b2RevoluteJoint.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474
  1. /*
  2. * Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
  3. *
  4. * This software is provided 'as-is', without any express or implied
  5. * warranty. In no event will the authors be held liable for any damages
  6. * arising from the use of this software.
  7. * Permission is granted to anyone to use this software for any purpose,
  8. * including commercial applications, and to alter it and redistribute it
  9. * freely, subject to the following restrictions:
  10. * 1. The origin of this software must not be misrepresented; you must not
  11. * claim that you wrote the original software. If you use this software
  12. * in a product, an acknowledgment in the product documentation would be
  13. * appreciated but is not required.
  14. * 2. Altered source versions must be plainly marked as such, and must not be
  15. * misrepresented as being the original software.
  16. * 3. This notice may not be removed or altered from any source distribution.
  17. */
  18. #include "b2RevoluteJoint.h"
  19. #include "../b2Body.h"
  20. #include "../b2World.h"
  21. #include "../b2Island.h"
  22. // Point-to-point constraint
  23. // C = p2 - p1
  24. // Cdot = v2 - v1
  25. // = v2 + cross(w2, r2) - v1 - cross(w1, r1)
  26. // J = [-I -r1_skew I r2_skew ]
  27. // Identity used:
  28. // w k % (rx i + ry j) = w * (-ry i + rx j)
  29. // Motor constraint
  30. // Cdot = w2 - w1
  31. // J = [0 0 -1 0 0 1]
  32. // K = invI1 + invI2
  33. void b2RevoluteJointDef::Initialize(b2Body* b1, b2Body* b2, const b2Vec2& anchor)
  34. {
  35. body1 = b1;
  36. body2 = b2;
  37. localAnchor1 = body1->GetLocalPoint(anchor);
  38. localAnchor2 = body2->GetLocalPoint(anchor);
  39. referenceAngle = body2->GetAngle() - body1->GetAngle();
  40. }
  41. b2RevoluteJoint::b2RevoluteJoint(const b2RevoluteJointDef* def)
  42. : b2Joint(def)
  43. {
  44. m_localAnchor1 = def->localAnchor1;
  45. m_localAnchor2 = def->localAnchor2;
  46. m_referenceAngle = def->referenceAngle;
  47. m_impulse.SetZero();
  48. m_motorImpulse = 0.0f;
  49. m_lowerAngle = def->lowerAngle;
  50. m_upperAngle = def->upperAngle;
  51. m_maxMotorTorque = def->maxMotorTorque;
  52. m_motorSpeed = def->motorSpeed;
  53. m_enableLimit = def->enableLimit;
  54. m_enableMotor = def->enableMotor;
  55. m_limitState = e_inactiveLimit;
  56. }
  57. void b2RevoluteJoint::InitVelocityConstraints(const b2TimeStep& step)
  58. {
  59. b2Body* b1 = m_body1;
  60. b2Body* b2 = m_body2;
  61. if (m_enableMotor || m_enableLimit)
  62. {
  63. // You cannot create a rotation limit between bodies that
  64. // both have fixed rotation.
  65. b2Assert(b1->m_invI > 0.0f || b2->m_invI > 0.0f);
  66. }
  67. // Compute the effective mass matrix.
  68. b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
  69. b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
  70. // J = [-I -r1_skew I r2_skew]
  71. // [ 0 -1 0 1]
  72. // r_skew = [-ry; rx]
  73. // Matlab
  74. // K = [ m1+r1y^2*i1+m2+r2y^2*i2, -r1y*i1*r1x-r2y*i2*r2x, -r1y*i1-r2y*i2]
  75. // [ -r1y*i1*r1x-r2y*i2*r2x, m1+r1x^2*i1+m2+r2x^2*i2, r1x*i1+r2x*i2]
  76. // [ -r1y*i1-r2y*i2, r1x*i1+r2x*i2, i1+i2]
  77. float32 m1 = b1->m_invMass, m2 = b2->m_invMass;
  78. float32 i1 = b1->m_invI, i2 = b2->m_invI;
  79. m_mass.col1.x = m1 + m2 + r1.y * r1.y * i1 + r2.y * r2.y * i2;
  80. m_mass.col2.x = -r1.y * r1.x * i1 - r2.y * r2.x * i2;
  81. m_mass.col3.x = -r1.y * i1 - r2.y * i2;
  82. m_mass.col1.y = m_mass.col2.x;
  83. m_mass.col2.y = m1 + m2 + r1.x * r1.x * i1 + r2.x * r2.x * i2;
  84. m_mass.col3.y = r1.x * i1 + r2.x * i2;
  85. m_mass.col1.z = m_mass.col3.x;
  86. m_mass.col2.z = m_mass.col3.y;
  87. m_mass.col3.z = i1 + i2;
  88. m_motorMass = 1.0f / (i1 + i2);
  89. if (m_enableMotor == false)
  90. {
  91. m_motorImpulse = 0.0f;
  92. }
  93. if (m_enableLimit)
  94. {
  95. float32 jointAngle = b2->m_sweep.a - b1->m_sweep.a - m_referenceAngle;
  96. if (b2Abs(m_upperAngle - m_lowerAngle) < 2.0f * b2_angularSlop)
  97. {
  98. m_limitState = e_equalLimits;
  99. }
  100. else if (jointAngle <= m_lowerAngle)
  101. {
  102. if (m_limitState != e_atLowerLimit)
  103. {
  104. m_impulse.z = 0.0f;
  105. }
  106. m_limitState = e_atLowerLimit;
  107. }
  108. else if (jointAngle >= m_upperAngle)
  109. {
  110. if (m_limitState != e_atUpperLimit)
  111. {
  112. m_impulse.z = 0.0f;
  113. }
  114. m_limitState = e_atUpperLimit;
  115. }
  116. else
  117. {
  118. m_limitState = e_inactiveLimit;
  119. m_impulse.z = 0.0f;
  120. }
  121. }
  122. else
  123. {
  124. m_limitState = e_inactiveLimit;
  125. }
  126. if (step.warmStarting)
  127. {
  128. // Scale impulses to support a variable time step.
  129. m_impulse *= step.dtRatio;
  130. m_motorImpulse *= step.dtRatio;
  131. b2Vec2 P(m_impulse.x, m_impulse.y);
  132. b1->m_linearVelocity -= m1 * P;
  133. b1->m_angularVelocity -= i1 * (b2Cross(r1, P) + m_motorImpulse + m_impulse.z);
  134. b2->m_linearVelocity += m2 * P;
  135. b2->m_angularVelocity += i2 * (b2Cross(r2, P) + m_motorImpulse + m_impulse.z);
  136. }
  137. else
  138. {
  139. m_impulse.SetZero();
  140. m_motorImpulse = 0.0f;
  141. }
  142. }
  143. void b2RevoluteJoint::SolveVelocityConstraints(const b2TimeStep& step)
  144. {
  145. b2Body* b1 = m_body1;
  146. b2Body* b2 = m_body2;
  147. b2Vec2 v1 = b1->m_linearVelocity;
  148. float32 w1 = b1->m_angularVelocity;
  149. b2Vec2 v2 = b2->m_linearVelocity;
  150. float32 w2 = b2->m_angularVelocity;
  151. float32 m1 = b1->m_invMass, m2 = b2->m_invMass;
  152. float32 i1 = b1->m_invI, i2 = b2->m_invI;
  153. // Solve motor constraint.
  154. if (m_enableMotor && m_limitState != e_equalLimits)
  155. {
  156. float32 Cdot = w2 - w1 - m_motorSpeed;
  157. float32 impulse = m_motorMass * (-Cdot);
  158. float32 oldImpulse = m_motorImpulse;
  159. float32 maxImpulse = step.dt * m_maxMotorTorque;
  160. m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse);
  161. impulse = m_motorImpulse - oldImpulse;
  162. w1 -= i1 * impulse;
  163. w2 += i2 * impulse;
  164. }
  165. // Solve limit constraint.
  166. if (m_enableLimit && m_limitState != e_inactiveLimit)
  167. {
  168. b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
  169. b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
  170. // Solve point-to-point constraint
  171. b2Vec2 Cdot1 = v2 + b2Cross(w2, r2) - v1 - b2Cross(w1, r1);
  172. float32 Cdot2 = w2 - w1;
  173. b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2);
  174. b2Vec3 impulse = m_mass.Solve33(-Cdot);
  175. if (m_limitState == e_equalLimits)
  176. {
  177. m_impulse += impulse;
  178. }
  179. else if (m_limitState == e_atLowerLimit)
  180. {
  181. float32 newImpulse = m_impulse.z + impulse.z;
  182. if (newImpulse < 0.0f)
  183. {
  184. b2Vec2 reduced = m_mass.Solve22(-Cdot1);
  185. impulse.x = reduced.x;
  186. impulse.y = reduced.y;
  187. impulse.z = -m_impulse.z;
  188. m_impulse.x += reduced.x;
  189. m_impulse.y += reduced.y;
  190. m_impulse.z = 0.0f;
  191. }
  192. }
  193. else if (m_limitState == e_atUpperLimit)
  194. {
  195. float32 newImpulse = m_impulse.z + impulse.z;
  196. if (newImpulse > 0.0f)
  197. {
  198. b2Vec2 reduced = m_mass.Solve22(-Cdot1);
  199. impulse.x = reduced.x;
  200. impulse.y = reduced.y;
  201. impulse.z = -m_impulse.z;
  202. m_impulse.x += reduced.x;
  203. m_impulse.y += reduced.y;
  204. m_impulse.z = 0.0f;
  205. }
  206. }
  207. b2Vec2 P(impulse.x, impulse.y);
  208. v1 -= m1 * P;
  209. w1 -= i1 * (b2Cross(r1, P) + impulse.z);
  210. v2 += m2 * P;
  211. w2 += i2 * (b2Cross(r2, P) + impulse.z);
  212. }
  213. else
  214. {
  215. b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
  216. b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
  217. // Solve point-to-point constraint
  218. b2Vec2 Cdot = v2 + b2Cross(w2, r2) - v1 - b2Cross(w1, r1);
  219. b2Vec2 impulse = m_mass.Solve22(-Cdot);
  220. m_impulse.x += impulse.x;
  221. m_impulse.y += impulse.y;
  222. v1 -= m1 * impulse;
  223. w1 -= i1 * b2Cross(r1, impulse);
  224. v2 += m2 * impulse;
  225. w2 += i2 * b2Cross(r2, impulse);
  226. }
  227. b1->m_linearVelocity = v1;
  228. b1->m_angularVelocity = w1;
  229. b2->m_linearVelocity = v2;
  230. b2->m_angularVelocity = w2;
  231. }
  232. bool b2RevoluteJoint::SolvePositionConstraints(float32 baumgarte)
  233. {
  234. // TODO_ERIN block solve with limit.
  235. B2_NOT_USED(baumgarte);
  236. b2Body* b1 = m_body1;
  237. b2Body* b2 = m_body2;
  238. float32 angularError = 0.0f;
  239. float32 positionError = 0.0f;
  240. // Solve angular limit constraint.
  241. if (m_enableLimit && m_limitState != e_inactiveLimit)
  242. {
  243. float32 angle = b2->m_sweep.a - b1->m_sweep.a - m_referenceAngle;
  244. float32 limitImpulse = 0.0f;
  245. if (m_limitState == e_equalLimits)
  246. {
  247. // Prevent large angular corrections
  248. float32 C = b2Clamp(angle - m_lowerAngle, -b2_maxAngularCorrection, b2_maxAngularCorrection);
  249. limitImpulse = -m_motorMass * C;
  250. angularError = b2Abs(C);
  251. }
  252. else if (m_limitState == e_atLowerLimit)
  253. {
  254. float32 C = angle - m_lowerAngle;
  255. angularError = -C;
  256. // Prevent large angular corrections and allow some slop.
  257. C = b2Clamp(C + b2_angularSlop, -b2_maxAngularCorrection, 0.0f);
  258. limitImpulse = -m_motorMass * C;
  259. }
  260. else if (m_limitState == e_atUpperLimit)
  261. {
  262. float32 C = angle - m_upperAngle;
  263. angularError = C;
  264. // Prevent large angular corrections and allow some slop.
  265. C = b2Clamp(C - b2_angularSlop, 0.0f, b2_maxAngularCorrection);
  266. limitImpulse = -m_motorMass * C;
  267. }
  268. b1->m_sweep.a -= b1->m_invI * limitImpulse;
  269. b2->m_sweep.a += b2->m_invI * limitImpulse;
  270. b1->SynchronizeTransform();
  271. b2->SynchronizeTransform();
  272. }
  273. // Solve point-to-point constraint.
  274. {
  275. b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
  276. b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
  277. b2Vec2 C = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;
  278. positionError = C.Length();
  279. float32 invMass1 = b1->m_invMass, invMass2 = b2->m_invMass;
  280. float32 invI1 = b1->m_invI, invI2 = b2->m_invI;
  281. // Handle large detachment.
  282. const float32 k_allowedStretch = 10.0f * b2_linearSlop;
  283. if (C.LengthSquared() > k_allowedStretch * k_allowedStretch)
  284. {
  285. // Use a particle solution (no rotation).
  286. b2Vec2 u = C; u.Normalize();
  287. float32 k = invMass1 + invMass2;
  288. b2Assert(k > B2_FLT_EPSILON);
  289. float32 m = 1.0f / k;
  290. b2Vec2 impulse = m * (-C);
  291. const float32 k_beta = 0.5f;
  292. b1->m_sweep.c -= k_beta * invMass1 * impulse;
  293. b2->m_sweep.c += k_beta * invMass2 * impulse;
  294. C = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;
  295. }
  296. b2Mat22 K1;
  297. K1.col1.x = invMass1 + invMass2; K1.col2.x = 0.0f;
  298. K1.col1.y = 0.0f; K1.col2.y = invMass1 + invMass2;
  299. b2Mat22 K2;
  300. K2.col1.x = invI1 * r1.y * r1.y; K2.col2.x = -invI1 * r1.x * r1.y;
  301. K2.col1.y = -invI1 * r1.x * r1.y; K2.col2.y = invI1 * r1.x * r1.x;
  302. b2Mat22 K3;
  303. K3.col1.x = invI2 * r2.y * r2.y; K3.col2.x = -invI2 * r2.x * r2.y;
  304. K3.col1.y = -invI2 * r2.x * r2.y; K3.col2.y = invI2 * r2.x * r2.x;
  305. b2Mat22 K = K1 + K2 + K3;
  306. b2Vec2 impulse = K.Solve(-C);
  307. b1->m_sweep.c -= b1->m_invMass * impulse;
  308. b1->m_sweep.a -= b1->m_invI * b2Cross(r1, impulse);
  309. b2->m_sweep.c += b2->m_invMass * impulse;
  310. b2->m_sweep.a += b2->m_invI * b2Cross(r2, impulse);
  311. b1->SynchronizeTransform();
  312. b2->SynchronizeTransform();
  313. }
  314. return positionError <= b2_linearSlop && angularError <= b2_angularSlop;
  315. }
  316. b2Vec2 b2RevoluteJoint::GetAnchor1() const
  317. {
  318. return m_body1->GetWorldPoint(m_localAnchor1);
  319. }
  320. b2Vec2 b2RevoluteJoint::GetAnchor2() const
  321. {
  322. return m_body2->GetWorldPoint(m_localAnchor2);
  323. }
  324. b2Vec2 b2RevoluteJoint::GetReactionForce(float32 inv_dt) const
  325. {
  326. b2Vec2 P(m_impulse.x, m_impulse.y);
  327. return inv_dt * P;
  328. }
  329. float32 b2RevoluteJoint::GetReactionTorque(float32 inv_dt) const
  330. {
  331. return inv_dt * m_impulse.z;
  332. }
  333. float32 b2RevoluteJoint::GetJointAngle() const
  334. {
  335. b2Body* b1 = m_body1;
  336. b2Body* b2 = m_body2;
  337. return b2->m_sweep.a - b1->m_sweep.a - m_referenceAngle;
  338. }
  339. float32 b2RevoluteJoint::GetJointSpeed() const
  340. {
  341. b2Body* b1 = m_body1;
  342. b2Body* b2 = m_body2;
  343. return b2->m_angularVelocity - b1->m_angularVelocity;
  344. }
  345. bool b2RevoluteJoint::IsMotorEnabled() const
  346. {
  347. return m_enableMotor;
  348. }
  349. void b2RevoluteJoint::EnableMotor(bool flag)
  350. {
  351. m_body1->WakeUp();
  352. m_body2->WakeUp();
  353. m_enableMotor = flag;
  354. }
  355. float32 b2RevoluteJoint::GetMotorTorque() const
  356. {
  357. return m_motorImpulse;
  358. }
  359. void b2RevoluteJoint::SetMotorSpeed(float32 speed)
  360. {
  361. m_body1->WakeUp();
  362. m_body2->WakeUp();
  363. m_motorSpeed = speed;
  364. }
  365. void b2RevoluteJoint::SetMaxMotorTorque(float32 torque)
  366. {
  367. m_body1->WakeUp();
  368. m_body2->WakeUp();
  369. m_maxMotorTorque = torque;
  370. }
  371. bool b2RevoluteJoint::IsLimitEnabled() const
  372. {
  373. return m_enableLimit;
  374. }
  375. void b2RevoluteJoint::EnableLimit(bool flag)
  376. {
  377. m_body1->WakeUp();
  378. m_body2->WakeUp();
  379. m_enableLimit = flag;
  380. }
  381. float32 b2RevoluteJoint::GetLowerLimit() const
  382. {
  383. return m_lowerAngle;
  384. }
  385. float32 b2RevoluteJoint::GetUpperLimit() const
  386. {
  387. return m_upperAngle;
  388. }
  389. void b2RevoluteJoint::SetLimits(float32 lower, float32 upper)
  390. {
  391. b2Assert(lower <= upper);
  392. m_body1->WakeUp();
  393. m_body2->WakeUp();
  394. m_lowerAngle = lower;
  395. m_upperAngle = upper;
  396. }