noekeon.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. /* LibTomCrypt, modular cryptographic library -- Tom St Denis
  2. *
  3. * LibTomCrypt is a library that provides various cryptographic
  4. * algorithms in a highly modular and flexible manner.
  5. *
  6. * The library is free for all purposes without any express
  7. * guarantee it works.
  8. */
  9. /**
  10. @file noekeon.c
  11. Implementation of the Noekeon block cipher by Tom St Denis
  12. */
  13. #include "tomcrypt_private.h"
  14. #ifdef LTC_NOEKEON
  15. const struct ltc_cipher_descriptor noekeon_desc =
  16. {
  17. "noekeon",
  18. 16,
  19. 16, 16, 16, 16,
  20. &noekeon_setup,
  21. &noekeon_ecb_encrypt,
  22. &noekeon_ecb_decrypt,
  23. &noekeon_test,
  24. &noekeon_done,
  25. &noekeon_keysize,
  26. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
  27. };
  28. static const ulong32 RC[] = {
  29. 0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL,
  30. 0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL,
  31. 0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL,
  32. 0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL,
  33. 0x000000d4UL
  34. };
  35. #define kTHETA(a, b, c, d) \
  36. temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
  37. b ^= temp; d ^= temp; \
  38. temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
  39. a ^= temp; c ^= temp;
  40. #define THETA(k, a, b, c, d) \
  41. temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
  42. b ^= temp ^ k[1]; d ^= temp ^ k[3]; \
  43. temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
  44. a ^= temp ^ k[0]; c ^= temp ^ k[2];
  45. #define GAMMA(a, b, c, d) \
  46. b ^= ~(d|c); \
  47. a ^= c&b; \
  48. temp = d; d = a; a = temp;\
  49. c ^= a ^ b ^ d; \
  50. b ^= ~(d|c); \
  51. a ^= c&b;
  52. #define PI1(a, b, c, d) \
  53. b = ROLc(b, 1); c = ROLc(c, 5); d = ROLc(d, 2);
  54. #define PI2(a, b, c, d) \
  55. b = RORc(b, 1); c = RORc(c, 5); d = RORc(d, 2);
  56. /**
  57. Initialize the Noekeon block cipher
  58. @param key The symmetric key you wish to pass
  59. @param keylen The key length in bytes
  60. @param num_rounds The number of rounds desired (0 for default)
  61. @param skey The key in as scheduled by this function.
  62. @return CRYPT_OK if successful
  63. */
  64. int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
  65. {
  66. ulong32 temp;
  67. LTC_ARGCHK(key != NULL);
  68. LTC_ARGCHK(skey != NULL);
  69. if (keylen != 16) {
  70. return CRYPT_INVALID_KEYSIZE;
  71. }
  72. if (num_rounds != 16 && num_rounds != 0) {
  73. return CRYPT_INVALID_ROUNDS;
  74. }
  75. LOAD32H(skey->noekeon.K[0],&key[0]);
  76. LOAD32H(skey->noekeon.K[1],&key[4]);
  77. LOAD32H(skey->noekeon.K[2],&key[8]);
  78. LOAD32H(skey->noekeon.K[3],&key[12]);
  79. LOAD32H(skey->noekeon.dK[0],&key[0]);
  80. LOAD32H(skey->noekeon.dK[1],&key[4]);
  81. LOAD32H(skey->noekeon.dK[2],&key[8]);
  82. LOAD32H(skey->noekeon.dK[3],&key[12]);
  83. kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]);
  84. return CRYPT_OK;
  85. }
  86. /**
  87. Encrypts a block of text with Noekeon
  88. @param pt The input plaintext (16 bytes)
  89. @param ct The output ciphertext (16 bytes)
  90. @param skey The key as scheduled
  91. @return CRYPT_OK if successful
  92. */
  93. #ifdef LTC_CLEAN_STACK
  94. static int _noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
  95. #else
  96. int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
  97. #endif
  98. {
  99. ulong32 a,b,c,d,temp;
  100. int r;
  101. LTC_ARGCHK(skey != NULL);
  102. LTC_ARGCHK(pt != NULL);
  103. LTC_ARGCHK(ct != NULL);
  104. LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]);
  105. LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]);
  106. #define ROUND(i) \
  107. a ^= RC[i]; \
  108. THETA(skey->noekeon.K, a,b,c,d); \
  109. PI1(a,b,c,d); \
  110. GAMMA(a,b,c,d); \
  111. PI2(a,b,c,d);
  112. for (r = 0; r < 16; ++r) {
  113. ROUND(r);
  114. }
  115. #undef ROUND
  116. a ^= RC[16];
  117. THETA(skey->noekeon.K, a, b, c, d);
  118. STORE32H(a,&ct[0]); STORE32H(b,&ct[4]);
  119. STORE32H(c,&ct[8]); STORE32H(d,&ct[12]);
  120. return CRYPT_OK;
  121. }
  122. #ifdef LTC_CLEAN_STACK
  123. int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
  124. {
  125. int err = _noekeon_ecb_encrypt(pt, ct, skey);
  126. burn_stack(sizeof(ulong32) * 5 + sizeof(int));
  127. return err;
  128. }
  129. #endif
  130. /**
  131. Decrypts a block of text with Noekeon
  132. @param ct The input ciphertext (16 bytes)
  133. @param pt The output plaintext (16 bytes)
  134. @param skey The key as scheduled
  135. @return CRYPT_OK if successful
  136. */
  137. #ifdef LTC_CLEAN_STACK
  138. static int _noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
  139. #else
  140. int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
  141. #endif
  142. {
  143. ulong32 a,b,c,d, temp;
  144. int r;
  145. LTC_ARGCHK(skey != NULL);
  146. LTC_ARGCHK(pt != NULL);
  147. LTC_ARGCHK(ct != NULL);
  148. LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]);
  149. LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]);
  150. #define ROUND(i) \
  151. THETA(skey->noekeon.dK, a,b,c,d); \
  152. a ^= RC[i]; \
  153. PI1(a,b,c,d); \
  154. GAMMA(a,b,c,d); \
  155. PI2(a,b,c,d);
  156. for (r = 16; r > 0; --r) {
  157. ROUND(r);
  158. }
  159. #undef ROUND
  160. THETA(skey->noekeon.dK, a,b,c,d);
  161. a ^= RC[0];
  162. STORE32H(a,&pt[0]); STORE32H(b, &pt[4]);
  163. STORE32H(c,&pt[8]); STORE32H(d, &pt[12]);
  164. return CRYPT_OK;
  165. }
  166. #ifdef LTC_CLEAN_STACK
  167. int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
  168. {
  169. int err = _noekeon_ecb_decrypt(ct, pt, skey);
  170. burn_stack(sizeof(ulong32) * 5 + sizeof(int));
  171. return err;
  172. }
  173. #endif
  174. /**
  175. Performs a self-test of the Noekeon block cipher
  176. @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
  177. */
  178. int noekeon_test(void)
  179. {
  180. #ifndef LTC_TEST
  181. return CRYPT_NOP;
  182. #else
  183. static const struct {
  184. int keylen;
  185. unsigned char key[16], pt[16], ct[16];
  186. } tests[] = {
  187. {
  188. 16,
  189. { 0xAA, 0x3C, 0x8C, 0x86, 0xD9, 0x8B, 0xF8, 0xBE, 0x21, 0xE0, 0x36, 0x09, 0x78, 0xFB, 0xE4, 0x90 },
  190. { 0xE4, 0x96, 0x6C, 0xD3, 0x13, 0xA0, 0x6C, 0xAF, 0xD0, 0x23, 0xC9, 0xFD, 0x45, 0x32, 0x23, 0x16 },
  191. { 0xA6, 0xEC, 0xB8, 0xA8, 0x61, 0xFD, 0x62, 0xD9, 0x13, 0x02, 0xFE, 0x9E, 0x47, 0x01, 0x3F, 0xC3 }
  192. },
  193. {
  194. 16,
  195. { 0xED, 0x43, 0xD1, 0x87, 0x21, 0x7E, 0xE0, 0x97, 0x3D, 0x76, 0xC3, 0x37, 0x2E, 0x7D, 0xAE, 0xD3 },
  196. { 0xE3, 0x38, 0x32, 0xCC, 0xF2, 0x2F, 0x2F, 0x0A, 0x4A, 0x8B, 0x8F, 0x18, 0x12, 0x20, 0x17, 0xD3 },
  197. { 0x94, 0xA5, 0xDF, 0xF5, 0xAE, 0x1C, 0xBB, 0x22, 0xAD, 0xEB, 0xA7, 0x0D, 0xB7, 0x82, 0x90, 0xA0 }
  198. },
  199. {
  200. 16,
  201. { 0x6F, 0xDC, 0x23, 0x38, 0xF2, 0x10, 0xFB, 0xD3, 0xC1, 0x8C, 0x02, 0xF6, 0xB4, 0x6A, 0xD5, 0xA8 },
  202. { 0xDB, 0x29, 0xED, 0xB5, 0x5F, 0xB3, 0x60, 0x3A, 0x92, 0xA8, 0xEB, 0x9C, 0x6D, 0x9D, 0x3E, 0x8F },
  203. { 0x78, 0xF3, 0x6F, 0xF8, 0x9E, 0xBB, 0x8C, 0x6A, 0xE8, 0x10, 0xF7, 0x00, 0x22, 0x15, 0x30, 0x3D }
  204. },
  205. {
  206. 16,
  207. { 0x2C, 0x0C, 0x02, 0xEF, 0x6B, 0xC4, 0xF2, 0x0B, 0x2E, 0xB9, 0xE0, 0xBF, 0xD9, 0x36, 0xC2, 0x4E },
  208. { 0x84, 0xE2, 0xFE, 0x64, 0xB1, 0xB9, 0xFE, 0x76, 0xA8, 0x3F, 0x45, 0xC7, 0x40, 0x7A, 0xAF, 0xEE },
  209. { 0x2A, 0x08, 0xD6, 0xA2, 0x1C, 0x63, 0x08, 0xB0, 0xF8, 0xBC, 0xB3, 0xA1, 0x66, 0xF7, 0xAE, 0xCF }
  210. },
  211. {
  212. 16,
  213. { 0x6F, 0x30, 0xF8, 0x9F, 0xDA, 0x6E, 0xA0, 0x91, 0x04, 0x0F, 0x6C, 0x8B, 0x7D, 0xF7, 0x2A, 0x4B },
  214. { 0x65, 0xB6, 0xA6, 0xD0, 0x42, 0x14, 0x08, 0x60, 0x34, 0x8D, 0x37, 0x2F, 0x01, 0xF0, 0x46, 0xBE },
  215. { 0x66, 0xAC, 0x0B, 0x62, 0x1D, 0x68, 0x11, 0xF5, 0x27, 0xB1, 0x13, 0x5D, 0xF3, 0x2A, 0xE9, 0x18 }
  216. },
  217. {
  218. 16,
  219. { 0xCA, 0xA4, 0x16, 0xB7, 0x1C, 0x92, 0x2E, 0xAD, 0xEB, 0xA7, 0xDB, 0x69, 0x92, 0xCB, 0x35, 0xEF },
  220. { 0x81, 0x6F, 0x8E, 0x4D, 0x96, 0xC6, 0xB3, 0x67, 0x83, 0xF5, 0x63, 0xC7, 0x20, 0x6D, 0x40, 0x23 },
  221. { 0x44, 0xF7, 0x63, 0x62, 0xF0, 0x43, 0xBB, 0x67, 0x4A, 0x75, 0x12, 0x42, 0x46, 0x29, 0x28, 0x19 }
  222. },
  223. {
  224. 16,
  225. { 0x6B, 0xCF, 0x22, 0x2F, 0xE0, 0x1B, 0xB0, 0xAA, 0xD8, 0x3C, 0x91, 0x99, 0x18, 0xB2, 0x28, 0xE8 },
  226. { 0x7C, 0x37, 0xC7, 0xD0, 0xAC, 0x92, 0x29, 0xF1, 0x60, 0x82, 0x93, 0x89, 0xAA, 0x61, 0xAA, 0xA9 },
  227. { 0xE5, 0x89, 0x1B, 0xB3, 0xFE, 0x8B, 0x0C, 0xA1, 0xA6, 0xC7, 0xBE, 0x12, 0x73, 0x0F, 0xC1, 0x19 }
  228. },
  229. {
  230. 16,
  231. { 0xE6, 0xD0, 0xF1, 0x03, 0x2E, 0xDE, 0x70, 0x8D, 0xD8, 0x9E, 0x36, 0x5C, 0x05, 0x52, 0xE7, 0x0D },
  232. { 0xE2, 0x42, 0xE7, 0x92, 0x0E, 0xF7, 0x82, 0xA2, 0xB8, 0x21, 0x8D, 0x26, 0xBA, 0x2D, 0xE6, 0x32 },
  233. { 0x1E, 0xDD, 0x75, 0x22, 0xB9, 0x36, 0x8A, 0x0F, 0x32, 0xFD, 0xD4, 0x48, 0x65, 0x12, 0x5A, 0x2F }
  234. }
  235. };
  236. symmetric_key key;
  237. unsigned char tmp[2][16];
  238. int err, i, y;
  239. for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
  240. zeromem(&key, sizeof(key));
  241. if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
  242. return err;
  243. }
  244. noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key);
  245. noekeon_ecb_decrypt(tmp[0], tmp[1], &key);
  246. if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "Noekeon Encrypt", i) ||
  247. compare_testvector(tmp[1], 16, tests[i].pt, 16, "Noekeon Decrypt", i)) {
  248. return CRYPT_FAIL_TESTVECTOR;
  249. }
  250. /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
  251. for (y = 0; y < 16; y++) tmp[0][y] = 0;
  252. for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key);
  253. for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key);
  254. for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
  255. }
  256. return CRYPT_OK;
  257. #endif
  258. }
  259. /** Terminate the context
  260. @param skey The scheduled key
  261. */
  262. void noekeon_done(symmetric_key *skey)
  263. {
  264. LTC_UNUSED_PARAM(skey);
  265. }
  266. /**
  267. Gets suitable key size
  268. @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
  269. @return CRYPT_OK if the input key size is acceptable.
  270. */
  271. int noekeon_keysize(int *keysize)
  272. {
  273. LTC_ARGCHK(keysize != NULL);
  274. if (*keysize < 16) {
  275. return CRYPT_INVALID_KEYSIZE;
  276. }
  277. *keysize = 16;
  278. return CRYPT_OK;
  279. }
  280. #endif
  281. /* ref: HEAD -> develop */
  282. /* git commit: a1f6312416ef6cd183ee62db58b640dc2d7ec1f4 */
  283. /* commit time: 2019-09-04 13:44:47 +0200 */