b2Math.cpp 2.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182
  1. /*
  2. * Copyright (c) 2007 Erin Catto http://www.gphysics.com
  3. *
  4. * This software is provided 'as-is', without any express or implied
  5. * warranty. In no event will the authors be held liable for any damages
  6. * arising from the use of this software.
  7. * Permission is granted to anyone to use this software for any purpose,
  8. * including commercial applications, and to alter it and redistribute it
  9. * freely, subject to the following restrictions:
  10. * 1. The origin of this software must not be misrepresented; you must not
  11. * claim that you wrote the original software. If you use this software
  12. * in a product, an acknowledgment in the product documentation would be
  13. * appreciated but is not required.
  14. * 2. Altered source versions must be plainly marked as such, and must not be
  15. * misrepresented as being the original software.
  16. * 3. This notice may not be removed or altered from any source distribution.
  17. */
  18. #include "b2Math.h"
  19. const b2Vec2 b2Vec2_zero(0.0f, 0.0f);
  20. const b2Mat22 b2Mat22_identity(1.0f, 0.0f, 0.0f, 1.0f);
  21. const b2XForm b2XForm_identity(b2Vec2_zero, b2Mat22_identity);
  22. /// Solve A * x = b, where b is a column vector. This is more efficient
  23. /// than computing the inverse in one-shot cases.
  24. b2Vec3 b2Mat33::Solve33(const b2Vec3& b) const
  25. {
  26. float32 det = b2Dot(col1, b2Cross(col2, col3));
  27. b2Assert(det != 0.0f);
  28. det = 1.0f / det;
  29. b2Vec3 x;
  30. x.x = det * b2Dot(b, b2Cross(col2, col3));
  31. x.y = det * b2Dot(col1, b2Cross(b, col3));
  32. x.z = det * b2Dot(col1, b2Cross(col2, b));
  33. return x;
  34. }
  35. /// Solve A * x = b, where b is a column vector. This is more efficient
  36. /// than computing the inverse in one-shot cases.
  37. b2Vec2 b2Mat33::Solve22(const b2Vec2& b) const
  38. {
  39. float32 a11 = col1.x, a12 = col2.x, a21 = col1.y, a22 = col2.y;
  40. float32 det = a11 * a22 - a12 * a21;
  41. b2Assert(det != 0.0f);
  42. det = 1.0f / det;
  43. b2Vec2 x;
  44. x.x = det * (a22 * b.x - a12 * b.y);
  45. x.y = det * (a11 * b.y - a21 * b.x);
  46. return x;
  47. }
  48. void b2Sweep::GetXForm(b2XForm* xf, float32 t) const
  49. {
  50. // center = p + R * localCenter
  51. if (1.0f - t0 > B2_FLT_EPSILON)
  52. {
  53. float32 alpha = (t - t0) / (1.0f - t0);
  54. xf->position = (1.0f - alpha) * c0 + alpha * c;
  55. float32 angle = (1.0f - alpha) * a0 + alpha * a;
  56. xf->R.Set(angle);
  57. }
  58. else
  59. {
  60. xf->position = c;
  61. xf->R.Set(a);
  62. }
  63. // Shift to origin
  64. xf->position -= b2Mul(xf->R, localCenter);
  65. }
  66. void b2Sweep::Advance(float32 t)
  67. {
  68. if (t0 < t && 1.0f - t0 > B2_FLT_EPSILON)
  69. {
  70. float32 alpha = (t - t0) / (1.0f - t0);
  71. c0 = (1.0f - alpha) * c0 + alpha * c;
  72. a0 = (1.0f - alpha) * a0 + alpha * a;
  73. t0 = t;
  74. }
  75. }