123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807 |
- /*-------------------------------------------------------------------------
- *
- * htup_details.h
- * POSTGRES heap tuple header definitions.
- *
- *
- * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
- * Portions Copyright (c) 1994, Regents of the University of California
- *
- * src/include/access/htup_details.h
- *
- *-------------------------------------------------------------------------
- */
- #ifndef HTUP_DETAILS_H
- #define HTUP_DETAILS_H
- #include "access/htup.h"
- #include "access/transam.h"
- #include "access/tupdesc.h"
- #include "access/tupmacs.h"
- #include "storage/bufpage.h"
- /*
- * MaxTupleAttributeNumber limits the number of (user) columns in a tuple.
- * The key limit on this value is that the size of the fixed overhead for
- * a tuple, plus the size of the null-values bitmap (at 1 bit per column),
- * plus MAXALIGN alignment, must fit into t_hoff which is uint8. On most
- * machines the upper limit without making t_hoff wider would be a little
- * over 1700. We use round numbers here and for MaxHeapAttributeNumber
- * so that alterations in HeapTupleHeaderData layout won't change the
- * supported max number of columns.
- */
- #define MaxTupleAttributeNumber 1664 /* 8 * 208 */
- /*
- * MaxHeapAttributeNumber limits the number of (user) columns in a table.
- * This should be somewhat less than MaxTupleAttributeNumber. It must be
- * at least one less, else we will fail to do UPDATEs on a maximal-width
- * table (because UPDATE has to form working tuples that include CTID).
- * In practice we want some additional daylight so that we can gracefully
- * support operations that add hidden "resjunk" columns, for example
- * SELECT * FROM wide_table ORDER BY foo, bar, baz.
- * In any case, depending on column data types you will likely be running
- * into the disk-block-based limit on overall tuple size if you have more
- * than a thousand or so columns. TOAST won't help.
- */
- #define MaxHeapAttributeNumber 1600 /* 8 * 200 */
- /*
- * Heap tuple header. To avoid wasting space, the fields should be
- * laid out in such a way as to avoid structure padding.
- *
- * Datums of composite types (row types) share the same general structure
- * as on-disk tuples, so that the same routines can be used to build and
- * examine them. However the requirements are slightly different: a Datum
- * does not need any transaction visibility information, and it does need
- * a length word and some embedded type information. We can achieve this
- * by overlaying the xmin/cmin/xmax/cmax/xvac fields of a heap tuple
- * with the fields needed in the Datum case. Typically, all tuples built
- * in-memory will be initialized with the Datum fields; but when a tuple is
- * about to be inserted in a table, the transaction fields will be filled,
- * overwriting the datum fields.
- *
- * The overall structure of a heap tuple looks like:
- * fixed fields (HeapTupleHeaderData struct)
- * nulls bitmap (if HEAP_HASNULL is set in t_infomask)
- * alignment padding (as needed to make user data MAXALIGN'd)
- * object ID (if HEAP_HASOID_OLD is set in t_infomask, not created
- * anymore)
- * user data fields
- *
- * We store five "virtual" fields Xmin, Cmin, Xmax, Cmax, and Xvac in three
- * physical fields. Xmin and Xmax are always really stored, but Cmin, Cmax
- * and Xvac share a field. This works because we know that Cmin and Cmax
- * are only interesting for the lifetime of the inserting and deleting
- * transaction respectively. If a tuple is inserted and deleted in the same
- * transaction, we store a "combo" command id that can be mapped to the real
- * cmin and cmax, but only by use of local state within the originating
- * backend. See combocid.c for more details. Meanwhile, Xvac is only set by
- * old-style VACUUM FULL, which does not have any command sub-structure and so
- * does not need either Cmin or Cmax. (This requires that old-style VACUUM
- * FULL never try to move a tuple whose Cmin or Cmax is still interesting,
- * ie, an insert-in-progress or delete-in-progress tuple.)
- *
- * A word about t_ctid: whenever a new tuple is stored on disk, its t_ctid
- * is initialized with its own TID (location). If the tuple is ever updated,
- * its t_ctid is changed to point to the replacement version of the tuple. Or
- * if the tuple is moved from one partition to another, due to an update of
- * the partition key, t_ctid is set to a special value to indicate that
- * (see ItemPointerSetMovedPartitions). Thus, a tuple is the latest version
- * of its row iff XMAX is invalid or
- * t_ctid points to itself (in which case, if XMAX is valid, the tuple is
- * either locked or deleted). One can follow the chain of t_ctid links
- * to find the newest version of the row, unless it was moved to a different
- * partition. Beware however that VACUUM might
- * erase the pointed-to (newer) tuple before erasing the pointing (older)
- * tuple. Hence, when following a t_ctid link, it is necessary to check
- * to see if the referenced slot is empty or contains an unrelated tuple.
- * Check that the referenced tuple has XMIN equal to the referencing tuple's
- * XMAX to verify that it is actually the descendant version and not an
- * unrelated tuple stored into a slot recently freed by VACUUM. If either
- * check fails, one may assume that there is no live descendant version.
- *
- * t_ctid is sometimes used to store a speculative insertion token, instead
- * of a real TID. A speculative token is set on a tuple that's being
- * inserted, until the inserter is sure that it wants to go ahead with the
- * insertion. Hence a token should only be seen on a tuple with an XMAX
- * that's still in-progress, or invalid/aborted. The token is replaced with
- * the tuple's real TID when the insertion is confirmed. One should never
- * see a speculative insertion token while following a chain of t_ctid links,
- * because they are not used on updates, only insertions.
- *
- * Following the fixed header fields, the nulls bitmap is stored (beginning
- * at t_bits). The bitmap is *not* stored if t_infomask shows that there
- * are no nulls in the tuple. If an OID field is present (as indicated by
- * t_infomask), then it is stored just before the user data, which begins at
- * the offset shown by t_hoff. Note that t_hoff must be a multiple of
- * MAXALIGN.
- */
- typedef struct HeapTupleFields
- {
- TransactionId t_xmin; /* inserting xact ID */
- TransactionId t_xmax; /* deleting or locking xact ID */
- union
- {
- CommandId t_cid; /* inserting or deleting command ID, or both */
- TransactionId t_xvac; /* old-style VACUUM FULL xact ID */
- } t_field3;
- } HeapTupleFields;
- typedef struct DatumTupleFields
- {
- int32 datum_len_; /* varlena header (do not touch directly!) */
- int32 datum_typmod; /* -1, or identifier of a record type */
- Oid datum_typeid; /* composite type OID, or RECORDOID */
- /*
- * datum_typeid cannot be a domain over composite, only plain composite,
- * even if the datum is meant as a value of a domain-over-composite type.
- * This is in line with the general principle that CoerceToDomain does not
- * change the physical representation of the base type value.
- *
- * Note: field ordering is chosen with thought that Oid might someday
- * widen to 64 bits.
- */
- } DatumTupleFields;
- struct HeapTupleHeaderData
- {
- union
- {
- HeapTupleFields t_heap;
- DatumTupleFields t_datum;
- } t_choice;
- ItemPointerData t_ctid; /* current TID of this or newer tuple (or a
- * speculative insertion token) */
- /* Fields below here must match MinimalTupleData! */
- #define FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK2 2
- uint16 t_infomask2; /* number of attributes + various flags */
- #define FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK 3
- uint16 t_infomask; /* various flag bits, see below */
- #define FIELDNO_HEAPTUPLEHEADERDATA_HOFF 4
- uint8 t_hoff; /* sizeof header incl. bitmap, padding */
- /* ^ - 23 bytes - ^ */
- #define FIELDNO_HEAPTUPLEHEADERDATA_BITS 5
- bits8 t_bits[FLEXIBLE_ARRAY_MEMBER]; /* bitmap of NULLs */
- /* MORE DATA FOLLOWS AT END OF STRUCT */
- };
- /* typedef appears in htup.h */
- #define SizeofHeapTupleHeader offsetof(HeapTupleHeaderData, t_bits)
- /*
- * information stored in t_infomask:
- */
- #define HEAP_HASNULL 0x0001 /* has null attribute(s) */
- #define HEAP_HASVARWIDTH 0x0002 /* has variable-width attribute(s) */
- #define HEAP_HASEXTERNAL 0x0004 /* has external stored attribute(s) */
- #define HEAP_HASOID_OLD 0x0008 /* has an object-id field */
- #define HEAP_XMAX_KEYSHR_LOCK 0x0010 /* xmax is a key-shared locker */
- #define HEAP_COMBOCID 0x0020 /* t_cid is a combo CID */
- #define HEAP_XMAX_EXCL_LOCK 0x0040 /* xmax is exclusive locker */
- #define HEAP_XMAX_LOCK_ONLY 0x0080 /* xmax, if valid, is only a locker */
- /* xmax is a shared locker */
- #define HEAP_XMAX_SHR_LOCK (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)
- #define HEAP_LOCK_MASK (HEAP_XMAX_SHR_LOCK | HEAP_XMAX_EXCL_LOCK | \
- HEAP_XMAX_KEYSHR_LOCK)
- #define HEAP_XMIN_COMMITTED 0x0100 /* t_xmin committed */
- #define HEAP_XMIN_INVALID 0x0200 /* t_xmin invalid/aborted */
- #define HEAP_XMIN_FROZEN (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID)
- #define HEAP_XMAX_COMMITTED 0x0400 /* t_xmax committed */
- #define HEAP_XMAX_INVALID 0x0800 /* t_xmax invalid/aborted */
- #define HEAP_XMAX_IS_MULTI 0x1000 /* t_xmax is a MultiXactId */
- #define HEAP_UPDATED 0x2000 /* this is UPDATEd version of row */
- #define HEAP_MOVED_OFF 0x4000 /* moved to another place by pre-9.0
- * VACUUM FULL; kept for binary
- * upgrade support */
- #define HEAP_MOVED_IN 0x8000 /* moved from another place by pre-9.0
- * VACUUM FULL; kept for binary
- * upgrade support */
- #define HEAP_MOVED (HEAP_MOVED_OFF | HEAP_MOVED_IN)
- #define HEAP_XACT_MASK 0xFFF0 /* visibility-related bits */
- /*
- * A tuple is only locked (i.e. not updated by its Xmax) if the
- * HEAP_XMAX_LOCK_ONLY bit is set; or, for pg_upgrade's sake, if the Xmax is
- * not a multi and the EXCL_LOCK bit is set.
- *
- * See also HeapTupleHeaderIsOnlyLocked, which also checks for a possible
- * aborted updater transaction.
- *
- * Beware of multiple evaluations of the argument.
- */
- #define HEAP_XMAX_IS_LOCKED_ONLY(infomask) \
- (((infomask) & HEAP_XMAX_LOCK_ONLY) || \
- (((infomask) & (HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK)) == HEAP_XMAX_EXCL_LOCK))
- /*
- * A tuple that has HEAP_XMAX_IS_MULTI and HEAP_XMAX_LOCK_ONLY but neither of
- * HEAP_XMAX_EXCL_LOCK and HEAP_XMAX_KEYSHR_LOCK must come from a tuple that was
- * share-locked in 9.2 or earlier and then pg_upgrade'd.
- *
- * In 9.2 and prior, HEAP_XMAX_IS_MULTI was only set when there were multiple
- * FOR SHARE lockers of that tuple. That set HEAP_XMAX_LOCK_ONLY (with a
- * different name back then) but neither of HEAP_XMAX_EXCL_LOCK and
- * HEAP_XMAX_KEYSHR_LOCK. That combination is no longer possible in 9.3 and
- * up, so if we see that combination we know for certain that the tuple was
- * locked in an earlier release; since all such lockers are gone (they cannot
- * survive through pg_upgrade), such tuples can safely be considered not
- * locked.
- *
- * We must not resolve such multixacts locally, because the result would be
- * bogus, regardless of where they stand with respect to the current valid
- * multixact range.
- */
- #define HEAP_LOCKED_UPGRADED(infomask) \
- ( \
- ((infomask) & HEAP_XMAX_IS_MULTI) != 0 && \
- ((infomask) & HEAP_XMAX_LOCK_ONLY) != 0 && \
- (((infomask) & (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)) == 0) \
- )
- /*
- * Use these to test whether a particular lock is applied to a tuple
- */
- #define HEAP_XMAX_IS_SHR_LOCKED(infomask) \
- (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_SHR_LOCK)
- #define HEAP_XMAX_IS_EXCL_LOCKED(infomask) \
- (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_EXCL_LOCK)
- #define HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) \
- (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_KEYSHR_LOCK)
- /* turn these all off when Xmax is to change */
- #define HEAP_XMAX_BITS (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID | \
- HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK | HEAP_XMAX_LOCK_ONLY)
- /*
- * information stored in t_infomask2:
- */
- #define HEAP_NATTS_MASK 0x07FF /* 11 bits for number of attributes */
- /* bits 0x1800 are available */
- #define HEAP_KEYS_UPDATED 0x2000 /* tuple was updated and key cols
- * modified, or tuple deleted */
- #define HEAP_HOT_UPDATED 0x4000 /* tuple was HOT-updated */
- #define HEAP_ONLY_TUPLE 0x8000 /* this is heap-only tuple */
- #define HEAP2_XACT_MASK 0xE000 /* visibility-related bits */
- /*
- * HEAP_TUPLE_HAS_MATCH is a temporary flag used during hash joins. It is
- * only used in tuples that are in the hash table, and those don't need
- * any visibility information, so we can overlay it on a visibility flag
- * instead of using up a dedicated bit.
- */
- #define HEAP_TUPLE_HAS_MATCH HEAP_ONLY_TUPLE /* tuple has a join match */
- /*
- * HeapTupleHeader accessor macros
- *
- * Note: beware of multiple evaluations of "tup" argument. But the Set
- * macros evaluate their other argument only once.
- */
- /*
- * HeapTupleHeaderGetRawXmin returns the "raw" xmin field, which is the xid
- * originally used to insert the tuple. However, the tuple might actually
- * be frozen (via HeapTupleHeaderSetXminFrozen) in which case the tuple's xmin
- * is visible to every snapshot. Prior to PostgreSQL 9.4, we actually changed
- * the xmin to FrozenTransactionId, and that value may still be encountered
- * on disk.
- */
- #define HeapTupleHeaderGetRawXmin(tup) \
- ( \
- (tup)->t_choice.t_heap.t_xmin \
- )
- #define HeapTupleHeaderGetXmin(tup) \
- ( \
- HeapTupleHeaderXminFrozen(tup) ? \
- FrozenTransactionId : HeapTupleHeaderGetRawXmin(tup) \
- )
- #define HeapTupleHeaderSetXmin(tup, xid) \
- ( \
- (tup)->t_choice.t_heap.t_xmin = (xid) \
- )
- #define HeapTupleHeaderXminCommitted(tup) \
- ( \
- ((tup)->t_infomask & HEAP_XMIN_COMMITTED) != 0 \
- )
- #define HeapTupleHeaderXminInvalid(tup) \
- ( \
- ((tup)->t_infomask & (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID)) == \
- HEAP_XMIN_INVALID \
- )
- #define HeapTupleHeaderXminFrozen(tup) \
- ( \
- ((tup)->t_infomask & (HEAP_XMIN_FROZEN)) == HEAP_XMIN_FROZEN \
- )
- #define HeapTupleHeaderSetXminCommitted(tup) \
- ( \
- AssertMacro(!HeapTupleHeaderXminInvalid(tup)), \
- ((tup)->t_infomask |= HEAP_XMIN_COMMITTED) \
- )
- #define HeapTupleHeaderSetXminInvalid(tup) \
- ( \
- AssertMacro(!HeapTupleHeaderXminCommitted(tup)), \
- ((tup)->t_infomask |= HEAP_XMIN_INVALID) \
- )
- #define HeapTupleHeaderSetXminFrozen(tup) \
- ( \
- AssertMacro(!HeapTupleHeaderXminInvalid(tup)), \
- ((tup)->t_infomask |= HEAP_XMIN_FROZEN) \
- )
- /*
- * HeapTupleHeaderGetRawXmax gets you the raw Xmax field. To find out the Xid
- * that updated a tuple, you might need to resolve the MultiXactId if certain
- * bits are set. HeapTupleHeaderGetUpdateXid checks those bits and takes care
- * to resolve the MultiXactId if necessary. This might involve multixact I/O,
- * so it should only be used if absolutely necessary.
- */
- #define HeapTupleHeaderGetUpdateXid(tup) \
- ( \
- (!((tup)->t_infomask & HEAP_XMAX_INVALID) && \
- ((tup)->t_infomask & HEAP_XMAX_IS_MULTI) && \
- !((tup)->t_infomask & HEAP_XMAX_LOCK_ONLY)) ? \
- HeapTupleGetUpdateXid(tup) \
- : \
- HeapTupleHeaderGetRawXmax(tup) \
- )
- #define HeapTupleHeaderGetRawXmax(tup) \
- ( \
- (tup)->t_choice.t_heap.t_xmax \
- )
- #define HeapTupleHeaderSetXmax(tup, xid) \
- ( \
- (tup)->t_choice.t_heap.t_xmax = (xid) \
- )
- /*
- * HeapTupleHeaderGetRawCommandId will give you what's in the header whether
- * it is useful or not. Most code should use HeapTupleHeaderGetCmin or
- * HeapTupleHeaderGetCmax instead, but note that those Assert that you can
- * get a legitimate result, ie you are in the originating transaction!
- */
- #define HeapTupleHeaderGetRawCommandId(tup) \
- ( \
- (tup)->t_choice.t_heap.t_field3.t_cid \
- )
- /* SetCmin is reasonably simple since we never need a combo CID */
- #define HeapTupleHeaderSetCmin(tup, cid) \
- do { \
- Assert(!((tup)->t_infomask & HEAP_MOVED)); \
- (tup)->t_choice.t_heap.t_field3.t_cid = (cid); \
- (tup)->t_infomask &= ~HEAP_COMBOCID; \
- } while (0)
- /* SetCmax must be used after HeapTupleHeaderAdjustCmax; see combocid.c */
- #define HeapTupleHeaderSetCmax(tup, cid, iscombo) \
- do { \
- Assert(!((tup)->t_infomask & HEAP_MOVED)); \
- (tup)->t_choice.t_heap.t_field3.t_cid = (cid); \
- if (iscombo) \
- (tup)->t_infomask |= HEAP_COMBOCID; \
- else \
- (tup)->t_infomask &= ~HEAP_COMBOCID; \
- } while (0)
- #define HeapTupleHeaderGetXvac(tup) \
- ( \
- ((tup)->t_infomask & HEAP_MOVED) ? \
- (tup)->t_choice.t_heap.t_field3.t_xvac \
- : \
- InvalidTransactionId \
- )
- #define HeapTupleHeaderSetXvac(tup, xid) \
- do { \
- Assert((tup)->t_infomask & HEAP_MOVED); \
- (tup)->t_choice.t_heap.t_field3.t_xvac = (xid); \
- } while (0)
- #define HeapTupleHeaderIsSpeculative(tup) \
- ( \
- (ItemPointerGetOffsetNumberNoCheck(&(tup)->t_ctid) == SpecTokenOffsetNumber) \
- )
- #define HeapTupleHeaderGetSpeculativeToken(tup) \
- ( \
- AssertMacro(HeapTupleHeaderIsSpeculative(tup)), \
- ItemPointerGetBlockNumber(&(tup)->t_ctid) \
- )
- #define HeapTupleHeaderSetSpeculativeToken(tup, token) \
- ( \
- ItemPointerSet(&(tup)->t_ctid, token, SpecTokenOffsetNumber) \
- )
- #define HeapTupleHeaderIndicatesMovedPartitions(tup) \
- ItemPointerIndicatesMovedPartitions(&(tup)->t_ctid)
- #define HeapTupleHeaderSetMovedPartitions(tup) \
- ItemPointerSetMovedPartitions(&(tup)->t_ctid)
- #define HeapTupleHeaderGetDatumLength(tup) \
- VARSIZE(tup)
- #define HeapTupleHeaderSetDatumLength(tup, len) \
- SET_VARSIZE(tup, len)
- #define HeapTupleHeaderGetTypeId(tup) \
- ( \
- (tup)->t_choice.t_datum.datum_typeid \
- )
- #define HeapTupleHeaderSetTypeId(tup, typeid) \
- ( \
- (tup)->t_choice.t_datum.datum_typeid = (typeid) \
- )
- #define HeapTupleHeaderGetTypMod(tup) \
- ( \
- (tup)->t_choice.t_datum.datum_typmod \
- )
- #define HeapTupleHeaderSetTypMod(tup, typmod) \
- ( \
- (tup)->t_choice.t_datum.datum_typmod = (typmod) \
- )
- /*
- * Note that we stop considering a tuple HOT-updated as soon as it is known
- * aborted or the would-be updating transaction is known aborted. For best
- * efficiency, check tuple visibility before using this macro, so that the
- * INVALID bits will be as up to date as possible.
- */
- #define HeapTupleHeaderIsHotUpdated(tup) \
- ( \
- ((tup)->t_infomask2 & HEAP_HOT_UPDATED) != 0 && \
- ((tup)->t_infomask & HEAP_XMAX_INVALID) == 0 && \
- !HeapTupleHeaderXminInvalid(tup) \
- )
- #define HeapTupleHeaderSetHotUpdated(tup) \
- ( \
- (tup)->t_infomask2 |= HEAP_HOT_UPDATED \
- )
- #define HeapTupleHeaderClearHotUpdated(tup) \
- ( \
- (tup)->t_infomask2 &= ~HEAP_HOT_UPDATED \
- )
- #define HeapTupleHeaderIsHeapOnly(tup) \
- ( \
- ((tup)->t_infomask2 & HEAP_ONLY_TUPLE) != 0 \
- )
- #define HeapTupleHeaderSetHeapOnly(tup) \
- ( \
- (tup)->t_infomask2 |= HEAP_ONLY_TUPLE \
- )
- #define HeapTupleHeaderClearHeapOnly(tup) \
- ( \
- (tup)->t_infomask2 &= ~HEAP_ONLY_TUPLE \
- )
- #define HeapTupleHeaderHasMatch(tup) \
- ( \
- ((tup)->t_infomask2 & HEAP_TUPLE_HAS_MATCH) != 0 \
- )
- #define HeapTupleHeaderSetMatch(tup) \
- ( \
- (tup)->t_infomask2 |= HEAP_TUPLE_HAS_MATCH \
- )
- #define HeapTupleHeaderClearMatch(tup) \
- ( \
- (tup)->t_infomask2 &= ~HEAP_TUPLE_HAS_MATCH \
- )
- #define HeapTupleHeaderGetNatts(tup) \
- ((tup)->t_infomask2 & HEAP_NATTS_MASK)
- #define HeapTupleHeaderSetNatts(tup, natts) \
- ( \
- (tup)->t_infomask2 = ((tup)->t_infomask2 & ~HEAP_NATTS_MASK) | (natts) \
- )
- #define HeapTupleHeaderHasExternal(tup) \
- (((tup)->t_infomask & HEAP_HASEXTERNAL) != 0)
- /*
- * BITMAPLEN(NATTS) -
- * Computes size of null bitmap given number of data columns.
- */
- #define BITMAPLEN(NATTS) (((int)(NATTS) + 7) / 8)
- /*
- * MaxHeapTupleSize is the maximum allowed size of a heap tuple, including
- * header and MAXALIGN alignment padding. Basically it's BLCKSZ minus the
- * other stuff that has to be on a disk page. Since heap pages use no
- * "special space", there's no deduction for that.
- *
- * NOTE: we allow for the ItemId that must point to the tuple, ensuring that
- * an otherwise-empty page can indeed hold a tuple of this size. Because
- * ItemIds and tuples have different alignment requirements, don't assume that
- * you can, say, fit 2 tuples of size MaxHeapTupleSize/2 on the same page.
- */
- #define MaxHeapTupleSize (BLCKSZ - MAXALIGN(SizeOfPageHeaderData + sizeof(ItemIdData)))
- #define MinHeapTupleSize MAXALIGN(SizeofHeapTupleHeader)
- /*
- * MaxHeapTuplesPerPage is an upper bound on the number of tuples that can
- * fit on one heap page. (Note that indexes could have more, because they
- * use a smaller tuple header.) We arrive at the divisor because each tuple
- * must be maxaligned, and it must have an associated line pointer.
- *
- * Note: with HOT, there could theoretically be more line pointers (not actual
- * tuples) than this on a heap page. However we constrain the number of line
- * pointers to this anyway, to avoid excessive line-pointer bloat and not
- * require increases in the size of work arrays.
- */
- #define MaxHeapTuplesPerPage \
- ((int) ((BLCKSZ - SizeOfPageHeaderData) / \
- (MAXALIGN(SizeofHeapTupleHeader) + sizeof(ItemIdData))))
- /*
- * MaxAttrSize is a somewhat arbitrary upper limit on the declared size of
- * data fields of char(n) and similar types. It need not have anything
- * directly to do with the *actual* upper limit of varlena values, which
- * is currently 1Gb (see TOAST structures in postgres.h). I've set it
- * at 10Mb which seems like a reasonable number --- tgl 8/6/00.
- */
- #define MaxAttrSize (10 * 1024 * 1024)
- /*
- * MinimalTuple is an alternative representation that is used for transient
- * tuples inside the executor, in places where transaction status information
- * is not required, the tuple rowtype is known, and shaving off a few bytes
- * is worthwhile because we need to store many tuples. The representation
- * is chosen so that tuple access routines can work with either full or
- * minimal tuples via a HeapTupleData pointer structure. The access routines
- * see no difference, except that they must not access the transaction status
- * or t_ctid fields because those aren't there.
- *
- * For the most part, MinimalTuples should be accessed via TupleTableSlot
- * routines. These routines will prevent access to the "system columns"
- * and thereby prevent accidental use of the nonexistent fields.
- *
- * MinimalTupleData contains a length word, some padding, and fields matching
- * HeapTupleHeaderData beginning with t_infomask2. The padding is chosen so
- * that offsetof(t_infomask2) is the same modulo MAXIMUM_ALIGNOF in both
- * structs. This makes data alignment rules equivalent in both cases.
- *
- * When a minimal tuple is accessed via a HeapTupleData pointer, t_data is
- * set to point MINIMAL_TUPLE_OFFSET bytes before the actual start of the
- * minimal tuple --- that is, where a full tuple matching the minimal tuple's
- * data would start. This trick is what makes the structs seem equivalent.
- *
- * Note that t_hoff is computed the same as in a full tuple, hence it includes
- * the MINIMAL_TUPLE_OFFSET distance. t_len does not include that, however.
- *
- * MINIMAL_TUPLE_DATA_OFFSET is the offset to the first useful (non-pad) data
- * other than the length word. tuplesort.c and tuplestore.c use this to avoid
- * writing the padding to disk.
- */
- #define MINIMAL_TUPLE_OFFSET \
- ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) / MAXIMUM_ALIGNOF * MAXIMUM_ALIGNOF)
- #define MINIMAL_TUPLE_PADDING \
- ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) % MAXIMUM_ALIGNOF)
- #define MINIMAL_TUPLE_DATA_OFFSET \
- offsetof(MinimalTupleData, t_infomask2)
- struct MinimalTupleData
- {
- uint32 t_len; /* actual length of minimal tuple */
- char mt_padding[MINIMAL_TUPLE_PADDING];
- /* Fields below here must match HeapTupleHeaderData! */
- uint16 t_infomask2; /* number of attributes + various flags */
- uint16 t_infomask; /* various flag bits, see below */
- uint8 t_hoff; /* sizeof header incl. bitmap, padding */
- /* ^ - 23 bytes - ^ */
- bits8 t_bits[FLEXIBLE_ARRAY_MEMBER]; /* bitmap of NULLs */
- /* MORE DATA FOLLOWS AT END OF STRUCT */
- };
- /* typedef appears in htup.h */
- #define SizeofMinimalTupleHeader offsetof(MinimalTupleData, t_bits)
- /*
- * GETSTRUCT - given a HeapTuple pointer, return address of the user data
- */
- #define GETSTRUCT(TUP) ((char *) ((TUP)->t_data) + (TUP)->t_data->t_hoff)
- /*
- * Accessor macros to be used with HeapTuple pointers.
- */
- #define HeapTupleHasNulls(tuple) \
- (((tuple)->t_data->t_infomask & HEAP_HASNULL) != 0)
- #define HeapTupleNoNulls(tuple) \
- (!((tuple)->t_data->t_infomask & HEAP_HASNULL))
- #define HeapTupleHasVarWidth(tuple) \
- (((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH) != 0)
- #define HeapTupleAllFixed(tuple) \
- (!((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH))
- #define HeapTupleHasExternal(tuple) \
- (((tuple)->t_data->t_infomask & HEAP_HASEXTERNAL) != 0)
- #define HeapTupleIsHotUpdated(tuple) \
- HeapTupleHeaderIsHotUpdated((tuple)->t_data)
- #define HeapTupleSetHotUpdated(tuple) \
- HeapTupleHeaderSetHotUpdated((tuple)->t_data)
- #define HeapTupleClearHotUpdated(tuple) \
- HeapTupleHeaderClearHotUpdated((tuple)->t_data)
- #define HeapTupleIsHeapOnly(tuple) \
- HeapTupleHeaderIsHeapOnly((tuple)->t_data)
- #define HeapTupleSetHeapOnly(tuple) \
- HeapTupleHeaderSetHeapOnly((tuple)->t_data)
- #define HeapTupleClearHeapOnly(tuple) \
- HeapTupleHeaderClearHeapOnly((tuple)->t_data)
- /* prototypes for functions in common/heaptuple.c */
- extern Size heap_compute_data_size(TupleDesc tupleDesc,
- Datum *values, bool *isnull);
- extern void heap_fill_tuple(TupleDesc tupleDesc,
- Datum *values, bool *isnull,
- char *data, Size data_size,
- uint16 *infomask, bits8 *bit);
- extern bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc);
- extern Datum nocachegetattr(HeapTuple tup, int attnum,
- TupleDesc att);
- extern Datum heap_getsysattr(HeapTuple tup, int attnum, TupleDesc tupleDesc,
- bool *isnull);
- extern Datum getmissingattr(TupleDesc tupleDesc,
- int attnum, bool *isnull);
- extern HeapTuple heap_copytuple(HeapTuple tuple);
- extern void heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest);
- extern Datum heap_copy_tuple_as_datum(HeapTuple tuple, TupleDesc tupleDesc);
- extern HeapTuple heap_form_tuple(TupleDesc tupleDescriptor,
- Datum *values, bool *isnull);
- extern HeapTuple heap_modify_tuple(HeapTuple tuple,
- TupleDesc tupleDesc,
- Datum *replValues,
- bool *replIsnull,
- bool *doReplace);
- extern HeapTuple heap_modify_tuple_by_cols(HeapTuple tuple,
- TupleDesc tupleDesc,
- int nCols,
- int *replCols,
- Datum *replValues,
- bool *replIsnull);
- extern void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc,
- Datum *values, bool *isnull);
- extern void heap_freetuple(HeapTuple htup);
- extern MinimalTuple heap_form_minimal_tuple(TupleDesc tupleDescriptor,
- Datum *values, bool *isnull);
- extern void heap_free_minimal_tuple(MinimalTuple mtup);
- extern MinimalTuple heap_copy_minimal_tuple(MinimalTuple mtup);
- extern HeapTuple heap_tuple_from_minimal_tuple(MinimalTuple mtup);
- extern MinimalTuple minimal_tuple_from_heap_tuple(HeapTuple htup);
- extern size_t varsize_any(void *p);
- extern HeapTuple heap_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc);
- extern MinimalTuple minimal_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc);
- #ifndef FRONTEND
- /*
- * fastgetattr
- * Fetch a user attribute's value as a Datum (might be either a
- * value, or a pointer into the data area of the tuple).
- *
- * This must not be used when a system attribute might be requested.
- * Furthermore, the passed attnum MUST be valid. Use heap_getattr()
- * instead, if in doubt.
- *
- * This gets called many times, so we macro the cacheable and NULL
- * lookups, and call nocachegetattr() for the rest.
- */
- static inline Datum
- fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
- {
- Assert(attnum > 0);
- *isnull = false;
- if (HeapTupleNoNulls(tup))
- {
- Form_pg_attribute att;
- att = TupleDescAttr(tupleDesc, attnum - 1);
- if (att->attcacheoff >= 0)
- return fetchatt(att, (char *) tup->t_data + tup->t_data->t_hoff +
- att->attcacheoff);
- else
- return nocachegetattr(tup, attnum, tupleDesc);
- }
- else
- {
- if (att_isnull(attnum - 1, tup->t_data->t_bits))
- {
- *isnull = true;
- return (Datum) NULL;
- }
- else
- return nocachegetattr(tup, attnum, tupleDesc);
- }
- }
- /*
- * heap_getattr
- * Extract an attribute of a heap tuple and return it as a Datum.
- * This works for either system or user attributes. The given attnum
- * is properly range-checked.
- *
- * If the field in question has a NULL value, we return a zero Datum
- * and set *isnull == true. Otherwise, we set *isnull == false.
- *
- * <tup> is the pointer to the heap tuple. <attnum> is the attribute
- * number of the column (field) caller wants. <tupleDesc> is a
- * pointer to the structure describing the row and all its fields.
- *
- */
- static inline Datum
- heap_getattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
- {
- if (attnum > 0)
- {
- if (attnum > (int) HeapTupleHeaderGetNatts(tup->t_data))
- return getmissingattr(tupleDesc, attnum, isnull);
- else
- return fastgetattr(tup, attnum, tupleDesc, isnull);
- }
- else
- return heap_getsysattr(tup, attnum, tupleDesc, isnull);
- }
- #endif /* FRONTEND */
- #endif /* HTUP_DETAILS_H */
|