123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938 |
- /*----------------------------------------------------------------------------*/
- /**
- * This confidential and proprietary software may be used only as
- * authorised by a licensing agreement from ARM Limited
- * (C) COPYRIGHT 2011-2012 ARM Limited
- * ALL RIGHTS RESERVED
- *
- * The entire notice above must be reproduced on all authorised
- * copies and copies may only be made to the extent permitted
- * by a licensing agreement from ARM Limited.
- *
- * @brief Functions to pick the best ASTC endpoint format for a given block.
- */
- /*----------------------------------------------------------------------------*/
- #include "astc_codec_internals.h"
- #ifdef DEBUG_PRINT_DIAGNOSTICS
- #include <stdio.h>
- #endif
- #include <math.h>
- /*
- functions to determine, for a given partitioning, which color endpoint formats are the best to use.
- */
- // for a given partition, compute for every (integer-component-count, quantization-level)
- // the color error.
- static void compute_color_error_for_every_integer_count_and_quantization_level(int encode_hdr_rgb, // 1 = perform HDR encoding, 0 = perform LDR encoding.
- int encode_hdr_alpha, int partition_index, const partition_info * pi,
- const encoding_choice_errors * eci, // pointer to the structure for the CURRENT partition.
- const endpoints * ep, float4 error_weightings[4],
- // arrays to return results back through.
- float best_error[21][4], int format_of_choice[21][4])
- {
- int i, j;
- int partition_size = pi->texels_per_partition[partition_index];
- static const float baseline_quant_error[21] = {
- (65536.0f * 65536.0f / 18.0f), // 2 values, 1 step
- (65536.0f * 65536.0f / 18.0f) / (2 * 2), // 3 values, 2 steps
- (65536.0f * 65536.0f / 18.0f) / (3 * 3), // 4 values, 3 steps
- (65536.0f * 65536.0f / 18.0f) / (4 * 4), // 5 values
- (65536.0f * 65536.0f / 18.0f) / (5 * 5),
- (65536.0f * 65536.0f / 18.0f) / (7 * 7),
- (65536.0f * 65536.0f / 18.0f) / (9 * 9),
- (65536.0f * 65536.0f / 18.0f) / (11 * 11),
- (65536.0f * 65536.0f / 18.0f) / (15 * 15),
- (65536.0f * 65536.0f / 18.0f) / (19 * 19),
- (65536.0f * 65536.0f / 18.0f) / (23 * 23),
- (65536.0f * 65536.0f / 18.0f) / (31 * 31),
- (65536.0f * 65536.0f / 18.0f) / (39 * 39),
- (65536.0f * 65536.0f / 18.0f) / (47 * 47),
- (65536.0f * 65536.0f / 18.0f) / (63 * 63),
- (65536.0f * 65536.0f / 18.0f) / (79 * 79),
- (65536.0f * 65536.0f / 18.0f) / (95 * 95),
- (65536.0f * 65536.0f / 18.0f) / (127 * 127),
- (65536.0f * 65536.0f / 18.0f) / (159 * 159),
- (65536.0f * 65536.0f / 18.0f) / (191 * 191),
- (65536.0f * 65536.0f / 18.0f) / (255 * 255)
- };
- float4 ep0 = ep->endpt0[partition_index];
- float4 ep1 = ep->endpt1[partition_index];
- float ep0_max = MAX(MAX(ep0.x, ep0.y), ep0.z);
- float ep0_min = MIN(MIN(ep0.x, ep0.y), ep0.z);
- float ep1_max = MAX(MAX(ep1.x, ep1.y), ep1.z);
- float ep1_min = MIN(MIN(ep1.x, ep1.y), ep1.z);
- ep0_min = MAX(ep0_min, 0.0f);
- ep1_min = MAX(ep1_min, 0.0f);
- ep0_max = MAX(ep0_max, 1e-10f);
- ep1_max = MAX(ep1_max, 1e-10f);
- float4 error_weight = error_weightings[partition_index];
- float error_weight_rgbsum = error_weight.x + error_weight.y + error_weight.z;
- float range_upper_limit_rgb = encode_hdr_rgb ? 61440.0f : 65535.0f;
- float range_upper_limit_alpha = encode_hdr_alpha ? 61440.0f : 65535.0f;
- // it is possible to get endpoint colors significantly outside [0,upper-limit]
- // even if the input data are safely contained in [0,upper-limit];
- // we need to add an error term for this situation,
- float4 ep0_range_error_high;
- float4 ep1_range_error_high;
- float4 ep0_range_error_low;
- float4 ep1_range_error_low;
- ep0_range_error_high.x = MAX(0.0f, ep0.x - range_upper_limit_rgb);
- ep0_range_error_high.y = MAX(0.0f, ep0.y - range_upper_limit_rgb);
- ep0_range_error_high.z = MAX(0.0f, ep0.z - range_upper_limit_rgb);
- ep0_range_error_high.w = MAX(0.0f, ep0.w - range_upper_limit_alpha);
- ep1_range_error_high.x = MAX(0.0f, ep1.x - range_upper_limit_rgb);
- ep1_range_error_high.y = MAX(0.0f, ep1.y - range_upper_limit_rgb);
- ep1_range_error_high.z = MAX(0.0f, ep1.z - range_upper_limit_rgb);
- ep1_range_error_high.w = MAX(0.0f, ep1.w - range_upper_limit_alpha);
- ep0_range_error_low.x = MIN(0.0f, ep0.x);
- ep0_range_error_low.y = MIN(0.0f, ep0.y);
- ep0_range_error_low.z = MIN(0.0f, ep0.z);
- ep0_range_error_low.w = MIN(0.0f, ep0.w);
- ep1_range_error_low.x = MIN(0.0f, ep1.x);
- ep1_range_error_low.y = MIN(0.0f, ep1.y);
- ep1_range_error_low.z = MIN(0.0f, ep1.z);
- ep1_range_error_low.w = MIN(0.0f, ep1.w);
- float4 sum_range_error =
- (ep0_range_error_low * ep0_range_error_low) + (ep1_range_error_low * ep1_range_error_low) + (ep0_range_error_high * ep0_range_error_high) + (ep1_range_error_high * ep1_range_error_high);
- float rgb_range_error = dot(sum_range_error.xyz, error_weight.xyz) * 0.5f * partition_size;
- float alpha_range_error = sum_range_error.w * error_weight.w * 0.5f * partition_size;
- #ifdef DEBUG_PRINT_DIAGNOSTICS
- if (print_diagnostics)
- {
- printf("%s : partition=%d\nrgb-error_wt=%f alpha_error_wt=%f\n", __func__, partition_index, error_weight_rgbsum, error_weight.w);
- printf("ep0 = %f %f %f %f\n", ep0.x, ep0.y, ep0.z, ep0.w);
- printf("ep1 = %f %f %f %f\n", ep1.x, ep1.y, ep1.z, ep1.w);
- printf("rgb_range_error = %f, alpha_range_error = %f\n", rgb_range_error, alpha_range_error);
- printf("rgb-luma-error: %f\n", eci->rgb_luma_error);
- }
- #endif
- if (encode_hdr_rgb)
- {
- // collect some statistics
- float af, cf;
- if (ep1.x > ep1.y && ep1.x > ep1.z)
- {
- af = ep1.x;
- cf = ep1.x - ep0.x;
- }
- else if (ep1.y > ep1.z)
- {
- af = ep1.y;
- cf = ep1.y - ep0.y;
- }
- else
- {
- af = ep1.z;
- cf = ep1.z - ep0.z;
- }
- float bf = af - ep1_min; // estimate of color-component spread in high endpoint color
- float3 prd = ep1.xyz - float3(cf, cf, cf);
- float3 pdif = prd - ep0.xyz;
- // estimate of color-component spread in low endpoint color
- float df = MAX(MAX(fabs(pdif.x), fabs(pdif.y)), fabs(pdif.z));
- int b = (int)bf;
- int c = (int)cf;
- int d = (int)df;
- // determine which one of the 6 submodes is likely to be used in
- // case of an RGBO-mode
- int rgbo_mode = 5; // 7 bits per component
- // mode 4: 8 7 6
- if (b < 32768 && c < 16384)
- rgbo_mode = 4;
- // mode 3: 9 6 7
- if (b < 8192 && c < 16384)
- rgbo_mode = 3;
- // mode 2: 10 5 8
- if (b < 2048 && c < 16384)
- rgbo_mode = 2;
- // mode 1: 11 6 5
- if (b < 2048 && c < 1024)
- rgbo_mode = 1;
- // mode 0: 11 5 7
- if (b < 1024 && c < 4096)
- rgbo_mode = 0;
- // determine which one of the 9 submodes is likely to be used in
- // case of an RGB-mode.
- int rgb_mode = 8; // 8 bits per component, except 7 bits for blue
- // mode 0: 9 7 6 7
- if (b < 16384 && c < 8192 && d < 8192)
- rgb_mode = 0;
- // mode 1: 9 8 6 6
- if (b < 32768 && c < 8192 && d < 4096)
- rgb_mode = 1;
- // mode 2: 10 6 7 7
- if (b < 4096 && c < 8192 && d < 4096)
- rgb_mode = 2;
- // mode 3: 10 7 7 6
- if (b < 8192 && c < 8192 && d < 2048)
- rgb_mode = 3;
- // mode 4: 11 8 6 5
- if (b < 8192 && c < 2048 && d < 512)
- rgb_mode = 4;
- // mode 5: 11 6 8 6
- if (b < 2048 && c < 8192 && d < 1024)
- rgb_mode = 5;
- // mode 6: 12 7 7 5
- if (b < 2048 && c < 2048 && d < 256)
- rgb_mode = 6;
- // mode 7: 12 6 7 6
- if (b < 1024 && c < 2048 && d < 512)
- rgb_mode = 7;
- static const float rgbo_error_scales[6] = { 4.0f, 4.0f, 16.0f, 64.0f, 256.0f, 1024.0f };
- static const float rgb_error_scales[9] = { 64.0f, 64.0f, 16.0f, 16.0f, 4.0f, 4.0f, 1.0f, 1.0f, 384.0f };
- float mode7mult = rgbo_error_scales[rgbo_mode] * 0.0015f; // empirically determined ....
- float mode11mult = rgb_error_scales[rgb_mode] * 0.010f; // empirically determined ....
- float lum_high = (ep1.x + ep1.y + ep1.z) * (1.0f / 3.0f);
- float lum_low = (ep0.x + ep0.y + ep0.z) * (1.0f / 3.0f);
- float lumdif = lum_high - lum_low;
- float mode23mult = lumdif < 960 ? 4.0f : lumdif < 3968 ? 16.0f : 128.0f;
- mode23mult *= 0.0005f; // empirically determined ....
- // pick among the available HDR endpoint modes
- for (i = 0; i < 8; i++)
- {
- best_error[i][3] = 1e30f;
- format_of_choice[i][3] = encode_hdr_alpha ? FMT_HDR_RGBA : FMT_HDR_RGB_LDR_ALPHA;
- best_error[i][2] = 1e30f;
- format_of_choice[i][2] = FMT_HDR_RGB;
- best_error[i][1] = 1e30f;
- format_of_choice[i][1] = FMT_HDR_RGB_SCALE;
- best_error[i][0] = 1e30f;
- format_of_choice[i][0] = FMT_HDR_LUMINANCE_LARGE_RANGE;
- }
- for (i = 8; i < 21; i++)
- {
- // base_quant_error should depend on the scale-factor that would be used
- // during actual encode of the color value.
- float base_quant_error = baseline_quant_error[i] * partition_size * 1.0f;
- float rgb_quantization_error = error_weight_rgbsum * base_quant_error * 2.0f;
- float alpha_quantization_error = error_weight.w * base_quant_error * 2.0f;
- float rgba_quantization_error = rgb_quantization_error + alpha_quantization_error;
- #ifdef DEBUG_PRINT_DIAGNOSTICS
- if (print_diagnostics)
- printf("rgba-quant = %f can_offset_encode=%d\n", rgba_quantization_error, eci->can_offset_encode);
- #endif
- // for 8 integers, we have two encodings: one with HDR alpha and another one
- // with LDR alpha.
- float full_hdr_rgba_error = rgba_quantization_error + rgb_range_error + alpha_range_error;
- best_error[i][3] = full_hdr_rgba_error;
- format_of_choice[i][3] = encode_hdr_alpha ? FMT_HDR_RGBA : FMT_HDR_RGB_LDR_ALPHA;
- // for 6 integers, we have one HDR-RGB encoding
- float full_hdr_rgb_error = (rgb_quantization_error * mode11mult) + rgb_range_error + eci->alpha_drop_error;
- best_error[i][2] = full_hdr_rgb_error;
- format_of_choice[i][2] = FMT_HDR_RGB;
- // for 4 integers, we have one HDR-RGB-Scale encoding
- float hdr_rgb_scale_error = (rgb_quantization_error * mode7mult) + rgb_range_error + eci->alpha_drop_error + eci->rgb_luma_error;
- best_error[i][1] = hdr_rgb_scale_error;
- format_of_choice[i][1] = FMT_HDR_RGB_SCALE;
- // for 2 integers, we assume luminance-with-large-range
- float hdr_luminance_error = (rgb_quantization_error * mode23mult) + rgb_range_error + eci->alpha_drop_error + eci->luminance_error;
- best_error[i][0] = hdr_luminance_error;
- format_of_choice[i][0] = FMT_HDR_LUMINANCE_LARGE_RANGE;
- #ifdef DEBUG_PRINT_DIAGNOSTICS
- if (print_diagnostics)
- {
- for (j = 0; j < 4; j++)
- {
- printf("(hdr) quant-level=%d ints=%d format=%d error=%f\n", i, j, format_of_choice[i][j], best_error[i][j]);
- }
- }
- #endif
- }
- }
- else
- {
- for (i = 0; i < 4; i++)
- {
- best_error[i][3] = 1e30f;
- best_error[i][2] = 1e30f;
- best_error[i][1] = 1e30f;
- best_error[i][0] = 1e30f;
- format_of_choice[i][3] = FMT_RGBA;
- format_of_choice[i][2] = FMT_RGB;
- format_of_choice[i][1] = FMT_RGB_SCALE;
- format_of_choice[i][0] = FMT_LUMINANCE;
- }
- // pick among the available LDR endpoint modes
- for (i = 4; i < 21; i++)
- {
- float base_quant_error = baseline_quant_error[i] * partition_size * 1.0f;
- float rgb_quantization_error = error_weight_rgbsum * base_quant_error;
- float alpha_quantization_error = error_weight.w * base_quant_error;
- float rgba_quantization_error = rgb_quantization_error + alpha_quantization_error;
- #ifdef DEBUG_PRINT_DIAGNOSTICS
- if (print_diagnostics)
- printf("rgba-quant = %f can_offset_encode=%d\n", rgba_quantization_error, eci->can_offset_encode);
- #endif
- // for 8 integers, the available encodings are:
- // full LDR RGB-Alpha
- float full_ldr_rgba_error = rgba_quantization_error;
- if (eci->can_blue_contract)
- full_ldr_rgba_error *= 0.625f;
- if (eci->can_offset_encode && i <= 18)
- full_ldr_rgba_error *= 0.5f;
- full_ldr_rgba_error += rgb_range_error + alpha_range_error;
- best_error[i][3] = full_ldr_rgba_error;
- format_of_choice[i][3] = FMT_RGBA;
- // for 6 integers, we have:
- // - an LDR-RGB encoding
- // - an RGBS + Alpha encoding (LDR)
- float full_ldr_rgb_error = rgb_quantization_error;
- if (eci->can_blue_contract)
- full_ldr_rgb_error *= 0.5f;
- if (eci->can_offset_encode && i <= 18)
- full_ldr_rgb_error *= 0.25f;
- full_ldr_rgb_error += eci->alpha_drop_error + rgb_range_error;
- float rgbs_alpha_error = rgba_quantization_error + eci->rgb_scale_error + rgb_range_error + alpha_range_error;
- if (rgbs_alpha_error < full_ldr_rgb_error)
- {
- best_error[i][2] = rgbs_alpha_error;
- format_of_choice[i][2] = FMT_RGB_SCALE_ALPHA;
- }
- else
- {
- best_error[i][2] = full_ldr_rgb_error;
- format_of_choice[i][2] = FMT_RGB;
- }
- // for 4 integers, we have a Luminance-Alpha encoding and the RGBS encoding
- float ldr_rgbs_error = rgb_quantization_error + eci->alpha_drop_error + eci->rgb_scale_error + rgb_range_error;
- float lum_alpha_error = rgba_quantization_error + eci->luminance_error + rgb_range_error + alpha_range_error;
- if (ldr_rgbs_error < lum_alpha_error)
- {
- best_error[i][1] = ldr_rgbs_error;
- format_of_choice[i][1] = FMT_RGB_SCALE;
- }
- else
- {
- best_error[i][1] = lum_alpha_error;
- format_of_choice[i][1] = FMT_LUMINANCE_ALPHA;
- }
- // for 2 integers, we have a Luminance-encoding and an Alpha-encoding.
- float luminance_error = rgb_quantization_error + eci->alpha_drop_error + eci->luminance_error + rgb_range_error;
- best_error[i][0] = luminance_error;
- format_of_choice[i][0] = FMT_LUMINANCE;
- #ifdef DEBUG_PRINT_DIAGNOSTICS
- if (print_diagnostics)
- {
- for (j = 0; j < 4; j++)
- {
- printf(" (ldr) quant-level=%d ints=%d format=%d error=%f\n", i, j, format_of_choice[i][j], best_error[i][j]);
- }
- }
- #endif
- }
- }
- }
- // for 1 partition, find the best combination (one format + a quantization level) for a given bitcount
- static void one_partition_find_best_combination_for_bitcount(float combined_best_error[21][4],
- int formats_of_choice[21][4], int bits_available, int *best_quantization_level, int *best_formats, float *error_of_best_combination)
- {
- int i;
- int best_integer_count = -1;
- float best_integer_count_error = 1e20f;
- for (i = 0; i < 4; i++)
- {
- // compute the quantization level for a given number of integers and a given number of bits.
- int quantization_level = quantization_mode_table[i + 1][bits_available];
- if (quantization_level == -1)
- continue; // used to indicate the case where we don't have enough bits to represent a given endpoint format at all.
- if (combined_best_error[quantization_level][i] < best_integer_count_error)
- {
- best_integer_count_error = combined_best_error[quantization_level][i];
- best_integer_count = i;
- }
- }
- int ql = quantization_mode_table[best_integer_count + 1][bits_available];
- *best_quantization_level = ql;
- *error_of_best_combination = best_integer_count_error;
- if (ql >= 0)
- *best_formats = formats_of_choice[ql][best_integer_count];
- else
- *best_formats = FMT_LUMINANCE;
- }
- // for 2 partitions, find the best format combinations for every (quantization-mode, integer-count) combination
- static void two_partitions_find_best_combination_for_every_quantization_and_integer_count(float best_error[2][21][4], // indexed by (partition, quant-level, integer-pair-count-minus-1)
- int format_of_choice[2][21][4],
- float combined_best_error[21][7], // indexed by (quant-level, integer-pair-count-minus-2)
- int formats_of_choice[21][7][2])
- {
- int i, j;
- for (i = 0; i < 21; i++)
- for (j = 0; j < 7; j++)
- combined_best_error[i][j] = 1e30f;
- int quant;
- for (quant = 5; quant < 21; quant++)
- {
- for (i = 0; i < 4; i++) // integer-count for first endpoint-pair
- {
- for (j = 0; j < 4; j++) // integer-count for second endpoint-pair
- {
- int low2 = MIN(i, j);
- int high2 = MAX(i, j);
- if ((high2 - low2) > 1)
- continue;
- int intcnt = i + j;
- float errorterm = MIN(best_error[0][quant][i] + best_error[1][quant][j], 1e10f);
- if (errorterm <= combined_best_error[quant][intcnt])
- {
- combined_best_error[quant][intcnt] = errorterm;
- formats_of_choice[quant][intcnt][0] = format_of_choice[0][quant][i];
- formats_of_choice[quant][intcnt][1] = format_of_choice[1][quant][j];
- }
- }
- }
- }
- }
- // for 2 partitions, find the best combination (two formats + a quantization level) for a given bitcount
- static void two_partitions_find_best_combination_for_bitcount(float combined_best_error[21][7],
- int formats_of_choice[21][7][2],
- int bits_available, int *best_quantization_level, int *best_quantization_level_mod, int *best_formats, float *error_of_best_combination)
- {
- int i;
- int best_integer_count = 0;
- float best_integer_count_error = 1e20f;
- int integer_count;
- for (integer_count = 2; integer_count <= 8; integer_count++)
- {
- // compute the quantization level for a given number of integers and a given number of bits.
- int quantization_level = quantization_mode_table[integer_count][bits_available];
- if (quantization_level == -1)
- break; // used to indicate the case where we don't have enough bits to represent a given endpoint format at all.
- float integer_count_error = combined_best_error[quantization_level][integer_count - 2];
- if (integer_count_error < best_integer_count_error)
- {
- best_integer_count_error = integer_count_error;
- best_integer_count = integer_count;
- }
- }
- int ql = quantization_mode_table[best_integer_count][bits_available];
- int ql_mod = quantization_mode_table[best_integer_count][bits_available + 2];
- *best_quantization_level = ql;
- *best_quantization_level_mod = ql_mod;
- *error_of_best_combination = best_integer_count_error;
- if (ql >= 0)
- {
- for (i = 0; i < 2; i++)
- best_formats[i] = formats_of_choice[ql][best_integer_count - 2][i];
- }
- else
- {
- for (i = 0; i < 2; i++)
- best_formats[i] = FMT_LUMINANCE;
- }
- }
- // for 3 partitions, find the best format combinations for every (quantization-mode, integer-count) combination
- static void three_partitions_find_best_combination_for_every_quantization_and_integer_count(float best_error[3][21][4], // indexed by (partition, quant-level, integer-count)
- int format_of_choice[3][21][4], float combined_best_error[21][10], int formats_of_choice[21][10][3])
- {
- int i, j, k;
- for (i = 0; i < 21; i++)
- for (j = 0; j < 10; j++)
- combined_best_error[i][j] = 1e30f;
- int quant;
- for (quant = 5; quant < 21; quant++)
- {
- for (i = 0; i < 4; i++) // integer-count for first endpoint-pair
- {
- for (j = 0; j < 4; j++) // integer-count for second endpoint-pair
- {
- int low2 = MIN(i, j);
- int high2 = MAX(i, j);
- if ((high2 - low2) > 1)
- continue;
- for (k = 0; k < 4; k++) // integer-count for third endpoint-pair
- {
- int low3 = MIN(k, low2);
- int high3 = MAX(k, high2);
- if ((high3 - low3) > 1)
- continue;
- int intcnt = i + j + k;
- float errorterm = MIN(best_error[0][quant][i] + best_error[1][quant][j] + best_error[2][quant][k], 1e10f);
- if (errorterm <= combined_best_error[quant][intcnt])
- {
- combined_best_error[quant][intcnt] = errorterm;
- formats_of_choice[quant][intcnt][0] = format_of_choice[0][quant][i];
- formats_of_choice[quant][intcnt][1] = format_of_choice[1][quant][j];
- formats_of_choice[quant][intcnt][2] = format_of_choice[2][quant][k];
- }
- }
- }
- }
- }
- }
- // for 3 partitions, find the best combination (three formats + a quantization level) for a given bitcount
- static void three_partitions_find_best_combination_for_bitcount(float combined_best_error[21][10],
- int formats_of_choice[21][10][3],
- int bits_available, int *best_quantization_level, int *best_quantization_level_mod, int *best_formats, float *error_of_best_combination)
- {
- int i;
- int best_integer_count = 0;
- float best_integer_count_error = 1e20f;
- int integer_count;
- for (integer_count = 3; integer_count <= 9; integer_count++)
- {
- // compute the quantization level for a given number of integers and a given number of bits.
- int quantization_level = quantization_mode_table[integer_count][bits_available];
- if (quantization_level == -1)
- break; // used to indicate the case where we don't have enough bits to represent a given endpoint format at all.
- float integer_count_error = combined_best_error[quantization_level][integer_count - 3];
- if (integer_count_error < best_integer_count_error)
- {
- best_integer_count_error = integer_count_error;
- best_integer_count = integer_count;
- }
- }
- int ql = quantization_mode_table[best_integer_count][bits_available];
- int ql_mod = quantization_mode_table[best_integer_count][bits_available + 5];
- *best_quantization_level = ql;
- *best_quantization_level_mod = ql_mod;
- *error_of_best_combination = best_integer_count_error;
- if (ql >= 0)
- {
- for (i = 0; i < 3; i++)
- best_formats[i] = formats_of_choice[ql][best_integer_count - 3][i];
- }
- else
- {
- for (i = 0; i < 3; i++)
- best_formats[i] = FMT_LUMINANCE;
- }
- }
- // for 4 partitions, find the best format combinations for every (quantization-mode, integer-count) combination
- static void four_partitions_find_best_combination_for_every_quantization_and_integer_count(float best_error[4][21][4], // indexed by (partition, quant-level, integer-count)
- int format_of_choice[4][21][4], float combined_best_error[21][13], int formats_of_choice[21][13][4])
- {
- int i, j, k, l;
- for (i = 0; i < 21; i++)
- for (j = 0; j < 13; j++)
- combined_best_error[i][j] = 1e30f;
- int quant;
- for (quant = 5; quant < 21; quant++)
- {
- for (i = 0; i < 4; i++) // integer-count for first endpoint-pair
- {
- for (j = 0; j < 4; j++) // integer-count for second endpoint-pair
- {
- int low2 = MIN(i, j);
- int high2 = MAX(i, j);
- if ((high2 - low2) > 1)
- continue;
- for (k = 0; k < 4; k++) // integer-count for third endpoint-pair
- {
- int low3 = MIN(k, low2);
- int high3 = MAX(k, high2);
- if ((high3 - low3) > 1)
- continue;
- for (l = 0; l < 4; l++) // integer-count for fourth endpoint-pair
- {
- int low4 = MIN(l, low3);
- int high4 = MAX(l, high3);
- if ((high4 - low4) > 1)
- continue;
- int intcnt = i + j + k + l;
- float errorterm = MIN(best_error[0][quant][i] + best_error[1][quant][j] + best_error[2][quant][k] + best_error[3][quant][l], 1e10f);
- if (errorterm <= combined_best_error[quant][intcnt])
- {
- combined_best_error[quant][intcnt] = errorterm;
- formats_of_choice[quant][intcnt][0] = format_of_choice[0][quant][i];
- formats_of_choice[quant][intcnt][1] = format_of_choice[1][quant][j];
- formats_of_choice[quant][intcnt][2] = format_of_choice[2][quant][k];
- formats_of_choice[quant][intcnt][3] = format_of_choice[3][quant][l];
- }
- }
- }
- }
- }
- }
- }
- // for 4 partitions, find the best combination (four formats + a quantization level) for a given bitcount
- static void four_partitions_find_best_combination_for_bitcount(float combined_best_error[21][13],
- int formats_of_choice[21][13][4],
- int bits_available, int *best_quantization_level, int *best_quantization_level_mod, int *best_formats, float *error_of_best_combination)
- {
- int i;
- int best_integer_count = 0;
- float best_integer_count_error = 1e20f;
- int integer_count;
- for (integer_count = 4; integer_count <= 9; integer_count++)
- {
- // compute the quantization level for a given number of integers and a given number of bits.
- int quantization_level = quantization_mode_table[integer_count][bits_available];
- if (quantization_level == -1)
- break; // used to indicate the case where we don't have enough bits to represent a given endpoint format at all.
- float integer_count_error = combined_best_error[quantization_level][integer_count - 4];
- if (integer_count_error < best_integer_count_error)
- {
- best_integer_count_error = integer_count_error;
- best_integer_count = integer_count;
- }
- }
- int ql = quantization_mode_table[best_integer_count][bits_available];
- int ql_mod = quantization_mode_table[best_integer_count][bits_available + 8];
- *best_quantization_level = ql;
- *best_quantization_level_mod = ql_mod;
- *error_of_best_combination = best_integer_count_error;
- if (ql >= 0)
- {
- for (i = 0; i < 4; i++)
- best_formats[i] = formats_of_choice[ql][best_integer_count - 4][i];
- }
- else
- {
- for (i = 0; i < 4; i++)
- best_formats[i] = FMT_LUMINANCE;
- }
- }
- /*
- The determine_optimal_set_of_endpoint_formats_to_use() function.
- It identifies, for each mode, which set of color endpoint encodings
- produces the best overall result. It then reports back which 4 modes
- look best, along with the ideal color encoding combination for each.
- It takes as input:
- a partitioning an imageblock,
- a set of color endpoints.
- for each mode, the number of bits available for color encoding and the error incurred by quantization.
- in case of 2 plane of weights, a specifier for which color component to use for the second plane of weights.
- It delivers as output for each of the 4 selected modes:
- format specifier
- for each partition
- quantization level to use
- modified quantization level to use
- (when all format specifiers are equal)
- */
- void determine_optimal_set_of_endpoint_formats_to_use(int xdim, int ydim, int zdim,
- const partition_info * pt, const imageblock * blk, const error_weight_block * ewb,
- const endpoints * ep,
- int separate_component, // separate color component for 2-plane mode; -1 for single-plane mode
- // bitcounts and errors computed for the various quantization methods
- const int *qwt_bitcounts, const float *qwt_errors,
- // output data
- int partition_format_specifiers[4][4], int quantized_weight[4],
- int quantization_level[4], int quantization_level_mod[4])
- {
- int i, j;
- int partition_count = pt->partition_count;
- int encode_hdr_rgb = blk->rgb_lns[0];
- int encode_hdr_alpha = blk->alpha_lns[0];
- // call a helper function to compute the errors that result from various
- // encoding choices (such as using luminance instead of RGB, discarding Alpha,
- // using RGB-scale in place of two separate RGB endpoints and so on)
- encoding_choice_errors eci[4];
- compute_encoding_choice_errors(xdim, ydim, zdim, blk, pt, ewb, separate_component, eci);
- // for each partition, compute the error weights to apply for that partition.
- float4 error_weightings[4];
- float4 dummied_color_scalefactors[4]; // only used to receive data
- compute_partition_error_color_weightings(xdim, ydim, zdim, ewb, pt, error_weightings, dummied_color_scalefactors);
- float best_error[4][21][4];
- int format_of_choice[4][21][4];
- for (i = 0; i < partition_count; i++)
- compute_color_error_for_every_integer_count_and_quantization_level(encode_hdr_rgb, encode_hdr_alpha, i, pt, &(eci[i]), ep, error_weightings, best_error[i], format_of_choice[i]);
- float errors_of_best_combination[MAX_WEIGHT_MODES];
- int best_quantization_levels[MAX_WEIGHT_MODES];
- int best_quantization_levels_mod[MAX_WEIGHT_MODES];
- int best_ep_formats[MAX_WEIGHT_MODES][4];
- // code for the case where the block contains 1 partition
- if (partition_count == 1)
- {
- int best_quantization_level;
- int best_format;
- float error_of_best_combination;
- for (i = 0; i < MAX_WEIGHT_MODES; i++)
- {
- if (qwt_errors[i] >= 1e29f)
- {
- errors_of_best_combination[i] = 1e30f;
- continue;
- }
- one_partition_find_best_combination_for_bitcount(best_error[0], format_of_choice[0], qwt_bitcounts[i], &best_quantization_level, &best_format, &error_of_best_combination);
- error_of_best_combination += qwt_errors[i];
- errors_of_best_combination[i] = error_of_best_combination;
- best_quantization_levels[i] = best_quantization_level;
- best_quantization_levels_mod[i] = best_quantization_level;
- best_ep_formats[i][0] = best_format;
- }
- }
- // code for the case where the block contains 2 partitions
- else if (partition_count == 2)
- {
- int best_quantization_level;
- int best_quantization_level_mod;
- int best_formats[2];
- float error_of_best_combination;
- float combined_best_error[21][7];
- int formats_of_choice[21][7][2];
- two_partitions_find_best_combination_for_every_quantization_and_integer_count(best_error, format_of_choice, combined_best_error, formats_of_choice);
- for (i = 0; i < MAX_WEIGHT_MODES; i++)
- {
- if (qwt_errors[i] >= 1e29f)
- {
- errors_of_best_combination[i] = 1e30f;
- continue;
- }
- two_partitions_find_best_combination_for_bitcount(combined_best_error, formats_of_choice, qwt_bitcounts[i],
- &best_quantization_level, &best_quantization_level_mod, best_formats, &error_of_best_combination);
- error_of_best_combination += qwt_errors[i];
- errors_of_best_combination[i] = error_of_best_combination;
- best_quantization_levels[i] = best_quantization_level;
- best_quantization_levels_mod[i] = best_quantization_level_mod;
- best_ep_formats[i][0] = best_formats[0];
- best_ep_formats[i][1] = best_formats[1];
- }
- }
- // code for the case where the block contains 3 partitions
- else if (partition_count == 3)
- {
- int best_quantization_level;
- int best_quantization_level_mod;
- int best_formats[3];
- float error_of_best_combination;
- float combined_best_error[21][10];
- int formats_of_choice[21][10][3];
- three_partitions_find_best_combination_for_every_quantization_and_integer_count(best_error, format_of_choice, combined_best_error, formats_of_choice);
- for (i = 0; i < MAX_WEIGHT_MODES; i++)
- {
- if (qwt_errors[i] >= 1e29f)
- {
- errors_of_best_combination[i] = 1e30f;
- continue;
- }
- three_partitions_find_best_combination_for_bitcount(combined_best_error,
- formats_of_choice, qwt_bitcounts[i], &best_quantization_level, &best_quantization_level_mod, best_formats, &error_of_best_combination);
- error_of_best_combination += qwt_errors[i];
- errors_of_best_combination[i] = error_of_best_combination;
- best_quantization_levels[i] = best_quantization_level;
- best_quantization_levels_mod[i] = best_quantization_level_mod;
- best_ep_formats[i][0] = best_formats[0];
- best_ep_formats[i][1] = best_formats[1];
- best_ep_formats[i][2] = best_formats[2];
- }
- }
- // code for the case where the block contains 4 partitions
- else if (partition_count == 4)
- {
- int best_quantization_level;
- int best_quantization_level_mod;
- int best_formats[4];
- float error_of_best_combination;
- float combined_best_error[21][13];
- int formats_of_choice[21][13][4];
- four_partitions_find_best_combination_for_every_quantization_and_integer_count(best_error, format_of_choice, combined_best_error, formats_of_choice);
- for (i = 0; i < MAX_WEIGHT_MODES; i++)
- {
- if (qwt_errors[i] >= 1e29f)
- {
- errors_of_best_combination[i] = 1e30f;
- continue;
- }
- four_partitions_find_best_combination_for_bitcount(combined_best_error,
- formats_of_choice, qwt_bitcounts[i], &best_quantization_level, &best_quantization_level_mod, best_formats, &error_of_best_combination);
- error_of_best_combination += qwt_errors[i];
- errors_of_best_combination[i] = error_of_best_combination;
- best_quantization_levels[i] = best_quantization_level;
- best_quantization_levels_mod[i] = best_quantization_level_mod;
- best_ep_formats[i][0] = best_formats[0];
- best_ep_formats[i][1] = best_formats[1];
- best_ep_formats[i][2] = best_formats[2];
- best_ep_formats[i][3] = best_formats[3];
- }
- }
- // finally, go through the results and pick the 4 best-looking modes.
- int best_error_weights[4];
- for (i = 0; i < 4; i++)
- {
- float best_ep_error = 1e30f;
- int best_error_index = -1;
- for (j = 0; j < MAX_WEIGHT_MODES; j++)
- {
- if (errors_of_best_combination[j] < best_ep_error && best_quantization_levels[j] >= 5)
- {
- best_ep_error = errors_of_best_combination[j];
- best_error_index = j;
- }
- }
- best_error_weights[i] = best_error_index;
- if(best_error_index >= 0)
- {
- errors_of_best_combination[best_error_index] = 1e30f;
- }
- }
- for (i = 0; i < 4; i++)
- {
- quantized_weight[i] = best_error_weights[i];
- if (quantized_weight[i] >= 0)
- {
- quantization_level[i] = best_quantization_levels[best_error_weights[i]];
- quantization_level_mod[i] = best_quantization_levels_mod[best_error_weights[i]];
- for (j = 0; j < partition_count; j++)
- {
- partition_format_specifiers[i][j] = best_ep_formats[best_error_weights[i]][j];
- }
- }
- }
- }
|