123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569 |
- /*
- * Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
- *
- * This software is provided 'as-is', without any express or implied
- * warranty. In no event will the authors be held liable for any damages
- * arising from the use of this software.
- * Permission is granted to anyone to use this software for any purpose,
- * including commercial applications, and to alter it and redistribute it
- * freely, subject to the following restrictions:
- * 1. The origin of this software must not be misrepresented; you must not
- * claim that you wrote the original software. If you use this software
- * in a product, an acknowledgment in the product documentation would be
- * appreciated but is not required.
- * 2. Altered source versions must be plainly marked as such, and must not be
- * misrepresented as being the original software.
- * 3. This notice may not be removed or altered from any source distribution.
- */
- #include "b2PolygonShape.h"
- void b2PolygonDef::SetAsBox(float32 hx, float32 hy)
- {
- vertexCount = 4;
- vertices[0].Set(-hx, -hy);
- vertices[1].Set( hx, -hy);
- vertices[2].Set( hx, hy);
- vertices[3].Set(-hx, hy);
- }
- void b2PolygonDef::SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle)
- {
- SetAsBox(hx, hy);
- b2XForm xf;
- xf.position = center;
- xf.R.Set(angle);
- for (int32 i = 0; i < vertexCount; ++i)
- {
- vertices[i] = b2Mul(xf, vertices[i]);
- }
- }
- static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count)
- {
- b2Assert(count >= 3);
- b2Vec2 c; c.Set(0.0f, 0.0f);
- float32 area = 0.0f;
- // pRef is the reference point for forming triangles.
- // It's location doesn't change the result (except for rounding error).
- b2Vec2 pRef(0.0f, 0.0f);
- #if 0
- // This code would put the reference point inside the polygon.
- for (int32 i = 0; i < count; ++i)
- {
- pRef += vs[i];
- }
- pRef *= 1.0f / count;
- #endif
- const float32 inv3 = 1.0f / 3.0f;
- for (int32 i = 0; i < count; ++i)
- {
- // Triangle vertices.
- b2Vec2 p1 = pRef;
- b2Vec2 p2 = vs[i];
- b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0];
- b2Vec2 e1 = p2 - p1;
- b2Vec2 e2 = p3 - p1;
- float32 D = b2Cross(e1, e2);
- float32 triangleArea = 0.5f * D;
- area += triangleArea;
- // Area weighted centroid
- c += triangleArea * inv3 * (p1 + p2 + p3);
- }
- // Centroid
- b2Assert(area > B2_FLT_EPSILON);
- c *= 1.0f / area;
- return c;
- }
- // http://www.geometrictools.com/Documentation/MinimumAreaRectangle.pdf
- static void ComputeOBB(b2OBB* obb, const b2Vec2* vs, int32 count)
- {
- b2Assert(count <= b2_maxPolygonVertices);
- b2Vec2 p[b2_maxPolygonVertices + 1];
- for (int32 i = 0; i < count; ++i)
- {
- p[i] = vs[i];
- }
- p[count] = p[0];
- float32 minArea = B2_FLT_MAX;
-
- for (int32 i = 1; i <= count; ++i)
- {
- b2Vec2 root = p[i-1];
- b2Vec2 ux = p[i] - root;
- float32 length = ux.Normalize();
- b2Assert(length > B2_FLT_EPSILON);
- b2Vec2 uy(-ux.y, ux.x);
- b2Vec2 lower(B2_FLT_MAX, B2_FLT_MAX);
- b2Vec2 upper(-B2_FLT_MAX, -B2_FLT_MAX);
- for (int32 j = 0; j < count; ++j)
- {
- b2Vec2 d = p[j] - root;
- b2Vec2 r;
- r.x = b2Dot(ux, d);
- r.y = b2Dot(uy, d);
- lower = b2Min(lower, r);
- upper = b2Max(upper, r);
- }
- float32 area = (upper.x - lower.x) * (upper.y - lower.y);
- if (area < 0.95f * minArea)
- {
- minArea = area;
- obb->R.col1 = ux;
- obb->R.col2 = uy;
- b2Vec2 center = 0.5f * (lower + upper);
- obb->center = root + b2Mul(obb->R, center);
- obb->extents = 0.5f * (upper - lower);
- }
- }
- b2Assert(minArea < B2_FLT_MAX);
- }
- b2PolygonShape::b2PolygonShape(const b2ShapeDef* def)
- : b2Shape(def)
- {
- b2Assert(def->type == e_polygonShape);
- m_type = e_polygonShape;
- const b2PolygonDef* poly = (const b2PolygonDef*)def;
- // Get the vertices transformed into the body frame.
- m_vertexCount = poly->vertexCount;
- b2Assert(3 <= m_vertexCount && m_vertexCount <= b2_maxPolygonVertices);
- // Copy vertices.
- for (int32 i = 0; i < m_vertexCount; ++i)
- {
- m_vertices[i] = poly->vertices[i];
- }
- // Compute normals. Ensure the edges have non-zero length.
- for (int32 i = 0; i < m_vertexCount; ++i)
- {
- int32 i1 = i;
- int32 i2 = i + 1 < m_vertexCount ? i + 1 : 0;
- b2Vec2 edge = m_vertices[i2] - m_vertices[i1];
- b2Assert(edge.LengthSquared() > B2_FLT_EPSILON * B2_FLT_EPSILON);
- m_normals[i] = b2Cross(edge, 1.0f);
- m_normals[i].Normalize();
- }
- #ifdef _DEBUG
- // Ensure the polygon is convex.
- for (int32 i = 0; i < m_vertexCount; ++i)
- {
- for (int32 j = 0; j < m_vertexCount; ++j)
- {
- // Don't check vertices on the current edge.
- if (j == i || j == (i + 1) % m_vertexCount)
- {
- continue;
- }
-
- // Your polygon is non-convex (it has an indentation).
- // Or your polygon is too skinny.
- float32 s = b2Dot(m_normals[i], m_vertices[j] - m_vertices[i]);
- b2Assert(s < -b2_linearSlop);
- }
- }
- // Ensure the polygon is counter-clockwise.
- for (int32 i = 1; i < m_vertexCount; ++i)
- {
- float32 cross = b2Cross(m_normals[i-1], m_normals[i]);
- // Keep asinf happy.
- cross = b2Clamp(cross, -1.0f, 1.0f);
- // You have consecutive edges that are almost parallel on your polygon.
- float32 angle = asinf(cross);
- b2Assert(angle > b2_angularSlop);
- }
- #endif
- // Compute the polygon centroid.
- m_centroid = ComputeCentroid(poly->vertices, poly->vertexCount);
- // Compute the oriented bounding box.
- ComputeOBB(&m_obb, m_vertices, m_vertexCount);
- // Create core polygon shape by shifting edges inward.
- // Also compute the min/max radius for CCD.
- for (int32 i = 0; i < m_vertexCount; ++i)
- {
- int32 i1 = i - 1 >= 0 ? i - 1 : m_vertexCount - 1;
- int32 i2 = i;
- b2Vec2 n1 = m_normals[i1];
- b2Vec2 n2 = m_normals[i2];
- b2Vec2 v = m_vertices[i] - m_centroid;;
- b2Vec2 d;
- d.x = b2Dot(n1, v) - b2_toiSlop;
- d.y = b2Dot(n2, v) - b2_toiSlop;
- // Shifting the edge inward by b2_toiSlop should
- // not cause the plane to pass the centroid.
- // Your shape has a radius/extent less than b2_toiSlop.
- b2Assert(d.x >= 0.0f);
- b2Assert(d.y >= 0.0f);
- b2Mat22 A;
- A.col1.x = n1.x; A.col2.x = n1.y;
- A.col1.y = n2.x; A.col2.y = n2.y;
- m_coreVertices[i] = A.Solve(d) + m_centroid;
- }
- }
- void b2PolygonShape::UpdateSweepRadius(const b2Vec2& center)
- {
- // Update the sweep radius (maximum radius) as measured from
- // a local center point.
- m_sweepRadius = 0.0f;
- for (int32 i = 0; i < m_vertexCount; ++i)
- {
- b2Vec2 d = m_coreVertices[i] - center;
- m_sweepRadius = b2Max(m_sweepRadius, d.Length());
- }
- }
- bool b2PolygonShape::TestPoint(const b2XForm& xf, const b2Vec2& p) const
- {
- b2Vec2 pLocal = b2MulT(xf.R, p - xf.position);
- for (int32 i = 0; i < m_vertexCount; ++i)
- {
- float32 dot = b2Dot(m_normals[i], pLocal - m_vertices[i]);
- if (dot > 0.0f)
- {
- return false;
- }
- }
- return true;
- }
- b2SegmentCollide b2PolygonShape::TestSegment(
- const b2XForm& xf,
- float32* lambda,
- b2Vec2* normal,
- const b2Segment& segment,
- float32 maxLambda) const
- {
- float32 lower = 0.0f, upper = maxLambda;
- b2Vec2 p1 = b2MulT(xf.R, segment.p1 - xf.position);
- b2Vec2 p2 = b2MulT(xf.R, segment.p2 - xf.position);
- b2Vec2 d = p2 - p1;
- int32 index = -1;
- for (int32 i = 0; i < m_vertexCount; ++i)
- {
- // p = p1 + a * d
- // dot(normal, p - v) = 0
- // dot(normal, p1 - v) + a * dot(normal, d) = 0
- float32 numerator = b2Dot(m_normals[i], m_vertices[i] - p1);
- float32 denominator = b2Dot(m_normals[i], d);
- if (denominator == 0.0f)
- {
- if (numerator < 0.0f)
- {
- return e_missCollide;
- }
- }
- else
- {
- // Note: we want this predicate without division:
- // lower < numerator / denominator, where denominator < 0
- // Since denominator < 0, we have to flip the inequality:
- // lower < numerator / denominator <==> denominator * lower > numerator.
- if (denominator < 0.0f && numerator < lower * denominator)
- {
- // Increase lower.
- // The segment enters this half-space.
- lower = numerator / denominator;
- index = i;
- }
- else if (denominator > 0.0f && numerator < upper * denominator)
- {
- // Decrease upper.
- // The segment exits this half-space.
- upper = numerator / denominator;
- }
- }
- if (upper < lower)
- {
- return e_missCollide;
- }
- }
- b2Assert(0.0f <= lower && lower <= maxLambda);
- if (index >= 0)
- {
- *lambda = lower;
- *normal = b2Mul(xf.R, m_normals[index]);
- return e_hitCollide;
- }
- *lambda = 0;
- return e_startsInsideCollide;
- }
- void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2XForm& xf) const
- {
- b2Mat22 R = b2Mul(xf.R, m_obb.R);
- b2Mat22 absR = b2Abs(R);
- b2Vec2 h = b2Mul(absR, m_obb.extents);
- b2Vec2 position = xf.position + b2Mul(xf.R, m_obb.center);
- aabb->lowerBound = position - h;
- aabb->upperBound = position + h;
- }
- void b2PolygonShape::ComputeSweptAABB(b2AABB* aabb,
- const b2XForm& transform1,
- const b2XForm& transform2) const
- {
- b2AABB aabb1, aabb2;
- ComputeAABB(&aabb1, transform1);
- ComputeAABB(&aabb2, transform2);
- aabb->lowerBound = b2Min(aabb1.lowerBound, aabb2.lowerBound);
- aabb->upperBound = b2Max(aabb1.upperBound, aabb2.upperBound);
- }
- void b2PolygonShape::ComputeMass(b2MassData* massData) const
- {
- // Polygon mass, centroid, and inertia.
- // Let rho be the polygon density in mass per unit area.
- // Then:
- // mass = rho * int(dA)
- // centroid.x = (1/mass) * rho * int(x * dA)
- // centroid.y = (1/mass) * rho * int(y * dA)
- // I = rho * int((x*x + y*y) * dA)
- //
- // We can compute these integrals by summing all the integrals
- // for each triangle of the polygon. To evaluate the integral
- // for a single triangle, we make a change of variables to
- // the (u,v) coordinates of the triangle:
- // x = x0 + e1x * u + e2x * v
- // y = y0 + e1y * u + e2y * v
- // where 0 <= u && 0 <= v && u + v <= 1.
- //
- // We integrate u from [0,1-v] and then v from [0,1].
- // We also need to use the Jacobian of the transformation:
- // D = cross(e1, e2)
- //
- // Simplification: triangle centroid = (1/3) * (p1 + p2 + p3)
- //
- // The rest of the derivation is handled by computer algebra.
- b2Assert(m_vertexCount >= 3);
- b2Vec2 center; center.Set(0.0f, 0.0f);
- float32 area = 0.0f;
- float32 I = 0.0f;
- // pRef is the reference point for forming triangles.
- // It's location doesn't change the result (except for rounding error).
- b2Vec2 pRef(0.0f, 0.0f);
- #if 0
- // This code would put the reference point inside the polygon.
- for (int32 i = 0; i < m_vertexCount; ++i)
- {
- pRef += m_vertices[i];
- }
- pRef *= 1.0f / count;
- #endif
- const float32 k_inv3 = 1.0f / 3.0f;
- for (int32 i = 0; i < m_vertexCount; ++i)
- {
- // Triangle vertices.
- b2Vec2 p1 = pRef;
- b2Vec2 p2 = m_vertices[i];
- b2Vec2 p3 = i + 1 < m_vertexCount ? m_vertices[i+1] : m_vertices[0];
- b2Vec2 e1 = p2 - p1;
- b2Vec2 e2 = p3 - p1;
- float32 D = b2Cross(e1, e2);
- float32 triangleArea = 0.5f * D;
- area += triangleArea;
- // Area weighted centroid
- center += triangleArea * k_inv3 * (p1 + p2 + p3);
- float32 px = p1.x, py = p1.y;
- float32 ex1 = e1.x, ey1 = e1.y;
- float32 ex2 = e2.x, ey2 = e2.y;
- float32 intx2 = k_inv3 * (0.25f * (ex1*ex1 + ex2*ex1 + ex2*ex2) + (px*ex1 + px*ex2)) + 0.5f*px*px;
- float32 inty2 = k_inv3 * (0.25f * (ey1*ey1 + ey2*ey1 + ey2*ey2) + (py*ey1 + py*ey2)) + 0.5f*py*py;
- I += D * (intx2 + inty2);
- }
- // Total mass
- massData->mass = m_density * area;
- // Center of mass
- b2Assert(area > B2_FLT_EPSILON);
- center *= 1.0f / area;
- massData->center = center;
- // Inertia tensor relative to the local origin.
- massData->I = m_density * I;
- }
- float32 b2PolygonShape::ComputeSubmergedArea( const b2Vec2& normal,
- float32 offset,
- const b2XForm& xf,
- b2Vec2* c) const
- {
- //Transform plane into shape co-ordinates
- b2Vec2 normalL = b2MulT(xf.R,normal);
- float32 offsetL = offset - b2Dot(normal,xf.position);
-
- float32 depths[b2_maxPolygonVertices];
- int32 diveCount = 0;
- int32 intoIndex = -1;
- int32 outoIndex = -1;
-
- bool lastSubmerged = false;
- int32 i;
- for(i=0;i<m_vertexCount;i++){
- depths[i] = b2Dot(normalL,m_vertices[i]) - offsetL;
- bool isSubmerged = depths[i]<-B2_FLT_EPSILON;
- if(i>0){
- if(isSubmerged){
- if(!lastSubmerged){
- intoIndex = i-1;
- diveCount++;
- }
- }else{
- if(lastSubmerged){
- outoIndex = i-1;
- diveCount++;
- }
- }
- }
- lastSubmerged = isSubmerged;
- }
- switch(diveCount){
- case 0:
- if(lastSubmerged){
- //Completely submerged
- b2MassData md;
- ComputeMass(&md);
- *c = b2Mul(xf,md.center);
- return md.mass/m_density;
- }else{
- //Completely dry
- return 0;
- }
- break;
- case 1:
- if(intoIndex==-1){
- intoIndex = m_vertexCount-1;
- }else{
- outoIndex = m_vertexCount-1;
- }
- break;
- }
- int32 intoIndex2 = (intoIndex+1)%m_vertexCount;
- int32 outoIndex2 = (outoIndex+1)%m_vertexCount;
-
- float32 intoLambda = (0 - depths[intoIndex]) / (depths[intoIndex2] - depths[intoIndex]);
- float32 outoLambda = (0 - depths[outoIndex]) / (depths[outoIndex2] - depths[outoIndex]);
-
- b2Vec2 intoVec( m_vertices[intoIndex].x*(1-intoLambda)+m_vertices[intoIndex2].x*intoLambda,
- m_vertices[intoIndex].y*(1-intoLambda)+m_vertices[intoIndex2].y*intoLambda);
- b2Vec2 outoVec( m_vertices[outoIndex].x*(1-outoLambda)+m_vertices[outoIndex2].x*outoLambda,
- m_vertices[outoIndex].y*(1-outoLambda)+m_vertices[outoIndex2].y*outoLambda);
-
- //Initialize accumulator
- float32 area = 0;
- b2Vec2 center(0,0);
- b2Vec2 p2 = m_vertices[intoIndex2];
- b2Vec2 p3;
-
- float32 k_inv3 = 1.0f / 3.0f;
-
- //An awkward loop from intoIndex2+1 to outIndex2
- i = intoIndex2;
- while(i!=outoIndex2){
- i=(i+1)%m_vertexCount;
- if(i==outoIndex2)
- p3 = outoVec;
- else
- p3 = m_vertices[i];
- //Add the triangle formed by intoVec,p2,p3
- {
- b2Vec2 e1 = p2 - intoVec;
- b2Vec2 e2 = p3 - intoVec;
-
- float32 D = b2Cross(e1, e2);
-
- float32 triangleArea = 0.5f * D;
- area += triangleArea;
-
- // Area weighted centroid
- center += triangleArea * k_inv3 * (intoVec + p2 + p3);
- }
- //
- p2=p3;
- }
-
- //Normalize and transform centroid
- center *= 1.0f/area;
-
- *c = b2Mul(xf,center);
-
- return area;
- }
- b2Vec2 b2PolygonShape::Centroid(const b2XForm& xf) const
- {
- return b2Mul(xf, m_centroid);
- }
- b2Vec2 b2PolygonShape::Support(const b2XForm& xf, const b2Vec2& d) const
- {
- b2Vec2 dLocal = b2MulT(xf.R, d);
- int32 bestIndex = 0;
- float32 bestValue = b2Dot(m_coreVertices[0], dLocal);
- for (int32 i = 1; i < m_vertexCount; ++i)
- {
- float32 value = b2Dot(m_coreVertices[i], dLocal);
- if (value > bestValue)
- {
- bestIndex = i;
- bestValue = value;
- }
- }
- return b2Mul(xf, m_coreVertices[bestIndex]);
- }
|