XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
|
|
|
+ XXH64_hash_t seed64,
|
|
|
+ const void* XXH_RESTRICT secret, size_t secretLen)
|
|
|
+{
|
|
|
+ (void)seed64; (void)secret; (void)secretLen;
|
|
|
+ return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
|
|
|
+ XXH3_accumulate, XXH3_scrambleAcc);
|
|
|
+}
|
|
|
|
|
|
- h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
|
|
|
- h64 = XXH64_mergeRound(h64, v1);
|
|
|
- h64 = XXH64_mergeRound(h64, v2);
|
|
|
- h64 = XXH64_mergeRound(h64, v3);
|
|
|
- h64 = XXH64_mergeRound(h64, v4);
|
|
|
+/*
|
|
|
+ * It's important for performance to pass @p secretLen (when it's static)
|
|
|
+ * to the compiler, so that it can properly optimize the vectorized loop.
|
|
|
+ *
|
|
|
+ * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
|
|
|
+ * breaks -Og, this is XXH_NO_INLINE.
|
|
|
+ */
|
|
|
+XXH3_WITH_SECRET_INLINE XXH128_hash_t
|
|
|
+XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
|
|
|
+ XXH64_hash_t seed64,
|
|
|
+ const void* XXH_RESTRICT secret, size_t secretLen)
|
|
|
+{
|
|
|
+ (void)seed64;
|
|
|
+ return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
|
|
|
+ XXH3_accumulate, XXH3_scrambleAcc);
|
|
|
+}
|
|
|
|
|
|
- } else {
|
|
|
- h64 = seed + PRIME64_5;
|
|
|
+XXH_FORCE_INLINE XXH128_hash_t
|
|
|
+XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
|
|
|
+ XXH64_hash_t seed64,
|
|
|
+ XXH3_f_accumulate f_acc,
|
|
|
+ XXH3_f_scrambleAcc f_scramble,
|
|
|
+ XXH3_f_initCustomSecret f_initSec)
|
|
|
+{
|
|
|
+ if (seed64 == 0)
|
|
|
+ return XXH3_hashLong_128b_internal(input, len,
|
|
|
+ XXH3_kSecret, sizeof(XXH3_kSecret),
|
|
|
+ f_acc, f_scramble);
|
|
|
+ { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
|
|
|
+ f_initSec(secret, seed64);
|
|
|
+ return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
|
|
|
+ f_acc, f_scramble);
|
|
|
}
|
|
|
+}
|
|
|
|
|
|
- h64 += (xxh_u64) len;
|
|
|
-
|
|
|
- return XXH64_finalize(h64, input, len, align);
|
|
|
+/*
|
|
|
+ * It's important for performance that XXH3_hashLong is not inlined.
|
|
|
+ */
|
|
|
+XXH_NO_INLINE XXH128_hash_t
|
|
|
+XXH3_hashLong_128b_withSeed(const void* input, size_t len,
|
|
|
+ XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
|
|
|
+{
|
|
|
+ (void)secret; (void)secretLen;
|
|
|
+ return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
|
|
|
+ XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
|
|
|
}
|
|
|
|
|
|
+typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
|
|
|
+ XXH64_hash_t, const void* XXH_RESTRICT, size_t);
|
|
|
|
|
|
-XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
|
|
|
+XXH_FORCE_INLINE XXH128_hash_t
|
|
|
+XXH3_128bits_internal(const void* input, size_t len,
|
|
|
+ XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
|
|
|
+ XXH3_hashLong128_f f_hl128)
|
|
|
{
|
|
|
-#if 0
|
|
|
- /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
|
|
|
- XXH64_state_t state;
|
|
|
- XXH64_reset(&state, seed);
|
|
|
- XXH64_update(&state, (const xxh_u8*)input, len);
|
|
|
- return XXH64_digest(&state);
|
|
|
+ XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
|
|
|
+ /*
|
|
|
+ * If an action is to be taken if `secret` conditions are not respected,
|
|
|
+ * it should be done here.
|
|
|
+ * For now, it's a contract pre-condition.
|
|
|
+ * Adding a check and a branch here would cost performance at every hash.
|
|
|
+ */
|
|
|
+ if (len <= 16)
|
|
|
+ return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
|
|
|
+ if (len <= 128)
|
|
|
+ return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
|
|
|
+ if (len <= XXH3_MIDSIZE_MAX)
|
|
|
+ return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
|
|
|
+ return f_hl128(input, len, seed64, secret, secretLen);
|
|
|
+}
|
|
|
|
|
|
-#else
|
|
|
|
|
|
- if (XXH_FORCE_ALIGN_CHECK) {
|
|
|
- if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
|
|
|
- return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
|
|
|
- } }
|
|
|
+/* === Public XXH128 API === */
|
|
|
|
|
|
- return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len)
|
|
|
+{
|
|
|
+ return XXH3_128bits_internal(input, len, 0,
|
|
|
+ XXH3_kSecret, sizeof(XXH3_kSecret),
|
|
|
+ XXH3_hashLong_128b_default);
|
|
|
+}
|
|
|
|
|
|
-#endif
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH128_hash_t
|
|
|
+XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize)
|
|
|
+{
|
|
|
+ return XXH3_128bits_internal(input, len, 0,
|
|
|
+ (const xxh_u8*)secret, secretSize,
|
|
|
+ XXH3_hashLong_128b_withSecret);
|
|
|
}
|
|
|
|
|
|
-/******* Hash Streaming *******/
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH128_hash_t
|
|
|
+XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
|
|
|
+{
|
|
|
+ return XXH3_128bits_internal(input, len, seed,
|
|
|
+ XXH3_kSecret, sizeof(XXH3_kSecret),
|
|
|
+ XXH3_hashLong_128b_withSeed);
|
|
|
+}
|
|
|
|
|
|
-XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH128_hash_t
|
|
|
+XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
|
|
|
{
|
|
|
- return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
|
|
|
+ if (len <= XXH3_MIDSIZE_MAX)
|
|
|
+ return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
|
|
|
+ return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
|
|
|
}
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
|
|
|
+
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH128_hash_t
|
|
|
+XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
|
|
|
{
|
|
|
- XXH_free(statePtr);
|
|
|
- return XXH_OK;
|
|
|
+ return XXH3_128bits_withSeed(input, len, seed);
|
|
|
}
|
|
|
|
|
|
-XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
|
|
|
+
|
|
|
+/* === XXH3 128-bit streaming === */
|
|
|
+#ifndef XXH_NO_STREAM
|
|
|
+/*
|
|
|
+ * All initialization and update functions are identical to 64-bit streaming variant.
|
|
|
+ * The only difference is the finalization routine.
|
|
|
+ */
|
|
|
+
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode
|
|
|
+XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
|
|
|
{
|
|
|
- memcpy(dstState, srcState, sizeof(*dstState));
|
|
|
+ return XXH3_64bits_reset(statePtr);
|
|
|
}
|
|
|
|
|
|
-XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode
|
|
|
+XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
|
|
|
{
|
|
|
- XXH64_state_t state; /* use a local state to memcpy() in order to avoid strict-aliasing warnings */
|
|
|
- memset(&state, 0, sizeof(state));
|
|
|
- state.v1 = seed + PRIME64_1 + PRIME64_2;
|
|
|
- state.v2 = seed + PRIME64_2;
|
|
|
- state.v3 = seed + 0;
|
|
|
- state.v4 = seed - PRIME64_1;
|
|
|
- /* do not write into reserved64, might be removed in a future version */
|
|
|
- memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
|
|
|
- return XXH_OK;
|
|
|
+ return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
|
|
|
}
|
|
|
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
XXH_PUBLIC_API XXH_errorcode
|
|
|
-XXH64_update (XXH64_state_t* state, const void* input, size_t len)
|
|
|
+XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
|
|
|
{
|
|
|
- if (input==NULL)
|
|
|
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
|
|
|
- return XXH_OK;
|
|
|
-#else
|
|
|
- return XXH_ERROR;
|
|
|
-#endif
|
|
|
+ return XXH3_64bits_reset_withSeed(statePtr, seed);
|
|
|
+}
|
|
|
|
|
|
- { const xxh_u8* p = (const xxh_u8*)input;
|
|
|
- const xxh_u8* const bEnd = p + len;
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode
|
|
|
+XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
|
|
|
+{
|
|
|
+ return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
|
|
|
+}
|
|
|
|
|
|
- state->total_len += len;
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode
|
|
|
+XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
|
|
|
+{
|
|
|
+ return XXH3_64bits_update(state, input, len);
|
|
|
+}
|
|
|
|
|
|
- if (state->memsize + len < 32) { /* fill in tmp buffer */
|
|
|
- XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
|
|
|
- state->memsize += (xxh_u32)len;
|
|
|
- return XXH_OK;
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
|
|
|
+{
|
|
|
+ const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
|
|
|
+ if (state->totalLen > XXH3_MIDSIZE_MAX) {
|
|
|
+ XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
|
|
|
+ XXH3_digest_long(acc, state, secret);
|
|
|
+ XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
|
|
|
+ { XXH128_hash_t h128;
|
|
|
+ h128.low64 = XXH3_mergeAccs(acc,
|
|
|
+ secret + XXH_SECRET_MERGEACCS_START,
|
|
|
+ (xxh_u64)state->totalLen * XXH_PRIME64_1);
|
|
|
+ h128.high64 = XXH3_mergeAccs(acc,
|
|
|
+ secret + state->secretLimit + XXH_STRIPE_LEN
|
|
|
+ - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
|
|
|
+ ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
|
|
|
+ return h128;
|
|
|
}
|
|
|
+ }
|
|
|
+ /* len <= XXH3_MIDSIZE_MAX : short code */
|
|
|
+ if (state->useSeed)
|
|
|
+ return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
|
|
|
+ return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
|
|
|
+ secret, state->secretLimit + XXH_STRIPE_LEN);
|
|
|
+}
|
|
|
+#endif /* !XXH_NO_STREAM */
|
|
|
+/* 128-bit utility functions */
|
|
|
|
|
|
- if (state->memsize) { /* tmp buffer is full */
|
|
|
- XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
|
|
|
- state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0));
|
|
|
- state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1));
|
|
|
- state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2));
|
|
|
- state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3));
|
|
|
- p += 32-state->memsize;
|
|
|
- state->memsize = 0;
|
|
|
- }
|
|
|
+#include <string.h> /* memcmp, memcpy */
|
|
|
|
|
|
- if (p+32 <= bEnd) {
|
|
|
- const xxh_u8* const limit = bEnd - 32;
|
|
|
- xxh_u64 v1 = state->v1;
|
|
|
- xxh_u64 v2 = state->v2;
|
|
|
- xxh_u64 v3 = state->v3;
|
|
|
- xxh_u64 v4 = state->v4;
|
|
|
+/* return : 1 is equal, 0 if different */
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
|
|
|
+{
|
|
|
+ /* note : XXH128_hash_t is compact, it has no padding byte */
|
|
|
+ return !(memcmp(&h1, &h2, sizeof(h1)));
|
|
|
+}
|
|
|
|
|
|
- do {
|
|
|
- v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8;
|
|
|
- v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8;
|
|
|
- v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8;
|
|
|
- v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8;
|
|
|
- } while (p<=limit);
|
|
|
+/* This prototype is compatible with stdlib's qsort().
|
|
|
+ * @return : >0 if *h128_1 > *h128_2
|
|
|
+ * <0 if *h128_1 < *h128_2
|
|
|
+ * =0 if *h128_1 == *h128_2 */
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2)
|
|
|
+{
|
|
|
+ XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
|
|
|
+ XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
|
|
|
+ int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
|
|
|
+ /* note : bets that, in most cases, hash values are different */
|
|
|
+ if (hcmp) return hcmp;
|
|
|
+ return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
|
|
|
+}
|
|
|
|
|
|
- state->v1 = v1;
|
|
|
- state->v2 = v2;
|
|
|
- state->v3 = v3;
|
|
|
- state->v4 = v4;
|
|
|
- }
|
|
|
|
|
|
- if (p < bEnd) {
|
|
|
- XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
|
|
|
- state->memsize = (unsigned)(bEnd-p);
|
|
|
- }
|
|
|
+/*====== Canonical representation ======*/
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API void
|
|
|
+XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash)
|
|
|
+{
|
|
|
+ XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
|
|
|
+ if (XXH_CPU_LITTLE_ENDIAN) {
|
|
|
+ hash.high64 = XXH_swap64(hash.high64);
|
|
|
+ hash.low64 = XXH_swap64(hash.low64);
|
|
|
}
|
|
|
-
|
|
|
- return XXH_OK;
|
|
|
+ XXH_memcpy(dst, &hash.high64, sizeof(hash.high64));
|
|
|
+ XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
|
|
|
}
|
|
|
|
|
|
-
|
|
|
-XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* state)
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH128_hash_t
|
|
|
+XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src)
|
|
|
{
|
|
|
- xxh_u64 h64;
|
|
|
+ XXH128_hash_t h;
|
|
|
+ h.high64 = XXH_readBE64(src);
|
|
|
+ h.low64 = XXH_readBE64(src->digest + 8);
|
|
|
+ return h;
|
|
|
+}
|
|
|
|
|
|
- if (state->total_len >= 32) {
|
|
|
- xxh_u64 const v1 = state->v1;
|
|
|
- xxh_u64 const v2 = state->v2;
|
|
|
- xxh_u64 const v3 = state->v3;
|
|
|
- xxh_u64 const v4 = state->v4;
|
|
|
|
|
|
- h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
|
|
|
- h64 = XXH64_mergeRound(h64, v1);
|
|
|
- h64 = XXH64_mergeRound(h64, v2);
|
|
|
- h64 = XXH64_mergeRound(h64, v3);
|
|
|
- h64 = XXH64_mergeRound(h64, v4);
|
|
|
- } else {
|
|
|
- h64 = state->v3 /*seed*/ + PRIME64_5;
|
|
|
- }
|
|
|
|
|
|
- h64 += (xxh_u64) state->total_len;
|
|
|
+/* ==========================================
|
|
|
+ * Secret generators
|
|
|
+ * ==========================================
|
|
|
+ */
|
|
|
+#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
|
|
|
|
|
|
- return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
|
|
|
+XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128)
|
|
|
+{
|
|
|
+ XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 );
|
|
|
+ XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
|
|
|
}
|
|
|
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API XXH_errorcode
|
|
|
+XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize)
|
|
|
+{
|
|
|
+#if (XXH_DEBUGLEVEL >= 1)
|
|
|
+ XXH_ASSERT(secretBuffer != NULL);
|
|
|
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
|
|
|
+#else
|
|
|
+ /* production mode, assert() are disabled */
|
|
|
+ if (secretBuffer == NULL) return XXH_ERROR;
|
|
|
+ if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
|
|
|
+#endif
|
|
|
|
|
|
-/******* Canonical representation *******/
|
|
|
+ if (customSeedSize == 0) {
|
|
|
+ customSeed = XXH3_kSecret;
|
|
|
+ customSeedSize = XXH_SECRET_DEFAULT_SIZE;
|
|
|
+ }
|
|
|
+#if (XXH_DEBUGLEVEL >= 1)
|
|
|
+ XXH_ASSERT(customSeed != NULL);
|
|
|
+#else
|
|
|
+ if (customSeed == NULL) return XXH_ERROR;
|
|
|
+#endif
|
|
|
|
|
|
-XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
|
|
|
-{
|
|
|
- XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
|
|
|
- if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
|
|
|
- memcpy(dst, &hash, sizeof(*dst));
|
|
|
+ /* Fill secretBuffer with a copy of customSeed - repeat as needed */
|
|
|
+ { size_t pos = 0;
|
|
|
+ while (pos < secretSize) {
|
|
|
+ size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize);
|
|
|
+ memcpy((char*)secretBuffer + pos, customSeed, toCopy);
|
|
|
+ pos += toCopy;
|
|
|
+ } }
|
|
|
+
|
|
|
+ { size_t const nbSeg16 = secretSize / 16;
|
|
|
+ size_t n;
|
|
|
+ XXH128_canonical_t scrambler;
|
|
|
+ XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
|
|
|
+ for (n=0; n<nbSeg16; n++) {
|
|
|
+ XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n);
|
|
|
+ XXH3_combine16((char*)secretBuffer + n*16, h128);
|
|
|
+ }
|
|
|
+ /* last segment */
|
|
|
+ XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler));
|
|
|
+ }
|
|
|
+ return XXH_OK;
|
|
|
}
|
|
|
|
|
|
-XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
|
|
|
+/*! @ingroup XXH3_family */
|
|
|
+XXH_PUBLIC_API void
|
|
|
+XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed)
|
|
|
{
|
|
|
- return XXH_readBE64(src);
|
|
|
+ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
|
|
|
+ XXH3_initCustomSecret(secret, seed);
|
|
|
+ XXH_ASSERT(secretBuffer != NULL);
|
|
|
+ memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE);
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
-/* *********************************************************************
|
|
|
-* XXH3
|
|
|
-* New generation hash designed for speed on small keys and vectorization
|
|
|
-************************************************************************ */
|
|
|
-
|
|
|
-#include "xxh3.h"
|
|
|
-
|
|
|
+/* Pop our optimization override from above */
|
|
|
+#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
|
|
|
+ && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
|
|
|
+ && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
|
|
|
+# pragma GCC pop_options
|
|
|
+#endif
|
|
|
|
|
|
#endif /* XXH_NO_LONG_LONG */
|
|
|
|
|
|
+#endif /* XXH_NO_XXH3 */
|
|
|
|
|
|
+/*!
|
|
|
+ * @}
|
|
|
+ */
|
|
|
#endif /* XXH_IMPLEMENTATION */
|
|
|
|
|
|
|
|
|
#if defined (__cplusplus)
|
|
|
-}
|
|
|
+} /* extern "C" */
|
|
|
#endif
|