ecdsa.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929
  1. /*
  2. * Elliptic curve DSA
  3. *
  4. * Copyright The Mbed TLS Contributors
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  8. * not use this file except in compliance with the License.
  9. * You may obtain a copy of the License at
  10. *
  11. * http://www.apache.org/licenses/LICENSE-2.0
  12. *
  13. * Unless required by applicable law or agreed to in writing, software
  14. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  15. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  16. * See the License for the specific language governing permissions and
  17. * limitations under the License.
  18. */
  19. /*
  20. * References:
  21. *
  22. * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
  23. */
  24. #include "common.h"
  25. #if defined(MBEDTLS_ECDSA_C)
  26. #include "mbedtls/ecdsa.h"
  27. #include "mbedtls/asn1write.h"
  28. #include <string.h>
  29. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  30. #include "mbedtls/hmac_drbg.h"
  31. #endif
  32. #if defined(MBEDTLS_PLATFORM_C)
  33. #include "mbedtls/platform.h"
  34. #else
  35. #include <stdlib.h>
  36. #define mbedtls_calloc calloc
  37. #define mbedtls_free free
  38. #endif
  39. #include "mbedtls/platform_util.h"
  40. #include "mbedtls/error.h"
  41. /* Parameter validation macros based on platform_util.h */
  42. #define ECDSA_VALIDATE_RET( cond ) \
  43. MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
  44. #define ECDSA_VALIDATE( cond ) \
  45. MBEDTLS_INTERNAL_VALIDATE( cond )
  46. #if defined(MBEDTLS_ECP_RESTARTABLE)
  47. /*
  48. * Sub-context for ecdsa_verify()
  49. */
  50. struct mbedtls_ecdsa_restart_ver
  51. {
  52. mbedtls_mpi u1, u2; /* intermediate values */
  53. enum { /* what to do next? */
  54. ecdsa_ver_init = 0, /* getting started */
  55. ecdsa_ver_muladd, /* muladd step */
  56. } state;
  57. };
  58. /*
  59. * Init verify restart sub-context
  60. */
  61. static void ecdsa_restart_ver_init( mbedtls_ecdsa_restart_ver_ctx *ctx )
  62. {
  63. mbedtls_mpi_init( &ctx->u1 );
  64. mbedtls_mpi_init( &ctx->u2 );
  65. ctx->state = ecdsa_ver_init;
  66. }
  67. /*
  68. * Free the components of a verify restart sub-context
  69. */
  70. static void ecdsa_restart_ver_free( mbedtls_ecdsa_restart_ver_ctx *ctx )
  71. {
  72. if( ctx == NULL )
  73. return;
  74. mbedtls_mpi_free( &ctx->u1 );
  75. mbedtls_mpi_free( &ctx->u2 );
  76. ecdsa_restart_ver_init( ctx );
  77. }
  78. /*
  79. * Sub-context for ecdsa_sign()
  80. */
  81. struct mbedtls_ecdsa_restart_sig
  82. {
  83. int sign_tries;
  84. int key_tries;
  85. mbedtls_mpi k; /* per-signature random */
  86. mbedtls_mpi r; /* r value */
  87. enum { /* what to do next? */
  88. ecdsa_sig_init = 0, /* getting started */
  89. ecdsa_sig_mul, /* doing ecp_mul() */
  90. ecdsa_sig_modn, /* mod N computations */
  91. } state;
  92. };
  93. /*
  94. * Init verify sign sub-context
  95. */
  96. static void ecdsa_restart_sig_init( mbedtls_ecdsa_restart_sig_ctx *ctx )
  97. {
  98. ctx->sign_tries = 0;
  99. ctx->key_tries = 0;
  100. mbedtls_mpi_init( &ctx->k );
  101. mbedtls_mpi_init( &ctx->r );
  102. ctx->state = ecdsa_sig_init;
  103. }
  104. /*
  105. * Free the components of a sign restart sub-context
  106. */
  107. static void ecdsa_restart_sig_free( mbedtls_ecdsa_restart_sig_ctx *ctx )
  108. {
  109. if( ctx == NULL )
  110. return;
  111. mbedtls_mpi_free( &ctx->k );
  112. mbedtls_mpi_free( &ctx->r );
  113. }
  114. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  115. /*
  116. * Sub-context for ecdsa_sign_det()
  117. */
  118. struct mbedtls_ecdsa_restart_det
  119. {
  120. mbedtls_hmac_drbg_context rng_ctx; /* DRBG state */
  121. enum { /* what to do next? */
  122. ecdsa_det_init = 0, /* getting started */
  123. ecdsa_det_sign, /* make signature */
  124. } state;
  125. };
  126. /*
  127. * Init verify sign_det sub-context
  128. */
  129. static void ecdsa_restart_det_init( mbedtls_ecdsa_restart_det_ctx *ctx )
  130. {
  131. mbedtls_hmac_drbg_init( &ctx->rng_ctx );
  132. ctx->state = ecdsa_det_init;
  133. }
  134. /*
  135. * Free the components of a sign_det restart sub-context
  136. */
  137. static void ecdsa_restart_det_free( mbedtls_ecdsa_restart_det_ctx *ctx )
  138. {
  139. if( ctx == NULL )
  140. return;
  141. mbedtls_hmac_drbg_free( &ctx->rng_ctx );
  142. ecdsa_restart_det_init( ctx );
  143. }
  144. #endif /* MBEDTLS_ECDSA_DETERMINISTIC */
  145. #define ECDSA_RS_ECP ( rs_ctx == NULL ? NULL : &rs_ctx->ecp )
  146. /* Utility macro for checking and updating ops budget */
  147. #define ECDSA_BUDGET( ops ) \
  148. MBEDTLS_MPI_CHK( mbedtls_ecp_check_budget( grp, ECDSA_RS_ECP, ops ) );
  149. /* Call this when entering a function that needs its own sub-context */
  150. #define ECDSA_RS_ENTER( SUB ) do { \
  151. /* reset ops count for this call if top-level */ \
  152. if( rs_ctx != NULL && rs_ctx->ecp.depth++ == 0 ) \
  153. rs_ctx->ecp.ops_done = 0; \
  154. \
  155. /* set up our own sub-context if needed */ \
  156. if( mbedtls_ecp_restart_is_enabled() && \
  157. rs_ctx != NULL && rs_ctx->SUB == NULL ) \
  158. { \
  159. rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) ); \
  160. if( rs_ctx->SUB == NULL ) \
  161. return( MBEDTLS_ERR_ECP_ALLOC_FAILED ); \
  162. \
  163. ecdsa_restart_## SUB ##_init( rs_ctx->SUB ); \
  164. } \
  165. } while( 0 )
  166. /* Call this when leaving a function that needs its own sub-context */
  167. #define ECDSA_RS_LEAVE( SUB ) do { \
  168. /* clear our sub-context when not in progress (done or error) */ \
  169. if( rs_ctx != NULL && rs_ctx->SUB != NULL && \
  170. ret != MBEDTLS_ERR_ECP_IN_PROGRESS ) \
  171. { \
  172. ecdsa_restart_## SUB ##_free( rs_ctx->SUB ); \
  173. mbedtls_free( rs_ctx->SUB ); \
  174. rs_ctx->SUB = NULL; \
  175. } \
  176. \
  177. if( rs_ctx != NULL ) \
  178. rs_ctx->ecp.depth--; \
  179. } while( 0 )
  180. #else /* MBEDTLS_ECP_RESTARTABLE */
  181. #define ECDSA_RS_ECP NULL
  182. #define ECDSA_BUDGET( ops ) /* no-op; for compatibility */
  183. #define ECDSA_RS_ENTER( SUB ) (void) rs_ctx
  184. #define ECDSA_RS_LEAVE( SUB ) (void) rs_ctx
  185. #endif /* MBEDTLS_ECP_RESTARTABLE */
  186. #if defined(MBEDTLS_ECDSA_DETERMINISTIC) || \
  187. !defined(MBEDTLS_ECDSA_SIGN_ALT) || \
  188. !defined(MBEDTLS_ECDSA_VERIFY_ALT)
  189. /*
  190. * Derive a suitable integer for group grp from a buffer of length len
  191. * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3
  192. */
  193. static int derive_mpi( const mbedtls_ecp_group *grp, mbedtls_mpi *x,
  194. const unsigned char *buf, size_t blen )
  195. {
  196. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  197. size_t n_size = ( grp->nbits + 7 ) / 8;
  198. size_t use_size = blen > n_size ? n_size : blen;
  199. MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( x, buf, use_size ) );
  200. if( use_size * 8 > grp->nbits )
  201. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( x, use_size * 8 - grp->nbits ) );
  202. /* While at it, reduce modulo N */
  203. if( mbedtls_mpi_cmp_mpi( x, &grp->N ) >= 0 )
  204. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( x, x, &grp->N ) );
  205. cleanup:
  206. return( ret );
  207. }
  208. #endif /* ECDSA_DETERMINISTIC || !ECDSA_SIGN_ALT || !ECDSA_VERIFY_ALT */
  209. #if !defined(MBEDTLS_ECDSA_SIGN_ALT)
  210. /*
  211. * Compute ECDSA signature of a hashed message (SEC1 4.1.3)
  212. * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message)
  213. */
  214. static int ecdsa_sign_restartable( mbedtls_ecp_group *grp,
  215. mbedtls_mpi *r, mbedtls_mpi *s,
  216. const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
  217. int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
  218. int (*f_rng_blind)(void *, unsigned char *, size_t),
  219. void *p_rng_blind,
  220. mbedtls_ecdsa_restart_ctx *rs_ctx )
  221. {
  222. int ret, key_tries, sign_tries;
  223. int *p_sign_tries = &sign_tries, *p_key_tries = &key_tries;
  224. mbedtls_ecp_point R;
  225. mbedtls_mpi k, e, t;
  226. mbedtls_mpi *pk = &k, *pr = r;
  227. /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
  228. if( ! mbedtls_ecdsa_can_do( grp->id ) || grp->N.p == NULL )
  229. return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
  230. /* Make sure d is in range 1..n-1 */
  231. if( mbedtls_mpi_cmp_int( d, 1 ) < 0 || mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
  232. return( MBEDTLS_ERR_ECP_INVALID_KEY );
  233. mbedtls_ecp_point_init( &R );
  234. mbedtls_mpi_init( &k ); mbedtls_mpi_init( &e ); mbedtls_mpi_init( &t );
  235. ECDSA_RS_ENTER( sig );
  236. #if defined(MBEDTLS_ECP_RESTARTABLE)
  237. if( rs_ctx != NULL && rs_ctx->sig != NULL )
  238. {
  239. /* redirect to our context */
  240. p_sign_tries = &rs_ctx->sig->sign_tries;
  241. p_key_tries = &rs_ctx->sig->key_tries;
  242. pk = &rs_ctx->sig->k;
  243. pr = &rs_ctx->sig->r;
  244. /* jump to current step */
  245. if( rs_ctx->sig->state == ecdsa_sig_mul )
  246. goto mul;
  247. if( rs_ctx->sig->state == ecdsa_sig_modn )
  248. goto modn;
  249. }
  250. #endif /* MBEDTLS_ECP_RESTARTABLE */
  251. *p_sign_tries = 0;
  252. do
  253. {
  254. if( (*p_sign_tries)++ > 10 )
  255. {
  256. ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
  257. goto cleanup;
  258. }
  259. /*
  260. * Steps 1-3: generate a suitable ephemeral keypair
  261. * and set r = xR mod n
  262. */
  263. *p_key_tries = 0;
  264. do
  265. {
  266. if( (*p_key_tries)++ > 10 )
  267. {
  268. ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
  269. goto cleanup;
  270. }
  271. MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, pk, f_rng, p_rng ) );
  272. #if defined(MBEDTLS_ECP_RESTARTABLE)
  273. if( rs_ctx != NULL && rs_ctx->sig != NULL )
  274. rs_ctx->sig->state = ecdsa_sig_mul;
  275. mul:
  276. #endif
  277. MBEDTLS_MPI_CHK( mbedtls_ecp_mul_restartable( grp, &R, pk, &grp->G,
  278. f_rng_blind,
  279. p_rng_blind,
  280. ECDSA_RS_ECP ) );
  281. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( pr, &R.X, &grp->N ) );
  282. }
  283. while( mbedtls_mpi_cmp_int( pr, 0 ) == 0 );
  284. #if defined(MBEDTLS_ECP_RESTARTABLE)
  285. if( rs_ctx != NULL && rs_ctx->sig != NULL )
  286. rs_ctx->sig->state = ecdsa_sig_modn;
  287. modn:
  288. #endif
  289. /*
  290. * Accounting for everything up to the end of the loop
  291. * (step 6, but checking now avoids saving e and t)
  292. */
  293. ECDSA_BUDGET( MBEDTLS_ECP_OPS_INV + 4 );
  294. /*
  295. * Step 5: derive MPI from hashed message
  296. */
  297. MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) );
  298. /*
  299. * Generate a random value to blind inv_mod in next step,
  300. * avoiding a potential timing leak.
  301. */
  302. MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, &t, f_rng_blind,
  303. p_rng_blind ) );
  304. /*
  305. * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n
  306. */
  307. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, pr, d ) );
  308. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &e, &e, s ) );
  309. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &e, &e, &t ) );
  310. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( pk, pk, &t ) );
  311. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( pk, pk, &grp->N ) );
  312. MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( s, pk, &grp->N ) );
  313. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, s, &e ) );
  314. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( s, s, &grp->N ) );
  315. }
  316. while( mbedtls_mpi_cmp_int( s, 0 ) == 0 );
  317. #if defined(MBEDTLS_ECP_RESTARTABLE)
  318. if( rs_ctx != NULL && rs_ctx->sig != NULL )
  319. mbedtls_mpi_copy( r, pr );
  320. #endif
  321. cleanup:
  322. mbedtls_ecp_point_free( &R );
  323. mbedtls_mpi_free( &k ); mbedtls_mpi_free( &e ); mbedtls_mpi_free( &t );
  324. ECDSA_RS_LEAVE( sig );
  325. return( ret );
  326. }
  327. int mbedtls_ecdsa_can_do( mbedtls_ecp_group_id gid )
  328. {
  329. switch( gid )
  330. {
  331. #ifdef MBEDTLS_ECP_DP_CURVE25519_ENABLED
  332. case MBEDTLS_ECP_DP_CURVE25519: return 0;
  333. #endif
  334. #ifdef MBEDTLS_ECP_DP_CURVE448_ENABLED
  335. case MBEDTLS_ECP_DP_CURVE448: return 0;
  336. #endif
  337. default: return 1;
  338. }
  339. }
  340. /*
  341. * Compute ECDSA signature of a hashed message
  342. */
  343. int mbedtls_ecdsa_sign( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
  344. const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
  345. int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
  346. {
  347. ECDSA_VALIDATE_RET( grp != NULL );
  348. ECDSA_VALIDATE_RET( r != NULL );
  349. ECDSA_VALIDATE_RET( s != NULL );
  350. ECDSA_VALIDATE_RET( d != NULL );
  351. ECDSA_VALIDATE_RET( f_rng != NULL );
  352. ECDSA_VALIDATE_RET( buf != NULL || blen == 0 );
  353. /* Use the same RNG for both blinding and ephemeral key generation */
  354. return( ecdsa_sign_restartable( grp, r, s, d, buf, blen,
  355. f_rng, p_rng, f_rng, p_rng, NULL ) );
  356. }
  357. #endif /* !MBEDTLS_ECDSA_SIGN_ALT */
  358. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  359. /*
  360. * Deterministic signature wrapper
  361. *
  362. * note: The f_rng_blind parameter must not be NULL.
  363. *
  364. */
  365. static int ecdsa_sign_det_restartable( mbedtls_ecp_group *grp,
  366. mbedtls_mpi *r, mbedtls_mpi *s,
  367. const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
  368. mbedtls_md_type_t md_alg,
  369. int (*f_rng_blind)(void *, unsigned char *, size_t),
  370. void *p_rng_blind,
  371. mbedtls_ecdsa_restart_ctx *rs_ctx )
  372. {
  373. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  374. mbedtls_hmac_drbg_context rng_ctx;
  375. mbedtls_hmac_drbg_context *p_rng = &rng_ctx;
  376. unsigned char data[2 * MBEDTLS_ECP_MAX_BYTES];
  377. size_t grp_len = ( grp->nbits + 7 ) / 8;
  378. const mbedtls_md_info_t *md_info;
  379. mbedtls_mpi h;
  380. if( ( md_info = mbedtls_md_info_from_type( md_alg ) ) == NULL )
  381. return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
  382. mbedtls_mpi_init( &h );
  383. mbedtls_hmac_drbg_init( &rng_ctx );
  384. ECDSA_RS_ENTER( det );
  385. #if defined(MBEDTLS_ECP_RESTARTABLE)
  386. if( rs_ctx != NULL && rs_ctx->det != NULL )
  387. {
  388. /* redirect to our context */
  389. p_rng = &rs_ctx->det->rng_ctx;
  390. /* jump to current step */
  391. if( rs_ctx->det->state == ecdsa_det_sign )
  392. goto sign;
  393. }
  394. #endif /* MBEDTLS_ECP_RESTARTABLE */
  395. /* Use private key and message hash (reduced) to initialize HMAC_DRBG */
  396. MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( d, data, grp_len ) );
  397. MBEDTLS_MPI_CHK( derive_mpi( grp, &h, buf, blen ) );
  398. MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &h, data + grp_len, grp_len ) );
  399. mbedtls_hmac_drbg_seed_buf( p_rng, md_info, data, 2 * grp_len );
  400. #if defined(MBEDTLS_ECP_RESTARTABLE)
  401. if( rs_ctx != NULL && rs_ctx->det != NULL )
  402. rs_ctx->det->state = ecdsa_det_sign;
  403. sign:
  404. #endif
  405. #if defined(MBEDTLS_ECDSA_SIGN_ALT)
  406. (void) f_rng_blind;
  407. (void) p_rng_blind;
  408. ret = mbedtls_ecdsa_sign( grp, r, s, d, buf, blen,
  409. mbedtls_hmac_drbg_random, p_rng );
  410. #else
  411. ret = ecdsa_sign_restartable( grp, r, s, d, buf, blen,
  412. mbedtls_hmac_drbg_random, p_rng,
  413. f_rng_blind, p_rng_blind, rs_ctx );
  414. #endif /* MBEDTLS_ECDSA_SIGN_ALT */
  415. cleanup:
  416. mbedtls_hmac_drbg_free( &rng_ctx );
  417. mbedtls_mpi_free( &h );
  418. ECDSA_RS_LEAVE( det );
  419. return( ret );
  420. }
  421. /*
  422. * Deterministic signature wrapper
  423. */
  424. int mbedtls_ecdsa_sign_det_ext( mbedtls_ecp_group *grp, mbedtls_mpi *r,
  425. mbedtls_mpi *s, const mbedtls_mpi *d,
  426. const unsigned char *buf, size_t blen,
  427. mbedtls_md_type_t md_alg,
  428. int (*f_rng_blind)(void *, unsigned char *,
  429. size_t),
  430. void *p_rng_blind )
  431. {
  432. ECDSA_VALIDATE_RET( grp != NULL );
  433. ECDSA_VALIDATE_RET( r != NULL );
  434. ECDSA_VALIDATE_RET( s != NULL );
  435. ECDSA_VALIDATE_RET( d != NULL );
  436. ECDSA_VALIDATE_RET( buf != NULL || blen == 0 );
  437. ECDSA_VALIDATE_RET( f_rng_blind != NULL );
  438. return( ecdsa_sign_det_restartable( grp, r, s, d, buf, blen, md_alg,
  439. f_rng_blind, p_rng_blind, NULL ) );
  440. }
  441. #endif /* MBEDTLS_ECDSA_DETERMINISTIC */
  442. #if !defined(MBEDTLS_ECDSA_VERIFY_ALT)
  443. /*
  444. * Verify ECDSA signature of hashed message (SEC1 4.1.4)
  445. * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message)
  446. */
  447. static int ecdsa_verify_restartable( mbedtls_ecp_group *grp,
  448. const unsigned char *buf, size_t blen,
  449. const mbedtls_ecp_point *Q,
  450. const mbedtls_mpi *r, const mbedtls_mpi *s,
  451. mbedtls_ecdsa_restart_ctx *rs_ctx )
  452. {
  453. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  454. mbedtls_mpi e, s_inv, u1, u2;
  455. mbedtls_ecp_point R;
  456. mbedtls_mpi *pu1 = &u1, *pu2 = &u2;
  457. mbedtls_ecp_point_init( &R );
  458. mbedtls_mpi_init( &e ); mbedtls_mpi_init( &s_inv );
  459. mbedtls_mpi_init( &u1 ); mbedtls_mpi_init( &u2 );
  460. /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
  461. if( ! mbedtls_ecdsa_can_do( grp->id ) || grp->N.p == NULL )
  462. return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
  463. ECDSA_RS_ENTER( ver );
  464. #if defined(MBEDTLS_ECP_RESTARTABLE)
  465. if( rs_ctx != NULL && rs_ctx->ver != NULL )
  466. {
  467. /* redirect to our context */
  468. pu1 = &rs_ctx->ver->u1;
  469. pu2 = &rs_ctx->ver->u2;
  470. /* jump to current step */
  471. if( rs_ctx->ver->state == ecdsa_ver_muladd )
  472. goto muladd;
  473. }
  474. #endif /* MBEDTLS_ECP_RESTARTABLE */
  475. /*
  476. * Step 1: make sure r and s are in range 1..n-1
  477. */
  478. if( mbedtls_mpi_cmp_int( r, 1 ) < 0 || mbedtls_mpi_cmp_mpi( r, &grp->N ) >= 0 ||
  479. mbedtls_mpi_cmp_int( s, 1 ) < 0 || mbedtls_mpi_cmp_mpi( s, &grp->N ) >= 0 )
  480. {
  481. ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
  482. goto cleanup;
  483. }
  484. /*
  485. * Step 3: derive MPI from hashed message
  486. */
  487. MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) );
  488. /*
  489. * Step 4: u1 = e / s mod n, u2 = r / s mod n
  490. */
  491. ECDSA_BUDGET( MBEDTLS_ECP_OPS_CHK + MBEDTLS_ECP_OPS_INV + 2 );
  492. MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &s_inv, s, &grp->N ) );
  493. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( pu1, &e, &s_inv ) );
  494. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( pu1, pu1, &grp->N ) );
  495. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( pu2, r, &s_inv ) );
  496. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( pu2, pu2, &grp->N ) );
  497. #if defined(MBEDTLS_ECP_RESTARTABLE)
  498. if( rs_ctx != NULL && rs_ctx->ver != NULL )
  499. rs_ctx->ver->state = ecdsa_ver_muladd;
  500. muladd:
  501. #endif
  502. /*
  503. * Step 5: R = u1 G + u2 Q
  504. */
  505. MBEDTLS_MPI_CHK( mbedtls_ecp_muladd_restartable( grp,
  506. &R, pu1, &grp->G, pu2, Q, ECDSA_RS_ECP ) );
  507. if( mbedtls_ecp_is_zero( &R ) )
  508. {
  509. ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
  510. goto cleanup;
  511. }
  512. /*
  513. * Step 6: convert xR to an integer (no-op)
  514. * Step 7: reduce xR mod n (gives v)
  515. */
  516. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &R.X, &R.X, &grp->N ) );
  517. /*
  518. * Step 8: check if v (that is, R.X) is equal to r
  519. */
  520. if( mbedtls_mpi_cmp_mpi( &R.X, r ) != 0 )
  521. {
  522. ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
  523. goto cleanup;
  524. }
  525. cleanup:
  526. mbedtls_ecp_point_free( &R );
  527. mbedtls_mpi_free( &e ); mbedtls_mpi_free( &s_inv );
  528. mbedtls_mpi_free( &u1 ); mbedtls_mpi_free( &u2 );
  529. ECDSA_RS_LEAVE( ver );
  530. return( ret );
  531. }
  532. /*
  533. * Verify ECDSA signature of hashed message
  534. */
  535. int mbedtls_ecdsa_verify( mbedtls_ecp_group *grp,
  536. const unsigned char *buf, size_t blen,
  537. const mbedtls_ecp_point *Q,
  538. const mbedtls_mpi *r,
  539. const mbedtls_mpi *s)
  540. {
  541. ECDSA_VALIDATE_RET( grp != NULL );
  542. ECDSA_VALIDATE_RET( Q != NULL );
  543. ECDSA_VALIDATE_RET( r != NULL );
  544. ECDSA_VALIDATE_RET( s != NULL );
  545. ECDSA_VALIDATE_RET( buf != NULL || blen == 0 );
  546. return( ecdsa_verify_restartable( grp, buf, blen, Q, r, s, NULL ) );
  547. }
  548. #endif /* !MBEDTLS_ECDSA_VERIFY_ALT */
  549. /*
  550. * Convert a signature (given by context) to ASN.1
  551. */
  552. static int ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s,
  553. unsigned char *sig, size_t sig_size,
  554. size_t *slen )
  555. {
  556. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  557. unsigned char buf[MBEDTLS_ECDSA_MAX_LEN] = {0};
  558. unsigned char *p = buf + sizeof( buf );
  559. size_t len = 0;
  560. MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, s ) );
  561. MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, r ) );
  562. MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( &p, buf, len ) );
  563. MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( &p, buf,
  564. MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) );
  565. if( len > sig_size )
  566. return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
  567. memcpy( sig, p, len );
  568. *slen = len;
  569. return( 0 );
  570. }
  571. /*
  572. * Compute and write signature
  573. */
  574. int mbedtls_ecdsa_write_signature_restartable( mbedtls_ecdsa_context *ctx,
  575. mbedtls_md_type_t md_alg,
  576. const unsigned char *hash, size_t hlen,
  577. unsigned char *sig, size_t sig_size, size_t *slen,
  578. int (*f_rng)(void *, unsigned char *, size_t),
  579. void *p_rng,
  580. mbedtls_ecdsa_restart_ctx *rs_ctx )
  581. {
  582. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  583. mbedtls_mpi r, s;
  584. ECDSA_VALIDATE_RET( ctx != NULL );
  585. ECDSA_VALIDATE_RET( hash != NULL );
  586. ECDSA_VALIDATE_RET( sig != NULL );
  587. ECDSA_VALIDATE_RET( slen != NULL );
  588. if( f_rng == NULL )
  589. return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
  590. mbedtls_mpi_init( &r );
  591. mbedtls_mpi_init( &s );
  592. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  593. MBEDTLS_MPI_CHK( ecdsa_sign_det_restartable( &ctx->grp, &r, &s, &ctx->d,
  594. hash, hlen, md_alg, f_rng,
  595. p_rng, rs_ctx ) );
  596. #else
  597. (void) md_alg;
  598. #if defined(MBEDTLS_ECDSA_SIGN_ALT)
  599. (void) rs_ctx;
  600. MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign( &ctx->grp, &r, &s, &ctx->d,
  601. hash, hlen, f_rng, p_rng ) );
  602. #else
  603. /* Use the same RNG for both blinding and ephemeral key generation */
  604. MBEDTLS_MPI_CHK( ecdsa_sign_restartable( &ctx->grp, &r, &s, &ctx->d,
  605. hash, hlen, f_rng, p_rng, f_rng,
  606. p_rng, rs_ctx ) );
  607. #endif /* MBEDTLS_ECDSA_SIGN_ALT */
  608. #endif /* MBEDTLS_ECDSA_DETERMINISTIC */
  609. MBEDTLS_MPI_CHK( ecdsa_signature_to_asn1( &r, &s, sig, sig_size, slen ) );
  610. cleanup:
  611. mbedtls_mpi_free( &r );
  612. mbedtls_mpi_free( &s );
  613. return( ret );
  614. }
  615. /*
  616. * Compute and write signature
  617. */
  618. int mbedtls_ecdsa_write_signature( mbedtls_ecdsa_context *ctx,
  619. mbedtls_md_type_t md_alg,
  620. const unsigned char *hash, size_t hlen,
  621. unsigned char *sig, size_t sig_size, size_t *slen,
  622. int (*f_rng)(void *, unsigned char *, size_t),
  623. void *p_rng )
  624. {
  625. ECDSA_VALIDATE_RET( ctx != NULL );
  626. ECDSA_VALIDATE_RET( hash != NULL );
  627. ECDSA_VALIDATE_RET( sig != NULL );
  628. ECDSA_VALIDATE_RET( slen != NULL );
  629. return( mbedtls_ecdsa_write_signature_restartable(
  630. ctx, md_alg, hash, hlen, sig, sig_size, slen,
  631. f_rng, p_rng, NULL ) );
  632. }
  633. /*
  634. * Read and check signature
  635. */
  636. int mbedtls_ecdsa_read_signature( mbedtls_ecdsa_context *ctx,
  637. const unsigned char *hash, size_t hlen,
  638. const unsigned char *sig, size_t slen )
  639. {
  640. ECDSA_VALIDATE_RET( ctx != NULL );
  641. ECDSA_VALIDATE_RET( hash != NULL );
  642. ECDSA_VALIDATE_RET( sig != NULL );
  643. return( mbedtls_ecdsa_read_signature_restartable(
  644. ctx, hash, hlen, sig, slen, NULL ) );
  645. }
  646. /*
  647. * Restartable read and check signature
  648. */
  649. int mbedtls_ecdsa_read_signature_restartable( mbedtls_ecdsa_context *ctx,
  650. const unsigned char *hash, size_t hlen,
  651. const unsigned char *sig, size_t slen,
  652. mbedtls_ecdsa_restart_ctx *rs_ctx )
  653. {
  654. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  655. unsigned char *p = (unsigned char *) sig;
  656. const unsigned char *end = sig + slen;
  657. size_t len;
  658. mbedtls_mpi r, s;
  659. ECDSA_VALIDATE_RET( ctx != NULL );
  660. ECDSA_VALIDATE_RET( hash != NULL );
  661. ECDSA_VALIDATE_RET( sig != NULL );
  662. mbedtls_mpi_init( &r );
  663. mbedtls_mpi_init( &s );
  664. if( ( ret = mbedtls_asn1_get_tag( &p, end, &len,
  665. MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 )
  666. {
  667. ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  668. goto cleanup;
  669. }
  670. if( p + len != end )
  671. {
  672. ret = MBEDTLS_ERROR_ADD( MBEDTLS_ERR_ECP_BAD_INPUT_DATA,
  673. MBEDTLS_ERR_ASN1_LENGTH_MISMATCH );
  674. goto cleanup;
  675. }
  676. if( ( ret = mbedtls_asn1_get_mpi( &p, end, &r ) ) != 0 ||
  677. ( ret = mbedtls_asn1_get_mpi( &p, end, &s ) ) != 0 )
  678. {
  679. ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  680. goto cleanup;
  681. }
  682. #if defined(MBEDTLS_ECDSA_VERIFY_ALT)
  683. (void) rs_ctx;
  684. if( ( ret = mbedtls_ecdsa_verify( &ctx->grp, hash, hlen,
  685. &ctx->Q, &r, &s ) ) != 0 )
  686. goto cleanup;
  687. #else
  688. if( ( ret = ecdsa_verify_restartable( &ctx->grp, hash, hlen,
  689. &ctx->Q, &r, &s, rs_ctx ) ) != 0 )
  690. goto cleanup;
  691. #endif /* MBEDTLS_ECDSA_VERIFY_ALT */
  692. /* At this point we know that the buffer starts with a valid signature.
  693. * Return 0 if the buffer just contains the signature, and a specific
  694. * error code if the valid signature is followed by more data. */
  695. if( p != end )
  696. ret = MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH;
  697. cleanup:
  698. mbedtls_mpi_free( &r );
  699. mbedtls_mpi_free( &s );
  700. return( ret );
  701. }
  702. #if !defined(MBEDTLS_ECDSA_GENKEY_ALT)
  703. /*
  704. * Generate key pair
  705. */
  706. int mbedtls_ecdsa_genkey( mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid,
  707. int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
  708. {
  709. int ret = 0;
  710. ECDSA_VALIDATE_RET( ctx != NULL );
  711. ECDSA_VALIDATE_RET( f_rng != NULL );
  712. ret = mbedtls_ecp_group_load( &ctx->grp, gid );
  713. if( ret != 0 )
  714. return( ret );
  715. return( mbedtls_ecp_gen_keypair( &ctx->grp, &ctx->d,
  716. &ctx->Q, f_rng, p_rng ) );
  717. }
  718. #endif /* !MBEDTLS_ECDSA_GENKEY_ALT */
  719. /*
  720. * Set context from an mbedtls_ecp_keypair
  721. */
  722. int mbedtls_ecdsa_from_keypair( mbedtls_ecdsa_context *ctx, const mbedtls_ecp_keypair *key )
  723. {
  724. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  725. ECDSA_VALIDATE_RET( ctx != NULL );
  726. ECDSA_VALIDATE_RET( key != NULL );
  727. if( ( ret = mbedtls_ecp_group_copy( &ctx->grp, &key->grp ) ) != 0 ||
  728. ( ret = mbedtls_mpi_copy( &ctx->d, &key->d ) ) != 0 ||
  729. ( ret = mbedtls_ecp_copy( &ctx->Q, &key->Q ) ) != 0 )
  730. {
  731. mbedtls_ecdsa_free( ctx );
  732. }
  733. return( ret );
  734. }
  735. /*
  736. * Initialize context
  737. */
  738. void mbedtls_ecdsa_init( mbedtls_ecdsa_context *ctx )
  739. {
  740. ECDSA_VALIDATE( ctx != NULL );
  741. mbedtls_ecp_keypair_init( ctx );
  742. }
  743. /*
  744. * Free context
  745. */
  746. void mbedtls_ecdsa_free( mbedtls_ecdsa_context *ctx )
  747. {
  748. if( ctx == NULL )
  749. return;
  750. mbedtls_ecp_keypair_free( ctx );
  751. }
  752. #if defined(MBEDTLS_ECP_RESTARTABLE)
  753. /*
  754. * Initialize a restart context
  755. */
  756. void mbedtls_ecdsa_restart_init( mbedtls_ecdsa_restart_ctx *ctx )
  757. {
  758. ECDSA_VALIDATE( ctx != NULL );
  759. mbedtls_ecp_restart_init( &ctx->ecp );
  760. ctx->ver = NULL;
  761. ctx->sig = NULL;
  762. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  763. ctx->det = NULL;
  764. #endif
  765. }
  766. /*
  767. * Free the components of a restart context
  768. */
  769. void mbedtls_ecdsa_restart_free( mbedtls_ecdsa_restart_ctx *ctx )
  770. {
  771. if( ctx == NULL )
  772. return;
  773. mbedtls_ecp_restart_free( &ctx->ecp );
  774. ecdsa_restart_ver_free( ctx->ver );
  775. mbedtls_free( ctx->ver );
  776. ctx->ver = NULL;
  777. ecdsa_restart_sig_free( ctx->sig );
  778. mbedtls_free( ctx->sig );
  779. ctx->sig = NULL;
  780. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  781. ecdsa_restart_det_free( ctx->det );
  782. mbedtls_free( ctx->det );
  783. ctx->det = NULL;
  784. #endif
  785. }
  786. #endif /* MBEDTLS_ECP_RESTARTABLE */
  787. #endif /* MBEDTLS_ECDSA_C */