|
@@ -0,0 +1,1888 @@
|
|
|
+.. _apiref:
|
|
|
+
|
|
|
+*************
|
|
|
+API Reference
|
|
|
+*************
|
|
|
+
|
|
|
+.. highlight:: c
|
|
|
+
|
|
|
+Preliminaries
|
|
|
+=============
|
|
|
+
|
|
|
+All declarations are in :file:`jansson.h`, so it's enough to
|
|
|
+
|
|
|
+::
|
|
|
+
|
|
|
+ #include <jansson.h>
|
|
|
+
|
|
|
+in each source file.
|
|
|
+
|
|
|
+All constants are prefixed with ``JSON_`` (except for those describing
|
|
|
+the library version, prefixed with ``JANSSON_``). Other identifiers
|
|
|
+are prefixed with ``json_``. Type names are suffixed with ``_t`` and
|
|
|
+``typedef``\ 'd so that the ``struct`` keyword need not be used.
|
|
|
+
|
|
|
+
|
|
|
+Library Version
|
|
|
+===============
|
|
|
+
|
|
|
+The Jansson version is of the form *A.B.C*, where *A* is the major
|
|
|
+version, *B* is the minor version and *C* is the micro version. If the
|
|
|
+micro version is zero, it's omitted from the version string, i.e. the
|
|
|
+version string is just *A.B*.
|
|
|
+
|
|
|
+When a new release only fixes bugs and doesn't add new features or
|
|
|
+functionality, the micro version is incremented. When new features are
|
|
|
+added in a backwards compatible way, the minor version is incremented
|
|
|
+and the micro version is set to zero. When there are backwards
|
|
|
+incompatible changes, the major version is incremented and others are
|
|
|
+set to zero.
|
|
|
+
|
|
|
+The following preprocessor constants specify the current version of
|
|
|
+the library:
|
|
|
+
|
|
|
+``JANSSON_MAJOR_VERSION``, ``JANSSON_MINOR_VERSION``, ``JANSSON_MICRO_VERSION``
|
|
|
+ Integers specifying the major, minor and micro versions,
|
|
|
+ respectively.
|
|
|
+
|
|
|
+``JANSSON_VERSION``
|
|
|
+ A string representation of the current version, e.g. ``"1.2.1"`` or
|
|
|
+ ``"1.3"``.
|
|
|
+
|
|
|
+``JANSSON_VERSION_HEX``
|
|
|
+ A 3-byte hexadecimal representation of the version, e.g.
|
|
|
+ ``0x010201`` for version 1.2.1 and ``0x010300`` for version 1.3.
|
|
|
+ This is useful in numeric comparisons, e.g.::
|
|
|
+
|
|
|
+ #if JANSSON_VERSION_HEX >= 0x010300
|
|
|
+ /* Code specific to version 1.3 and above */
|
|
|
+ #endif
|
|
|
+
|
|
|
+Additionally, there are functions to determine the version of Jansson at
|
|
|
+runtime:
|
|
|
+
|
|
|
+.. function:: const char *jansson_version_str()
|
|
|
+
|
|
|
+ Return the version of the Jansson library, in the same format as
|
|
|
+ the ``JANSSON_VERSION`` preprocessor constant.
|
|
|
+
|
|
|
+ .. versionadded:: 2.13
|
|
|
+
|
|
|
+.. function:: int jansson_version_cmp(int major, int minor, int micro)
|
|
|
+
|
|
|
+ Returns an integer less than, equal to, or greater than zero if
|
|
|
+ the runtime version of Jansson is found, respectively, to be less
|
|
|
+ than, to match, or be greater than the provided *major*, *minor*, and
|
|
|
+ *micro*.
|
|
|
+
|
|
|
+ .. versionadded:: 2.13
|
|
|
+
|
|
|
+``JANSSON_THREAD_SAFE_REFCOUNT``
|
|
|
+ If this value is defined all read-only operations and reference counting in
|
|
|
+ Jansson are thread safe. This value is not defined for versions older than
|
|
|
+ ``2.11`` or when the compiler does not provide built-in atomic functions.
|
|
|
+
|
|
|
+
|
|
|
+Value Representation
|
|
|
+====================
|
|
|
+
|
|
|
+The JSON specification (:rfc:`4627`) defines the following data types:
|
|
|
+*object*, *array*, *string*, *number*, *boolean*, and *null*. JSON
|
|
|
+types are used dynamically; arrays and objects can hold any other data
|
|
|
+type, including themselves. For this reason, Jansson's type system is
|
|
|
+also dynamic in nature. There's one C type to represent all JSON
|
|
|
+values, and this structure knows the type of the JSON value it holds.
|
|
|
+
|
|
|
+.. type:: json_t
|
|
|
+
|
|
|
+ This data structure is used throughout the library to represent all
|
|
|
+ JSON values. It always contains the type of the JSON value it holds
|
|
|
+ and the value's reference count. The rest depends on the type of the
|
|
|
+ value.
|
|
|
+
|
|
|
+Objects of :type:`json_t` are always used through a pointer. There
|
|
|
+are APIs for querying the type, manipulating the reference count, and
|
|
|
+for constructing and manipulating values of different types.
|
|
|
+
|
|
|
+Unless noted otherwise, all API functions return an error value if an
|
|
|
+error occurs. Depending on the function's signature, the error value
|
|
|
+is either *NULL* or -1. Invalid arguments or invalid input are
|
|
|
+apparent sources for errors. Memory allocation and I/O operations may
|
|
|
+also cause errors.
|
|
|
+
|
|
|
+
|
|
|
+Type
|
|
|
+----
|
|
|
+
|
|
|
+.. type:: enum json_type
|
|
|
+
|
|
|
+ The type of a JSON value. The following members are defined:
|
|
|
+
|
|
|
+ +--------------------+
|
|
|
+ | ``JSON_OBJECT`` |
|
|
|
+ +--------------------+
|
|
|
+ | ``JSON_ARRAY`` |
|
|
|
+ +--------------------+
|
|
|
+ | ``JSON_STRING`` |
|
|
|
+ +--------------------+
|
|
|
+ | ``JSON_INTEGER`` |
|
|
|
+ +--------------------+
|
|
|
+ | ``JSON_REAL`` |
|
|
|
+ +--------------------+
|
|
|
+ | ``JSON_TRUE`` |
|
|
|
+ +--------------------+
|
|
|
+ | ``JSON_FALSE`` |
|
|
|
+ +--------------------+
|
|
|
+ | ``JSON_NULL`` |
|
|
|
+ +--------------------+
|
|
|
+
|
|
|
+ These correspond to JSON object, array, string, number, boolean and
|
|
|
+ null. A number is represented by either a value of the type
|
|
|
+ ``JSON_INTEGER`` or of the type ``JSON_REAL``. A true boolean value
|
|
|
+ is represented by a value of the type ``JSON_TRUE`` and false by a
|
|
|
+ value of the type ``JSON_FALSE``.
|
|
|
+
|
|
|
+.. function:: int json_typeof(const json_t *json)
|
|
|
+
|
|
|
+ Return the type of the JSON value (a :type:`json_type` cast to
|
|
|
+ :type:`int`). *json* MUST NOT be *NULL*. This function is actually
|
|
|
+ implemented as a macro for speed.
|
|
|
+
|
|
|
+.. function:: json_is_object(const json_t *json)
|
|
|
+ json_is_array(const json_t *json)
|
|
|
+ json_is_string(const json_t *json)
|
|
|
+ json_is_integer(const json_t *json)
|
|
|
+ json_is_real(const json_t *json)
|
|
|
+ json_is_true(const json_t *json)
|
|
|
+ json_is_false(const json_t *json)
|
|
|
+ json_is_null(const json_t *json)
|
|
|
+
|
|
|
+ These functions (actually macros) return true (non-zero) for values
|
|
|
+ of the given type, and false (zero) for values of other types and
|
|
|
+ for *NULL*.
|
|
|
+
|
|
|
+.. function:: json_is_number(const json_t *json)
|
|
|
+
|
|
|
+ Returns true for values of types ``JSON_INTEGER`` and
|
|
|
+ ``JSON_REAL``, and false for other types and for *NULL*.
|
|
|
+
|
|
|
+.. function:: json_is_boolean(const json_t *json)
|
|
|
+
|
|
|
+ Returns true for types ``JSON_TRUE`` and ``JSON_FALSE``, and false
|
|
|
+ for values of other types and for *NULL*.
|
|
|
+
|
|
|
+.. function:: json_boolean_value(const json_t *json)
|
|
|
+
|
|
|
+ Alias of :func:`json_is_true()`, i.e. returns 1 for ``JSON_TRUE``
|
|
|
+ and 0 otherwise.
|
|
|
+
|
|
|
+ .. versionadded:: 2.7
|
|
|
+
|
|
|
+
|
|
|
+.. _apiref-reference-count:
|
|
|
+
|
|
|
+Reference Count
|
|
|
+---------------
|
|
|
+
|
|
|
+The reference count is used to track whether a value is still in use
|
|
|
+or not. When a value is created, it's reference count is set to 1. If
|
|
|
+a reference to a value is kept (e.g. a value is stored somewhere for
|
|
|
+later use), its reference count is incremented, and when the value is
|
|
|
+no longer needed, the reference count is decremented. When the
|
|
|
+reference count drops to zero, there are no references left, and the
|
|
|
+value can be destroyed.
|
|
|
+
|
|
|
+.. function:: json_t *json_incref(json_t *json)
|
|
|
+
|
|
|
+ Increment the reference count of *json* if it's not *NULL*.
|
|
|
+ Returns *json*.
|
|
|
+
|
|
|
+.. function:: void json_decref(json_t *json)
|
|
|
+
|
|
|
+ Decrement the reference count of *json*. As soon as a call to
|
|
|
+ :func:`json_decref()` drops the reference count to zero, the value
|
|
|
+ is destroyed and it can no longer be used.
|
|
|
+
|
|
|
+Functions creating new JSON values set the reference count to 1. These
|
|
|
+functions are said to return a **new reference**. Other functions
|
|
|
+returning (existing) JSON values do not normally increase the
|
|
|
+reference count. These functions are said to return a **borrowed
|
|
|
+reference**. So, if the user will hold a reference to a value returned
|
|
|
+as a borrowed reference, he must call :func:`json_incref`. As soon as
|
|
|
+the value is no longer needed, :func:`json_decref` should be called
|
|
|
+to release the reference.
|
|
|
+
|
|
|
+Normally, all functions accepting a JSON value as an argument will
|
|
|
+manage the reference, i.e. increase and decrease the reference count
|
|
|
+as needed. However, some functions **steal** the reference, i.e. they
|
|
|
+have the same result as if the user called :func:`json_decref()` on
|
|
|
+the argument right after calling the function. These functions are
|
|
|
+suffixed with ``_new`` or have ``_new_`` somewhere in their name.
|
|
|
+
|
|
|
+For example, the following code creates a new JSON array and appends
|
|
|
+an integer to it::
|
|
|
+
|
|
|
+ json_t *array, *integer;
|
|
|
+
|
|
|
+ array = json_array();
|
|
|
+ integer = json_integer(42);
|
|
|
+
|
|
|
+ json_array_append(array, integer);
|
|
|
+ json_decref(integer);
|
|
|
+
|
|
|
+Note how the caller has to release the reference to the integer value
|
|
|
+by calling :func:`json_decref()`. By using a reference stealing
|
|
|
+function :func:`json_array_append_new()` instead of
|
|
|
+:func:`json_array_append()`, the code becomes much simpler::
|
|
|
+
|
|
|
+ json_t *array = json_array();
|
|
|
+ json_array_append_new(array, json_integer(42));
|
|
|
+
|
|
|
+In this case, the user doesn't have to explicitly release the
|
|
|
+reference to the integer value, as :func:`json_array_append_new()`
|
|
|
+steals the reference when appending the value to the array.
|
|
|
+
|
|
|
+In the following sections it is clearly documented whether a function
|
|
|
+will return a new or borrowed reference or steal a reference to its
|
|
|
+argument.
|
|
|
+
|
|
|
+
|
|
|
+Circular References
|
|
|
+-------------------
|
|
|
+
|
|
|
+A circular reference is created when an object or an array is,
|
|
|
+directly or indirectly, inserted inside itself. The direct case is
|
|
|
+simple::
|
|
|
+
|
|
|
+ json_t *obj = json_object();
|
|
|
+ json_object_set(obj, "foo", obj);
|
|
|
+
|
|
|
+Jansson will refuse to do this, and :func:`json_object_set()` (and
|
|
|
+all the other such functions for objects and arrays) will return with
|
|
|
+an error status. The indirect case is the dangerous one::
|
|
|
+
|
|
|
+ json_t *arr1 = json_array(), *arr2 = json_array();
|
|
|
+ json_array_append(arr1, arr2);
|
|
|
+ json_array_append(arr2, arr1);
|
|
|
+
|
|
|
+In this example, the array ``arr2`` is contained in the array
|
|
|
+``arr1``, and vice versa. Jansson cannot check for this kind of
|
|
|
+indirect circular references without a performance hit, so it's up to
|
|
|
+the user to avoid them.
|
|
|
+
|
|
|
+If a circular reference is created, the memory consumed by the values
|
|
|
+cannot be freed by :func:`json_decref()`. The reference counts never
|
|
|
+drops to zero because the values are keeping the references to each
|
|
|
+other. Moreover, trying to encode the values with any of the encoding
|
|
|
+functions will fail. The encoder detects circular references and
|
|
|
+returns an error status.
|
|
|
+
|
|
|
+Scope Dereferencing
|
|
|
+-------------------
|
|
|
+
|
|
|
+.. versionadded:: 2.9
|
|
|
+
|
|
|
+It is possible to use the ``json_auto_t`` type to automatically
|
|
|
+dereference a value at the end of a scope. For example::
|
|
|
+
|
|
|
+ void function(void) {
|
|
|
+ json_auto_t *value = NULL;
|
|
|
+ value = json_string("foo");
|
|
|
+ /* json_decref(value) is automatically called. */
|
|
|
+ }
|
|
|
+
|
|
|
+This feature is only available on GCC and Clang. So if your project
|
|
|
+has a portability requirement for other compilers, you should avoid
|
|
|
+this feature.
|
|
|
+
|
|
|
+Additionally, as always, care should be taken when passing values to
|
|
|
+functions that steal references.
|
|
|
+
|
|
|
+True, False and Null
|
|
|
+====================
|
|
|
+
|
|
|
+These three values are implemented as singletons, so the returned
|
|
|
+pointers won't change between invocations of these functions.
|
|
|
+
|
|
|
+.. function:: json_t *json_true(void)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Returns the JSON true value.
|
|
|
+
|
|
|
+.. function:: json_t *json_false(void)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Returns the JSON false value.
|
|
|
+
|
|
|
+.. function:: json_t *json_boolean(val)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Returns JSON false if ``val`` is zero, and JSON true otherwise.
|
|
|
+ This is a macro, and equivalent to ``val ? json_true() :
|
|
|
+ json_false()``.
|
|
|
+
|
|
|
+ .. versionadded:: 2.4
|
|
|
+
|
|
|
+
|
|
|
+.. function:: json_t *json_null(void)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Returns the JSON null value.
|
|
|
+
|
|
|
+
|
|
|
+String
|
|
|
+======
|
|
|
+
|
|
|
+Jansson uses UTF-8 as the character encoding. All JSON strings must be
|
|
|
+valid UTF-8 (or ASCII, as it's a subset of UTF-8). All Unicode
|
|
|
+codepoints U+0000 through U+10FFFF are allowed, but you must use
|
|
|
+length-aware functions if you wish to embed null bytes in strings.
|
|
|
+
|
|
|
+.. function:: json_t *json_string(const char *value)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Returns a new JSON string, or *NULL* on error. *value* must be a
|
|
|
+ valid null terminated UTF-8 encoded Unicode string.
|
|
|
+
|
|
|
+.. function:: json_t *json_stringn(const char *value, size_t len)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Like :func:`json_string`, but with explicit length, so *value* may
|
|
|
+ contain null characters or not be null terminated.
|
|
|
+
|
|
|
+ .. versionadded:: 2.7
|
|
|
+
|
|
|
+.. function:: json_t *json_string_nocheck(const char *value)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Like :func:`json_string`, but doesn't check that *value* is valid
|
|
|
+ UTF-8. Use this function only if you are certain that this really
|
|
|
+ is the case (e.g. you have already checked it by other means).
|
|
|
+
|
|
|
+.. function:: json_t *json_stringn_nocheck(const char *value, size_t len)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Like :func:`json_string_nocheck`, but with explicit length, so
|
|
|
+ *value* may contain null characters or not be null terminated.
|
|
|
+
|
|
|
+ .. versionadded:: 2.7
|
|
|
+
|
|
|
+.. function:: const char *json_string_value(const json_t *string)
|
|
|
+
|
|
|
+ Returns the associated value of *string* as a null terminated UTF-8
|
|
|
+ encoded string, or *NULL* if *string* is not a JSON string.
|
|
|
+
|
|
|
+ The returned value is read-only and must not be modified or freed by
|
|
|
+ the user. It is valid as long as *string* exists, i.e. as long as
|
|
|
+ its reference count has not dropped to zero.
|
|
|
+
|
|
|
+.. function:: size_t json_string_length(const json_t *string)
|
|
|
+
|
|
|
+ Returns the length of *string* in its UTF-8 presentation, or zero
|
|
|
+ if *string* is not a JSON string.
|
|
|
+
|
|
|
+ .. versionadded:: 2.7
|
|
|
+
|
|
|
+.. function:: int json_string_set(json_t *string, const char *value)
|
|
|
+
|
|
|
+ Sets the associated value of *string* to *value*. *value* must be a
|
|
|
+ valid UTF-8 encoded Unicode string. Returns 0 on success and -1 on
|
|
|
+ error.
|
|
|
+
|
|
|
+.. function:: int json_string_setn(json_t *string, const char *value, size_t len)
|
|
|
+
|
|
|
+ Like :func:`json_string_set`, but with explicit length, so *value*
|
|
|
+ may contain null characters or not be null terminated.
|
|
|
+
|
|
|
+ .. versionadded:: 2.7
|
|
|
+
|
|
|
+.. function:: int json_string_set_nocheck(json_t *string, const char *value)
|
|
|
+
|
|
|
+ Like :func:`json_string_set`, but doesn't check that *value* is
|
|
|
+ valid UTF-8. Use this function only if you are certain that this
|
|
|
+ really is the case (e.g. you have already checked it by other
|
|
|
+ means).
|
|
|
+
|
|
|
+.. function:: int json_string_setn_nocheck(json_t *string, const char *value, size_t len)
|
|
|
+
|
|
|
+ Like :func:`json_string_set_nocheck`, but with explicit length,
|
|
|
+ so *value* may contain null characters or not be null terminated.
|
|
|
+
|
|
|
+ .. versionadded:: 2.7
|
|
|
+
|
|
|
+.. function:: json_t *json_sprintf(const char *format, ...)
|
|
|
+ json_t *json_vsprintf(const char *format, va_list ap)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Construct a JSON string from a format string and varargs, just like
|
|
|
+ :func:`printf()`.
|
|
|
+
|
|
|
+ .. versionadded:: 2.11
|
|
|
+
|
|
|
+
|
|
|
+Number
|
|
|
+======
|
|
|
+
|
|
|
+The JSON specification only contains one numeric type, "number". The C
|
|
|
+programming language has distinct types for integer and floating-point
|
|
|
+numbers, so for practical reasons Jansson also has distinct types for
|
|
|
+the two. They are called "integer" and "real", respectively. For more
|
|
|
+information, see :ref:`rfc-conformance`.
|
|
|
+
|
|
|
+.. type:: json_int_t
|
|
|
+
|
|
|
+ This is the C type that is used to store JSON integer values. It
|
|
|
+ represents the widest integer type available on your system. In
|
|
|
+ practice it's just a typedef of ``long long`` if your compiler
|
|
|
+ supports it, otherwise ``long``.
|
|
|
+
|
|
|
+ Usually, you can safely use plain ``int`` in place of
|
|
|
+ ``json_int_t``, and the implicit C integer conversion handles the
|
|
|
+ rest. Only when you know that you need the full 64-bit range, you
|
|
|
+ should use ``json_int_t`` explicitly.
|
|
|
+
|
|
|
+``JSON_INTEGER_IS_LONG_LONG``
|
|
|
+ This is a preprocessor variable that holds the value 1 if
|
|
|
+ :type:`json_int_t` is ``long long``, and 0 if it's ``long``. It
|
|
|
+ can be used as follows::
|
|
|
+
|
|
|
+ #if JSON_INTEGER_IS_LONG_LONG
|
|
|
+ /* Code specific for long long */
|
|
|
+ #else
|
|
|
+ /* Code specific for long */
|
|
|
+ #endif
|
|
|
+
|
|
|
+``JSON_INTEGER_FORMAT``
|
|
|
+ This is a macro that expands to a :func:`printf()` conversion
|
|
|
+ specifier that corresponds to :type:`json_int_t`, without the
|
|
|
+ leading ``%`` sign, i.e. either ``"lld"`` or ``"ld"``. This macro
|
|
|
+ is required because the actual type of :type:`json_int_t` can be
|
|
|
+ either ``long`` or ``long long``, and :func:`printf()` requires
|
|
|
+ different length modifiers for the two.
|
|
|
+
|
|
|
+ Example::
|
|
|
+
|
|
|
+ json_int_t x = 123123123;
|
|
|
+ printf("x is %" JSON_INTEGER_FORMAT "\n", x);
|
|
|
+
|
|
|
+
|
|
|
+.. function:: json_t *json_integer(json_int_t value)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Returns a new JSON integer, or *NULL* on error.
|
|
|
+
|
|
|
+.. function:: json_int_t json_integer_value(const json_t *integer)
|
|
|
+
|
|
|
+ Returns the associated value of *integer*, or 0 if *json* is not a
|
|
|
+ JSON integer.
|
|
|
+
|
|
|
+.. function:: int json_integer_set(const json_t *integer, json_int_t value)
|
|
|
+
|
|
|
+ Sets the associated value of *integer* to *value*. Returns 0 on
|
|
|
+ success and -1 if *integer* is not a JSON integer.
|
|
|
+
|
|
|
+.. function:: json_t *json_real(double value)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Returns a new JSON real, or *NULL* on error.
|
|
|
+
|
|
|
+.. function:: double json_real_value(const json_t *real)
|
|
|
+
|
|
|
+ Returns the associated value of *real*, or 0.0 if *real* is not a
|
|
|
+ JSON real.
|
|
|
+
|
|
|
+.. function:: int json_real_set(const json_t *real, double value)
|
|
|
+
|
|
|
+ Sets the associated value of *real* to *value*. Returns 0 on
|
|
|
+ success and -1 if *real* is not a JSON real.
|
|
|
+
|
|
|
+.. function:: double json_number_value(const json_t *json)
|
|
|
+
|
|
|
+ Returns the associated value of the JSON integer or JSON real
|
|
|
+ *json*, cast to double regardless of the actual type. If *json* is
|
|
|
+ neither JSON real nor JSON integer, 0.0 is returned.
|
|
|
+
|
|
|
+
|
|
|
+Array
|
|
|
+=====
|
|
|
+
|
|
|
+A JSON array is an ordered collection of other JSON values.
|
|
|
+
|
|
|
+.. function:: json_t *json_array(void)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Returns a new JSON array, or *NULL* on error. Initially, the array
|
|
|
+ is empty.
|
|
|
+
|
|
|
+.. function:: size_t json_array_size(const json_t *array)
|
|
|
+
|
|
|
+ Returns the number of elements in *array*, or 0 if *array* is NULL
|
|
|
+ or not a JSON array.
|
|
|
+
|
|
|
+.. function:: json_t *json_array_get(const json_t *array, size_t index)
|
|
|
+
|
|
|
+ .. refcounting:: borrow
|
|
|
+
|
|
|
+ Returns the element in *array* at position *index*. The valid range
|
|
|
+ for *index* is from 0 to the return value of
|
|
|
+ :func:`json_array_size()` minus 1. If *array* is not a JSON array,
|
|
|
+ if *array* is *NULL*, or if *index* is out of range, *NULL* is
|
|
|
+ returned.
|
|
|
+
|
|
|
+.. function:: int json_array_set(json_t *array, size_t index, json_t *value)
|
|
|
+
|
|
|
+ Replaces the element in *array* at position *index* with *value*.
|
|
|
+ The valid range for *index* is from 0 to the return value of
|
|
|
+ :func:`json_array_size()` minus 1. Returns 0 on success and -1 on
|
|
|
+ error.
|
|
|
+
|
|
|
+.. function:: int json_array_set_new(json_t *array, size_t index, json_t *value)
|
|
|
+
|
|
|
+ Like :func:`json_array_set()` but steals the reference to *value*.
|
|
|
+ This is useful when *value* is newly created and not used after
|
|
|
+ the call.
|
|
|
+
|
|
|
+.. function:: int json_array_append(json_t *array, json_t *value)
|
|
|
+
|
|
|
+ Appends *value* to the end of *array*, growing the size of *array*
|
|
|
+ by 1. Returns 0 on success and -1 on error.
|
|
|
+
|
|
|
+.. function:: int json_array_append_new(json_t *array, json_t *value)
|
|
|
+
|
|
|
+ Like :func:`json_array_append()` but steals the reference to
|
|
|
+ *value*. This is useful when *value* is newly created and not used
|
|
|
+ after the call.
|
|
|
+
|
|
|
+.. function:: int json_array_insert(json_t *array, size_t index, json_t *value)
|
|
|
+
|
|
|
+ Inserts *value* to *array* at position *index*, shifting the
|
|
|
+ elements at *index* and after it one position towards the end of
|
|
|
+ the array. Returns 0 on success and -1 on error.
|
|
|
+
|
|
|
+.. function:: int json_array_insert_new(json_t *array, size_t index, json_t *value)
|
|
|
+
|
|
|
+ Like :func:`json_array_insert()` but steals the reference to
|
|
|
+ *value*. This is useful when *value* is newly created and not used
|
|
|
+ after the call.
|
|
|
+
|
|
|
+.. function:: int json_array_remove(json_t *array, size_t index)
|
|
|
+
|
|
|
+ Removes the element in *array* at position *index*, shifting the
|
|
|
+ elements after *index* one position towards the start of the array.
|
|
|
+ Returns 0 on success and -1 on error. The reference count of the
|
|
|
+ removed value is decremented.
|
|
|
+
|
|
|
+.. function:: int json_array_clear(json_t *array)
|
|
|
+
|
|
|
+ Removes all elements from *array*. Returns 0 on success and -1 on
|
|
|
+ error. The reference count of all removed values are decremented.
|
|
|
+
|
|
|
+.. function:: int json_array_extend(json_t *array, json_t *other_array)
|
|
|
+
|
|
|
+ Appends all elements in *other_array* to the end of *array*.
|
|
|
+ Returns 0 on success and -1 on error.
|
|
|
+
|
|
|
+.. function:: json_array_foreach(array, index, value)
|
|
|
+
|
|
|
+ Iterate over every element of ``array``, running the block
|
|
|
+ of code that follows each time with the proper values set to
|
|
|
+ variables ``index`` and ``value``, of types :type:`size_t` and
|
|
|
+ :type:`json_t *` respectively. Example::
|
|
|
+
|
|
|
+ /* array is a JSON array */
|
|
|
+ size_t index;
|
|
|
+ json_t *value;
|
|
|
+
|
|
|
+ json_array_foreach(array, index, value) {
|
|
|
+ /* block of code that uses index and value */
|
|
|
+ }
|
|
|
+
|
|
|
+ The items are returned in increasing index order.
|
|
|
+
|
|
|
+ This macro expands to an ordinary ``for`` statement upon
|
|
|
+ preprocessing, so its performance is equivalent to that of
|
|
|
+ hand-written code using the array access functions.
|
|
|
+ The main advantage of this macro is that it abstracts
|
|
|
+ away the complexity, and makes for more concise and readable code.
|
|
|
+
|
|
|
+ .. versionadded:: 2.5
|
|
|
+
|
|
|
+
|
|
|
+Object
|
|
|
+======
|
|
|
+
|
|
|
+A JSON object is a dictionary of key-value pairs, where the key is a
|
|
|
+Unicode string and the value is any JSON value.
|
|
|
+
|
|
|
+Even though null bytes are allowed in string values, they are not
|
|
|
+allowed in object keys.
|
|
|
+
|
|
|
+.. function:: json_t *json_object(void)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Returns a new JSON object, or *NULL* on error. Initially, the
|
|
|
+ object is empty.
|
|
|
+
|
|
|
+.. function:: size_t json_object_size(const json_t *object)
|
|
|
+
|
|
|
+ Returns the number of elements in *object*, or 0 if *object* is not
|
|
|
+ a JSON object.
|
|
|
+
|
|
|
+.. function:: json_t *json_object_get(const json_t *object, const char *key)
|
|
|
+
|
|
|
+ .. refcounting:: borrow
|
|
|
+
|
|
|
+ Get a value corresponding to *key* from *object*. Returns *NULL* if
|
|
|
+ *key* is not found and on error.
|
|
|
+
|
|
|
+.. function:: int json_object_set(json_t *object, const char *key, json_t *value)
|
|
|
+
|
|
|
+ Set the value of *key* to *value* in *object*. *key* must be a
|
|
|
+ valid null terminated UTF-8 encoded Unicode string. If there
|
|
|
+ already is a value for *key*, it is replaced by the new value.
|
|
|
+ Returns 0 on success and -1 on error.
|
|
|
+
|
|
|
+.. function:: int json_object_set_nocheck(json_t *object, const char *key, json_t *value)
|
|
|
+
|
|
|
+ Like :func:`json_object_set`, but doesn't check that *key* is
|
|
|
+ valid UTF-8. Use this function only if you are certain that this
|
|
|
+ really is the case (e.g. you have already checked it by other
|
|
|
+ means).
|
|
|
+
|
|
|
+.. function:: int json_object_set_new(json_t *object, const char *key, json_t *value)
|
|
|
+
|
|
|
+ Like :func:`json_object_set()` but steals the reference to
|
|
|
+ *value*. This is useful when *value* is newly created and not used
|
|
|
+ after the call.
|
|
|
+
|
|
|
+.. function:: int json_object_set_new_nocheck(json_t *object, const char *key, json_t *value)
|
|
|
+
|
|
|
+ Like :func:`json_object_set_new`, but doesn't check that *key* is
|
|
|
+ valid UTF-8. Use this function only if you are certain that this
|
|
|
+ really is the case (e.g. you have already checked it by other
|
|
|
+ means).
|
|
|
+
|
|
|
+.. function:: int json_object_del(json_t *object, const char *key)
|
|
|
+
|
|
|
+ Delete *key* from *object* if it exists. Returns 0 on success, or
|
|
|
+ -1 if *key* was not found. The reference count of the removed value
|
|
|
+ is decremented.
|
|
|
+
|
|
|
+.. function:: int json_object_clear(json_t *object)
|
|
|
+
|
|
|
+ Remove all elements from *object*. Returns 0 on success and -1 if
|
|
|
+ *object* is not a JSON object. The reference count of all removed
|
|
|
+ values are decremented.
|
|
|
+
|
|
|
+.. function:: int json_object_update(json_t *object, json_t *other)
|
|
|
+
|
|
|
+ Update *object* with the key-value pairs from *other*, overwriting
|
|
|
+ existing keys. Returns 0 on success or -1 on error.
|
|
|
+
|
|
|
+.. function:: int json_object_update_existing(json_t *object, json_t *other)
|
|
|
+
|
|
|
+ Like :func:`json_object_update()`, but only the values of existing
|
|
|
+ keys are updated. No new keys are created. Returns 0 on success or
|
|
|
+ -1 on error.
|
|
|
+
|
|
|
+ .. versionadded:: 2.3
|
|
|
+
|
|
|
+.. function:: int json_object_update_missing(json_t *object, json_t *other)
|
|
|
+
|
|
|
+ Like :func:`json_object_update()`, but only new keys are created.
|
|
|
+ The value of any existing key is not changed. Returns 0 on success
|
|
|
+ or -1 on error.
|
|
|
+
|
|
|
+ .. versionadded:: 2.3
|
|
|
+
|
|
|
+.. function:: json_object_foreach(object, key, value)
|
|
|
+
|
|
|
+ Iterate over every key-value pair of ``object``, running the block
|
|
|
+ of code that follows each time with the proper values set to
|
|
|
+ variables ``key`` and ``value``, of types :type:`const char *` and
|
|
|
+ :type:`json_t *` respectively. Example::
|
|
|
+
|
|
|
+ /* obj is a JSON object */
|
|
|
+ const char *key;
|
|
|
+ json_t *value;
|
|
|
+
|
|
|
+ json_object_foreach(obj, key, value) {
|
|
|
+ /* block of code that uses key and value */
|
|
|
+ }
|
|
|
+
|
|
|
+ The items are returned in the order they were inserted to the
|
|
|
+ object.
|
|
|
+
|
|
|
+ **Note:** It's not safe to call ``json_object_del(object, key)``
|
|
|
+ during iteration. If you need to, use
|
|
|
+ :func:`json_object_foreach_safe` instead.
|
|
|
+
|
|
|
+ This macro expands to an ordinary ``for`` statement upon
|
|
|
+ preprocessing, so its performance is equivalent to that of
|
|
|
+ hand-written iteration code using the object iteration protocol
|
|
|
+ (see below). The main advantage of this macro is that it abstracts
|
|
|
+ away the complexity behind iteration, and makes for more concise and
|
|
|
+ readable code.
|
|
|
+
|
|
|
+ .. versionadded:: 2.3
|
|
|
+
|
|
|
+
|
|
|
+.. function:: json_object_foreach_safe(object, tmp, key, value)
|
|
|
+
|
|
|
+ Like :func:`json_object_foreach()`, but it's safe to call
|
|
|
+ ``json_object_del(object, key)`` during iteration. You need to pass
|
|
|
+ an extra ``void *`` parameter ``tmp`` that is used for temporary storage.
|
|
|
+
|
|
|
+ .. versionadded:: 2.8
|
|
|
+
|
|
|
+
|
|
|
+The following functions can be used to iterate through all key-value
|
|
|
+pairs in an object. The items are returned in the order they were
|
|
|
+inserted to the object.
|
|
|
+
|
|
|
+.. function:: void *json_object_iter(json_t *object)
|
|
|
+
|
|
|
+ Returns an opaque iterator which can be used to iterate over all
|
|
|
+ key-value pairs in *object*, or *NULL* if *object* is empty.
|
|
|
+
|
|
|
+.. function:: void *json_object_iter_at(json_t *object, const char *key)
|
|
|
+
|
|
|
+ Like :func:`json_object_iter()`, but returns an iterator to the
|
|
|
+ key-value pair in *object* whose key is equal to *key*, or NULL if
|
|
|
+ *key* is not found in *object*. Iterating forward to the end of
|
|
|
+ *object* only yields all key-value pairs of the object if *key*
|
|
|
+ happens to be the first key in the underlying hash table.
|
|
|
+
|
|
|
+.. function:: void *json_object_iter_next(json_t *object, void *iter)
|
|
|
+
|
|
|
+ Returns an iterator pointing to the next key-value pair in *object*
|
|
|
+ after *iter*, or *NULL* if the whole object has been iterated
|
|
|
+ through.
|
|
|
+
|
|
|
+.. function:: const char *json_object_iter_key(void *iter)
|
|
|
+
|
|
|
+ Extract the associated key from *iter*.
|
|
|
+
|
|
|
+.. function:: json_t *json_object_iter_value(void *iter)
|
|
|
+
|
|
|
+ .. refcounting:: borrow
|
|
|
+
|
|
|
+ Extract the associated value from *iter*.
|
|
|
+
|
|
|
+.. function:: int json_object_iter_set(json_t *object, void *iter, json_t *value)
|
|
|
+
|
|
|
+ Set the value of the key-value pair in *object*, that is pointed to
|
|
|
+ by *iter*, to *value*.
|
|
|
+
|
|
|
+.. function:: int json_object_iter_set_new(json_t *object, void *iter, json_t *value)
|
|
|
+
|
|
|
+ Like :func:`json_object_iter_set()`, but steals the reference to
|
|
|
+ *value*. This is useful when *value* is newly created and not used
|
|
|
+ after the call.
|
|
|
+
|
|
|
+.. function:: void *json_object_key_to_iter(const char *key)
|
|
|
+
|
|
|
+ Like :func:`json_object_iter_at()`, but much faster. Only works for
|
|
|
+ values returned by :func:`json_object_iter_key()`. Using other keys
|
|
|
+ will lead to segfaults. This function is used internally to
|
|
|
+ implement :func:`json_object_foreach`. Example::
|
|
|
+
|
|
|
+ /* obj is a JSON object */
|
|
|
+ const char *key;
|
|
|
+ json_t *value;
|
|
|
+
|
|
|
+ void *iter = json_object_iter(obj);
|
|
|
+ while(iter)
|
|
|
+ {
|
|
|
+ key = json_object_iter_key(iter);
|
|
|
+ value = json_object_iter_value(iter);
|
|
|
+ /* use key and value ... */
|
|
|
+ iter = json_object_iter_next(obj, iter);
|
|
|
+ }
|
|
|
+
|
|
|
+ .. versionadded:: 2.3
|
|
|
+
|
|
|
+.. function:: void json_object_seed(size_t seed)
|
|
|
+
|
|
|
+ Seed the hash function used in Jansson's hashtable implementation.
|
|
|
+ The seed is used to randomize the hash function so that an
|
|
|
+ attacker cannot control its output.
|
|
|
+
|
|
|
+ If *seed* is 0, Jansson generates the seed itself by reading
|
|
|
+ random data from the operating system's entropy sources. If no
|
|
|
+ entropy sources are available, falls back to using a combination
|
|
|
+ of the current timestamp (with microsecond precision if possible)
|
|
|
+ and the process ID.
|
|
|
+
|
|
|
+ If called at all, this function must be called before any calls to
|
|
|
+ :func:`json_object()`, either explicit or implicit. If this
|
|
|
+ function is not called by the user, the first call to
|
|
|
+ :func:`json_object()` (either explicit or implicit) seeds the hash
|
|
|
+ function. See :ref:`portability-thread-safety` for notes on thread
|
|
|
+ safety.
|
|
|
+
|
|
|
+ If repeatable results are required, for e.g. unit tests, the hash
|
|
|
+ function can be "unrandomized" by calling :func:`json_object_seed`
|
|
|
+ with a constant value on program startup, e.g.
|
|
|
+ ``json_object_seed(1)``.
|
|
|
+
|
|
|
+ .. versionadded:: 2.6
|
|
|
+
|
|
|
+
|
|
|
+Error reporting
|
|
|
+===============
|
|
|
+
|
|
|
+Jansson uses a single struct type to pass error information to the
|
|
|
+user. See sections :ref:`apiref-decoding`, :ref:`apiref-pack` and
|
|
|
+:ref:`apiref-unpack` for functions that pass error information using
|
|
|
+this struct.
|
|
|
+
|
|
|
+.. type:: json_error_t
|
|
|
+
|
|
|
+ .. member:: char text[]
|
|
|
+
|
|
|
+ The error message (in UTF-8), or an empty string if a message is
|
|
|
+ not available.
|
|
|
+
|
|
|
+ The last byte of this array contains a numeric error code. Use
|
|
|
+ :func:`json_error_code()` to extract this code.
|
|
|
+
|
|
|
+ .. member:: char source[]
|
|
|
+
|
|
|
+ Source of the error. This can be (a part of) the file name or a
|
|
|
+ special identifier in angle brackets (e.g. ``<string>``).
|
|
|
+
|
|
|
+ .. member:: int line
|
|
|
+
|
|
|
+ The line number on which the error occurred.
|
|
|
+
|
|
|
+ .. member:: int column
|
|
|
+
|
|
|
+ The column on which the error occurred. Note that this is the
|
|
|
+ *character column*, not the byte column, i.e. a multibyte UTF-8
|
|
|
+ character counts as one column.
|
|
|
+
|
|
|
+ .. member:: int position
|
|
|
+
|
|
|
+ The position in bytes from the start of the input. This is
|
|
|
+ useful for debugging Unicode encoding problems.
|
|
|
+
|
|
|
+The normal use of :type:`json_error_t` is to allocate it on the stack,
|
|
|
+and pass a pointer to a function. Example::
|
|
|
+
|
|
|
+ int main() {
|
|
|
+ json_t *json;
|
|
|
+ json_error_t error;
|
|
|
+
|
|
|
+ json = json_load_file("/path/to/file.json", 0, &error);
|
|
|
+ if(!json) {
|
|
|
+ /* the error variable contains error information */
|
|
|
+ }
|
|
|
+ ...
|
|
|
+ }
|
|
|
+
|
|
|
+Also note that if the call succeeded (``json != NULL`` in the above
|
|
|
+example), the contents of ``error`` are generally left unspecified.
|
|
|
+The decoding functions write to the ``position`` member also on
|
|
|
+success. See :ref:`apiref-decoding` for more info.
|
|
|
+
|
|
|
+All functions also accept *NULL* as the :type:`json_error_t` pointer,
|
|
|
+in which case no error information is returned to the caller.
|
|
|
+
|
|
|
+.. type:: enum json_error_code
|
|
|
+
|
|
|
+ An enumeration containing numeric error codes. The following errors are
|
|
|
+ currently defined:
|
|
|
+
|
|
|
+ ``json_error_unknown``
|
|
|
+
|
|
|
+ Unknown error. This should only be returned for non-errorneous
|
|
|
+ :type:`json_error_t` structures.
|
|
|
+
|
|
|
+ ``json_error_out_of_memory``
|
|
|
+
|
|
|
+ The library couldn’t allocate any heap memory.
|
|
|
+
|
|
|
+ ``json_error_stack_overflow``
|
|
|
+
|
|
|
+ Nesting too deep.
|
|
|
+
|
|
|
+ ``json_error_cannot_open_file``
|
|
|
+
|
|
|
+ Couldn’t open input file.
|
|
|
+
|
|
|
+ ``json_error_invalid_argument``
|
|
|
+
|
|
|
+ A function argument was invalid.
|
|
|
+
|
|
|
+ ``json_error_invalid_utf8``
|
|
|
+
|
|
|
+ The input string isn’t valid UTF-8.
|
|
|
+
|
|
|
+ ``json_error_premature_end_of_input``
|
|
|
+
|
|
|
+ The input ended in the middle of a JSON value.
|
|
|
+
|
|
|
+ ``json_error_end_of_input_expected``
|
|
|
+
|
|
|
+ There was some text after the end of a JSON value. See the
|
|
|
+ ``JSON_DISABLE_EOF_CHECK`` flag.
|
|
|
+
|
|
|
+ ``json_error_invalid_syntax``
|
|
|
+
|
|
|
+ JSON syntax error.
|
|
|
+
|
|
|
+ ``json_error_invalid_format``
|
|
|
+
|
|
|
+ Invalid format string for packing or unpacking.
|
|
|
+
|
|
|
+ ``json_error_wrong_type``
|
|
|
+
|
|
|
+ When packing or unpacking, the actual type of a value differed from the
|
|
|
+ one specified in the format string.
|
|
|
+
|
|
|
+ ``json_error_null_character``
|
|
|
+
|
|
|
+ A null character was detected in a JSON string. See the
|
|
|
+ ``JSON_ALLOW_NUL`` flag.
|
|
|
+
|
|
|
+ ``json_error_null_value``
|
|
|
+
|
|
|
+ When packing or unpacking, some key or value was ``NULL``.
|
|
|
+
|
|
|
+ ``json_error_null_byte_in_key``
|
|
|
+
|
|
|
+ An object key would contain a null byte. Jansson can’t represent such
|
|
|
+ keys; see :ref:`rfc-conformance`.
|
|
|
+
|
|
|
+ ``json_error_duplicate_key``
|
|
|
+
|
|
|
+ Duplicate key in object. See the ``JSON_REJECT_DUPLICATES`` flag.
|
|
|
+
|
|
|
+ ``json_error_numeric_overflow``
|
|
|
+
|
|
|
+ When converting a JSON number to a C numeric type, a numeric overflow
|
|
|
+ was detected.
|
|
|
+
|
|
|
+ ``json_error_item_not_found``
|
|
|
+
|
|
|
+ Key in object not found.
|
|
|
+
|
|
|
+ ``json_error_index_out_of_range``
|
|
|
+
|
|
|
+ Array index is out of range.
|
|
|
+
|
|
|
+ .. versionadded:: 2.11
|
|
|
+
|
|
|
+.. function:: enum json_error_code json_error_code(const json_error_t *error)
|
|
|
+
|
|
|
+ Returns the error code embedded in ``error->text``.
|
|
|
+
|
|
|
+ .. versionadded:: 2.11
|
|
|
+
|
|
|
+
|
|
|
+Encoding
|
|
|
+========
|
|
|
+
|
|
|
+This sections describes the functions that can be used to encode
|
|
|
+values to JSON. By default, only objects and arrays can be encoded
|
|
|
+directly, since they are the only valid *root* values of a JSON text.
|
|
|
+To encode any JSON value, use the ``JSON_ENCODE_ANY`` flag (see
|
|
|
+below).
|
|
|
+
|
|
|
+By default, the output has no newlines, and spaces are used between
|
|
|
+array and object elements for a readable output. This behavior can be
|
|
|
+altered by using the ``JSON_INDENT`` and ``JSON_COMPACT`` flags
|
|
|
+described below. A newline is never appended to the end of the encoded
|
|
|
+JSON data.
|
|
|
+
|
|
|
+Each function takes a *flags* parameter that controls some aspects of
|
|
|
+how the data is encoded. Its default value is 0. The following macros
|
|
|
+can be ORed together to obtain *flags*.
|
|
|
+
|
|
|
+``JSON_INDENT(n)``
|
|
|
+ Pretty-print the result, using newlines between array and object
|
|
|
+ items, and indenting with *n* spaces. The valid range for *n* is
|
|
|
+ between 0 and 31 (inclusive), other values result in an undefined
|
|
|
+ output. If ``JSON_INDENT`` is not used or *n* is 0, no newlines are
|
|
|
+ inserted between array and object items.
|
|
|
+
|
|
|
+ The ``JSON_MAX_INDENT`` constant defines the maximum indentation
|
|
|
+ that can be used, and its value is 31.
|
|
|
+
|
|
|
+ .. versionchanged:: 2.7
|
|
|
+ Added ``JSON_MAX_INDENT``.
|
|
|
+
|
|
|
+``JSON_COMPACT``
|
|
|
+ This flag enables a compact representation, i.e. sets the separator
|
|
|
+ between array and object items to ``","`` and between object keys
|
|
|
+ and values to ``":"``. Without this flag, the corresponding
|
|
|
+ separators are ``", "`` and ``": "`` for more readable output.
|
|
|
+
|
|
|
+``JSON_ENSURE_ASCII``
|
|
|
+ If this flag is used, the output is guaranteed to consist only of
|
|
|
+ ASCII characters. This is achieved by escaping all Unicode
|
|
|
+ characters outside the ASCII range.
|
|
|
+
|
|
|
+``JSON_SORT_KEYS``
|
|
|
+ If this flag is used, all the objects in output are sorted by key.
|
|
|
+ This is useful e.g. if two JSON texts are diffed or visually
|
|
|
+ compared.
|
|
|
+
|
|
|
+``JSON_PRESERVE_ORDER``
|
|
|
+ **Deprecated since version 2.8:** Order of object keys
|
|
|
+ is always preserved.
|
|
|
+
|
|
|
+ Prior to version 2.8: If this flag is used, object keys in the
|
|
|
+ output are sorted into the same order in which they were first
|
|
|
+ inserted to the object. For example, decoding a JSON text and then
|
|
|
+ encoding with this flag preserves the order of object keys.
|
|
|
+
|
|
|
+``JSON_ENCODE_ANY``
|
|
|
+ Specifying this flag makes it possible to encode any JSON value on
|
|
|
+ its own. Without it, only objects and arrays can be passed as the
|
|
|
+ *json* value to the encoding functions.
|
|
|
+
|
|
|
+ **Note:** Encoding any value may be useful in some scenarios, but
|
|
|
+ it's generally discouraged as it violates strict compatibility with
|
|
|
+ :rfc:`4627`. If you use this flag, don't expect interoperability
|
|
|
+ with other JSON systems.
|
|
|
+
|
|
|
+ .. versionadded:: 2.1
|
|
|
+
|
|
|
+``JSON_ESCAPE_SLASH``
|
|
|
+ Escape the ``/`` characters in strings with ``\/``.
|
|
|
+
|
|
|
+ .. versionadded:: 2.4
|
|
|
+
|
|
|
+``JSON_REAL_PRECISION(n)``
|
|
|
+ Output all real numbers with at most *n* digits of precision. The
|
|
|
+ valid range for *n* is between 0 and 31 (inclusive), and other
|
|
|
+ values result in an undefined behavior.
|
|
|
+
|
|
|
+ By default, the precision is 17, to correctly and losslessly encode
|
|
|
+ all IEEE 754 double precision floating point numbers.
|
|
|
+
|
|
|
+ .. versionadded:: 2.7
|
|
|
+
|
|
|
+``JSON_EMBED``
|
|
|
+ If this flag is used, the opening and closing characters of the top-level
|
|
|
+ array ('[', ']') or object ('{', '}') are omitted during encoding. This
|
|
|
+ flag is useful when concatenating multiple arrays or objects into a stream.
|
|
|
+
|
|
|
+ .. versionadded:: 2.10
|
|
|
+
|
|
|
+``JSON_FRACTIONAL_DIGITS``
|
|
|
+ When combined with `JSON_REAL_PRECISION(n), output all real numbers
|
|
|
+ with at most *n* digits after the decimal (rather than *n* total
|
|
|
+ digits).
|
|
|
+
|
|
|
+ .. versionadded:: 2.13
|
|
|
+
|
|
|
+These functions output UTF-8:
|
|
|
+
|
|
|
+.. function:: char *json_dumps(const json_t *json, size_t flags)
|
|
|
+
|
|
|
+ Returns the JSON representation of *json* as a string, or *NULL* on
|
|
|
+ error. *flags* is described above. The return value must be freed
|
|
|
+ by the caller using :func:`free()`.
|
|
|
+
|
|
|
+.. function:: size_t json_dumpb(const json_t *json, char *buffer, size_t size, size_t flags)
|
|
|
+
|
|
|
+ Writes the JSON representation of *json* to the *buffer* of
|
|
|
+ *size* bytes. Returns the number of bytes that would be written
|
|
|
+ or 0 on error. *flags* is described above. *buffer* is not
|
|
|
+ null-terminated.
|
|
|
+
|
|
|
+ This function never writes more than *size* bytes. If the return
|
|
|
+ value is greater than *size*, the contents of the *buffer* are
|
|
|
+ undefined. This behavior enables you to specify a NULL *buffer*
|
|
|
+ to determine the length of the encoding. For example::
|
|
|
+
|
|
|
+ size_t size = json_dumpb(json, NULL, 0, 0);
|
|
|
+ if (size == 0)
|
|
|
+ return -1;
|
|
|
+
|
|
|
+ char *buf = alloca(size);
|
|
|
+
|
|
|
+ size = json_dumpb(json, buf, size, 0);
|
|
|
+
|
|
|
+ .. versionadded:: 2.10
|
|
|
+
|
|
|
+.. function:: int json_dumpf(const json_t *json, FILE *output, size_t flags)
|
|
|
+
|
|
|
+ Write the JSON representation of *json* to the stream *output*.
|
|
|
+ *flags* is described above. Returns 0 on success and -1 on error.
|
|
|
+ If an error occurs, something may have already been written to
|
|
|
+ *output*. In this case, the output is undefined and most likely not
|
|
|
+ valid JSON.
|
|
|
+
|
|
|
+.. function:: int json_dumpfd(const json_t *json, int output, size_t flags)
|
|
|
+
|
|
|
+ Write the JSON representation of *json* to the stream *output*.
|
|
|
+ *flags* is described above. Returns 0 on success and -1 on error.
|
|
|
+ If an error occurs, something may have already been written to
|
|
|
+ *output*. In this case, the output is undefined and most likely not
|
|
|
+ valid JSON.
|
|
|
+
|
|
|
+ It is important to note that this function can only succeed on stream
|
|
|
+ file descriptors (such as SOCK_STREAM). Using this function on a
|
|
|
+ non-stream file descriptor will result in undefined behavior. For
|
|
|
+ non-stream file descriptors, see instead :func:`json_dumpb()`.
|
|
|
+
|
|
|
+ This function requires POSIX and fails on all non-POSIX systems.
|
|
|
+
|
|
|
+ .. versionadded:: 2.10
|
|
|
+
|
|
|
+.. function:: int json_dump_file(const json_t *json, const char *path, size_t flags)
|
|
|
+
|
|
|
+ Write the JSON representation of *json* to the file *path*. If
|
|
|
+ *path* already exists, it is overwritten. *flags* is described
|
|
|
+ above. Returns 0 on success and -1 on error.
|
|
|
+
|
|
|
+.. type:: json_dump_callback_t
|
|
|
+
|
|
|
+ A typedef for a function that's called by
|
|
|
+ :func:`json_dump_callback()`::
|
|
|
+
|
|
|
+ typedef int (*json_dump_callback_t)(const char *buffer, size_t size, void *data);
|
|
|
+
|
|
|
+ *buffer* points to a buffer containing a chunk of output, *size* is
|
|
|
+ the length of the buffer, and *data* is the corresponding
|
|
|
+ :func:`json_dump_callback()` argument passed through.
|
|
|
+
|
|
|
+ *buffer* is guaranteed to be a valid UTF-8 string (i.e. multi-byte
|
|
|
+ code unit sequences are preserved). *buffer* never contains
|
|
|
+ embedded null bytes.
|
|
|
+
|
|
|
+ On error, the function should return -1 to stop the encoding
|
|
|
+ process. On success, it should return 0.
|
|
|
+
|
|
|
+ .. versionadded:: 2.2
|
|
|
+
|
|
|
+.. function:: int json_dump_callback(const json_t *json, json_dump_callback_t callback, void *data, size_t flags)
|
|
|
+
|
|
|
+ Call *callback* repeatedly, passing a chunk of the JSON
|
|
|
+ representation of *json* each time. *flags* is described above.
|
|
|
+ Returns 0 on success and -1 on error.
|
|
|
+
|
|
|
+ .. versionadded:: 2.2
|
|
|
+
|
|
|
+
|
|
|
+.. _apiref-decoding:
|
|
|
+
|
|
|
+Decoding
|
|
|
+========
|
|
|
+
|
|
|
+This sections describes the functions that can be used to decode JSON
|
|
|
+text to the Jansson representation of JSON data. The JSON
|
|
|
+specification requires that a JSON text is either a serialized array
|
|
|
+or object, and this requirement is also enforced with the following
|
|
|
+functions. In other words, the top level value in the JSON text being
|
|
|
+decoded must be either array or object. To decode any JSON value, use
|
|
|
+the ``JSON_DECODE_ANY`` flag (see below).
|
|
|
+
|
|
|
+See :ref:`rfc-conformance` for a discussion on Jansson's conformance
|
|
|
+to the JSON specification. It explains many design decisions that
|
|
|
+affect especially the behavior of the decoder.
|
|
|
+
|
|
|
+Each function takes a *flags* parameter that can be used to control
|
|
|
+the behavior of the decoder. Its default value is 0. The following
|
|
|
+macros can be ORed together to obtain *flags*.
|
|
|
+
|
|
|
+``JSON_REJECT_DUPLICATES``
|
|
|
+ Issue a decoding error if any JSON object in the input text
|
|
|
+ contains duplicate keys. Without this flag, the value of the last
|
|
|
+ occurrence of each key ends up in the result. Key equivalence is
|
|
|
+ checked byte-by-byte, without special Unicode comparison
|
|
|
+ algorithms.
|
|
|
+
|
|
|
+ .. versionadded:: 2.1
|
|
|
+
|
|
|
+``JSON_DECODE_ANY``
|
|
|
+ By default, the decoder expects an array or object as the input.
|
|
|
+ With this flag enabled, the decoder accepts any valid JSON value.
|
|
|
+
|
|
|
+ **Note:** Decoding any value may be useful in some scenarios, but
|
|
|
+ it's generally discouraged as it violates strict compatibility with
|
|
|
+ :rfc:`4627`. If you use this flag, don't expect interoperability
|
|
|
+ with other JSON systems.
|
|
|
+
|
|
|
+ .. versionadded:: 2.3
|
|
|
+
|
|
|
+``JSON_DISABLE_EOF_CHECK``
|
|
|
+ By default, the decoder expects that its whole input constitutes a
|
|
|
+ valid JSON text, and issues an error if there's extra data after
|
|
|
+ the otherwise valid JSON input. With this flag enabled, the decoder
|
|
|
+ stops after decoding a valid JSON array or object, and thus allows
|
|
|
+ extra data after the JSON text.
|
|
|
+
|
|
|
+ Normally, reading will stop when the last ``]`` or ``}`` in the
|
|
|
+ JSON input is encountered. If both ``JSON_DISABLE_EOF_CHECK`` and
|
|
|
+ ``JSON_DECODE_ANY`` flags are used, the decoder may read one extra
|
|
|
+ UTF-8 code unit (up to 4 bytes of input). For example, decoding
|
|
|
+ ``4true`` correctly decodes the integer 4, but also reads the
|
|
|
+ ``t``. For this reason, if reading multiple consecutive values that
|
|
|
+ are not arrays or objects, they should be separated by at least one
|
|
|
+ whitespace character.
|
|
|
+
|
|
|
+ .. versionadded:: 2.1
|
|
|
+
|
|
|
+``JSON_DECODE_INT_AS_REAL``
|
|
|
+ JSON defines only one number type. Jansson distinguishes between
|
|
|
+ ints and reals. For more information see :ref:`real-vs-integer`.
|
|
|
+ With this flag enabled the decoder interprets all numbers as real
|
|
|
+ values. Integers that do not have an exact double representation
|
|
|
+ will silently result in a loss of precision. Integers that cause
|
|
|
+ a double overflow will cause an error.
|
|
|
+
|
|
|
+ .. versionadded:: 2.5
|
|
|
+
|
|
|
+``JSON_ALLOW_NUL``
|
|
|
+ Allow ``\u0000`` escape inside string values. This is a safety
|
|
|
+ measure; If you know your input can contain null bytes, use this
|
|
|
+ flag. If you don't use this flag, you don't have to worry about null
|
|
|
+ bytes inside strings unless you explicitly create themselves by
|
|
|
+ using e.g. :func:`json_stringn()` or ``s#`` format specifier for
|
|
|
+ :func:`json_pack()`.
|
|
|
+
|
|
|
+ Object keys cannot have embedded null bytes even if this flag is
|
|
|
+ used.
|
|
|
+
|
|
|
+ .. versionadded:: 2.6
|
|
|
+
|
|
|
+Each function also takes an optional :type:`json_error_t` parameter
|
|
|
+that is filled with error information if decoding fails. It's also
|
|
|
+updated on success; the number of bytes of input read is written to
|
|
|
+its ``position`` field. This is especially useful when using
|
|
|
+``JSON_DISABLE_EOF_CHECK`` to read multiple consecutive JSON texts.
|
|
|
+
|
|
|
+.. versionadded:: 2.3
|
|
|
+ Number of bytes of input read is written to the ``position`` field
|
|
|
+ of the :type:`json_error_t` structure.
|
|
|
+
|
|
|
+If no error or position information is needed, you can pass *NULL*.
|
|
|
+
|
|
|
+.. function:: json_t *json_loads(const char *input, size_t flags, json_error_t *error)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Decodes the JSON string *input* and returns the array or object it
|
|
|
+ contains, or *NULL* on error, in which case *error* is filled with
|
|
|
+ information about the error. *flags* is described above.
|
|
|
+
|
|
|
+.. function:: json_t *json_loadb(const char *buffer, size_t buflen, size_t flags, json_error_t *error)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Decodes the JSON string *buffer*, whose length is *buflen*, and
|
|
|
+ returns the array or object it contains, or *NULL* on error, in
|
|
|
+ which case *error* is filled with information about the error. This
|
|
|
+ is similar to :func:`json_loads()` except that the string doesn't
|
|
|
+ need to be null-terminated. *flags* is described above.
|
|
|
+
|
|
|
+ .. versionadded:: 2.1
|
|
|
+
|
|
|
+.. function:: json_t *json_loadf(FILE *input, size_t flags, json_error_t *error)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Decodes the JSON text in stream *input* and returns the array or
|
|
|
+ object it contains, or *NULL* on error, in which case *error* is
|
|
|
+ filled with information about the error. *flags* is described
|
|
|
+ above.
|
|
|
+
|
|
|
+ This function will start reading the input from whatever position
|
|
|
+ the input file was in, without attempting to seek first. If an error
|
|
|
+ occurs, the file position will be left indeterminate. On success,
|
|
|
+ the file position will be at EOF, unless ``JSON_DISABLE_EOF_CHECK``
|
|
|
+ flag was used. In this case, the file position will be at the first
|
|
|
+ character after the last ``]`` or ``}`` in the JSON input. This
|
|
|
+ allows calling :func:`json_loadf()` on the same ``FILE`` object
|
|
|
+ multiple times, if the input consists of consecutive JSON texts,
|
|
|
+ possibly separated by whitespace.
|
|
|
+
|
|
|
+.. function:: json_t *json_loadfd(int input, size_t flags, json_error_t *error)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Decodes the JSON text in stream *input* and returns the array or
|
|
|
+ object it contains, or *NULL* on error, in which case *error* is
|
|
|
+ filled with information about the error. *flags* is described
|
|
|
+ above.
|
|
|
+
|
|
|
+ This function will start reading the input from whatever position
|
|
|
+ the input file descriptor was in, without attempting to seek first.
|
|
|
+ If an error occurs, the file position will be left indeterminate.
|
|
|
+ On success, the file position will be at EOF, unless
|
|
|
+ ``JSON_DISABLE_EOF_CHECK`` flag was used. In this case, the file
|
|
|
+ descriptor's position will be at the first character after the last
|
|
|
+ ``]`` or ``}`` in the JSON input. This allows calling
|
|
|
+ :func:`json_loadfd()` on the same file descriptor multiple times,
|
|
|
+ if the input consists of consecutive JSON texts, possibly separated
|
|
|
+ by whitespace.
|
|
|
+
|
|
|
+ It is important to note that this function can only succeed on stream
|
|
|
+ file descriptors (such as SOCK_STREAM). Using this function on a
|
|
|
+ non-stream file descriptor will result in undefined behavior. For
|
|
|
+ non-stream file descriptors, see instead :func:`json_loadb()`.
|
|
|
+
|
|
|
+ This function requires POSIX and fails on all non-POSIX systems.
|
|
|
+
|
|
|
+ .. versionadded:: 2.10
|
|
|
+
|
|
|
+.. function:: json_t *json_load_file(const char *path, size_t flags, json_error_t *error)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Decodes the JSON text in file *path* and returns the array or
|
|
|
+ object it contains, or *NULL* on error, in which case *error* is
|
|
|
+ filled with information about the error. *flags* is described
|
|
|
+ above.
|
|
|
+
|
|
|
+.. type:: json_load_callback_t
|
|
|
+
|
|
|
+ A typedef for a function that's called by
|
|
|
+ :func:`json_load_callback()` to read a chunk of input data::
|
|
|
+
|
|
|
+ typedef size_t (*json_load_callback_t)(void *buffer, size_t buflen, void *data);
|
|
|
+
|
|
|
+ *buffer* points to a buffer of *buflen* bytes, and *data* is the
|
|
|
+ corresponding :func:`json_load_callback()` argument passed through.
|
|
|
+
|
|
|
+ On success, the function should write at most *buflen* bytes to
|
|
|
+ *buffer*, and return the number of bytes written; a returned value
|
|
|
+ of 0 indicates that no data was produced and that the end of file
|
|
|
+ has been reached. On error, the function should return
|
|
|
+ ``(size_t)-1`` to abort the decoding process.
|
|
|
+
|
|
|
+ In UTF-8, some code points are encoded as multi-byte sequences. The
|
|
|
+ callback function doesn't need to worry about this, as Jansson
|
|
|
+ handles it at a higher level. For example, you can safely read a
|
|
|
+ fixed number of bytes from a network connection without having to
|
|
|
+ care about code unit sequences broken apart by the chunk
|
|
|
+ boundaries.
|
|
|
+
|
|
|
+ .. versionadded:: 2.4
|
|
|
+
|
|
|
+.. function:: json_t *json_load_callback(json_load_callback_t callback, void *data, size_t flags, json_error_t *error)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Decodes the JSON text produced by repeated calls to *callback*, and
|
|
|
+ returns the array or object it contains, or *NULL* on error, in
|
|
|
+ which case *error* is filled with information about the error.
|
|
|
+ *data* is passed through to *callback* on each call. *flags* is
|
|
|
+ described above.
|
|
|
+
|
|
|
+ .. versionadded:: 2.4
|
|
|
+
|
|
|
+
|
|
|
+.. _apiref-pack:
|
|
|
+
|
|
|
+Building Values
|
|
|
+===============
|
|
|
+
|
|
|
+This section describes functions that help to create, or *pack*,
|
|
|
+complex JSON values, especially nested objects and arrays. Value
|
|
|
+building is based on a *format string* that is used to tell the
|
|
|
+functions about the expected arguments.
|
|
|
+
|
|
|
+For example, the format string ``"i"`` specifies a single integer
|
|
|
+value, while the format string ``"[ssb]"`` or the equivalent ``"[s, s,
|
|
|
+b]"`` specifies an array value with two strings and a boolean as its
|
|
|
+items::
|
|
|
+
|
|
|
+ /* Create the JSON integer 42 */
|
|
|
+ json_pack("i", 42);
|
|
|
+
|
|
|
+ /* Create the JSON array ["foo", "bar", true] */
|
|
|
+ json_pack("[ssb]", "foo", "bar", 1);
|
|
|
+
|
|
|
+Here's the full list of format specifiers. The type in parentheses
|
|
|
+denotes the resulting JSON type, and the type in brackets (if any)
|
|
|
+denotes the C type that is expected as the corresponding argument or
|
|
|
+arguments.
|
|
|
+
|
|
|
+``s`` (string) [const char \*]
|
|
|
+ Convert a null terminated UTF-8 string to a JSON string.
|
|
|
+
|
|
|
+``s?`` (string) [const char \*]
|
|
|
+ Like ``s``, but if the argument is *NULL*, output a JSON null
|
|
|
+ value.
|
|
|
+
|
|
|
+ .. versionadded:: 2.8
|
|
|
+
|
|
|
+``s*`` (string) [const char \*]
|
|
|
+ Like ``s``, but if the argument is *NULL*, do not output any value.
|
|
|
+ This format can only be used inside an object or an array. If used
|
|
|
+ inside an object, the corresponding key is additionally suppressed
|
|
|
+ when the value is omitted. See below for an example.
|
|
|
+
|
|
|
+ .. versionadded:: 2.11
|
|
|
+
|
|
|
+``s#`` (string) [const char \*, int]
|
|
|
+ Convert a UTF-8 buffer of a given length to a JSON string.
|
|
|
+
|
|
|
+ .. versionadded:: 2.5
|
|
|
+
|
|
|
+``s%`` (string) [const char \*, size_t]
|
|
|
+ Like ``s#`` but the length argument is of type :type:`size_t`.
|
|
|
+
|
|
|
+ .. versionadded:: 2.6
|
|
|
+
|
|
|
+``+`` [const char \*]
|
|
|
+ Like ``s``, but concatenate to the previous string. Only valid
|
|
|
+ after ``s``, ``s#``, ``+`` or ``+#``.
|
|
|
+
|
|
|
+ .. versionadded:: 2.5
|
|
|
+
|
|
|
+``+#`` [const char \*, int]
|
|
|
+ Like ``s#``, but concatenate to the previous string. Only valid
|
|
|
+ after ``s``, ``s#``, ``+`` or ``+#``.
|
|
|
+
|
|
|
+ .. versionadded:: 2.5
|
|
|
+
|
|
|
+``+%`` (string) [const char \*, size_t]
|
|
|
+ Like ``+#`` but the length argument is of type :type:`size_t`.
|
|
|
+
|
|
|
+ .. versionadded:: 2.6
|
|
|
+
|
|
|
+``n`` (null)
|
|
|
+ Output a JSON null value. No argument is consumed.
|
|
|
+
|
|
|
+``b`` (boolean) [int]
|
|
|
+ Convert a C :type:`int` to JSON boolean value. Zero is converted
|
|
|
+ to ``false`` and non-zero to ``true``.
|
|
|
+
|
|
|
+``i`` (integer) [int]
|
|
|
+ Convert a C :type:`int` to JSON integer.
|
|
|
+
|
|
|
+``I`` (integer) [json_int_t]
|
|
|
+ Convert a C :type:`json_int_t` to JSON integer.
|
|
|
+
|
|
|
+``f`` (real) [double]
|
|
|
+ Convert a C :type:`double` to JSON real.
|
|
|
+
|
|
|
+``o`` (any value) [json_t \*]
|
|
|
+ Output any given JSON value as-is. If the value is added to an
|
|
|
+ array or object, the reference to the value passed to ``o`` is
|
|
|
+ stolen by the container.
|
|
|
+
|
|
|
+``O`` (any value) [json_t \*]
|
|
|
+ Like ``o``, but the argument's reference count is incremented.
|
|
|
+ This is useful if you pack into an array or object and want to
|
|
|
+ keep the reference for the JSON value consumed by ``O`` to
|
|
|
+ yourself.
|
|
|
+
|
|
|
+``o?``, ``O?`` (any value) [json_t \*]
|
|
|
+ Like ``o`` and ``O``, respectively, but if the argument is
|
|
|
+ *NULL*, output a JSON null value.
|
|
|
+
|
|
|
+ .. versionadded:: 2.8
|
|
|
+
|
|
|
+``o*``, ``O*`` (any value) [json_t \*]
|
|
|
+ Like ``o`` and ``O``, respectively, but if the argument is
|
|
|
+ *NULL*, do not output any value. This format can only be used
|
|
|
+ inside an object or an array. If used inside an object, the
|
|
|
+ corresponding key is additionally suppressed. See below for an
|
|
|
+ example.
|
|
|
+
|
|
|
+ .. versionadded:: 2.11
|
|
|
+
|
|
|
+``[fmt]`` (array)
|
|
|
+ Build an array with contents from the inner format string. ``fmt``
|
|
|
+ may contain objects and arrays, i.e. recursive value building is
|
|
|
+ supported.
|
|
|
+
|
|
|
+``{fmt}`` (object)
|
|
|
+ Build an object with contents from the inner format string
|
|
|
+ ``fmt``. The first, third, etc. format specifier represent a key,
|
|
|
+ and must be a string (see ``s``, ``s#``, ``+`` and ``+#`` above),
|
|
|
+ as object keys are always strings. The second, fourth, etc. format
|
|
|
+ specifier represent a value. Any value may be an object or array,
|
|
|
+ i.e. recursive value building is supported.
|
|
|
+
|
|
|
+Whitespace, ``:`` and ``,`` are ignored.
|
|
|
+
|
|
|
+.. function:: json_t *json_pack(const char *fmt, ...)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Build a new JSON value according to the format string *fmt*. For
|
|
|
+ each format specifier (except for ``{}[]n``), one or more arguments
|
|
|
+ are consumed and used to build the corresponding value. Returns
|
|
|
+ *NULL* on error.
|
|
|
+
|
|
|
+.. function:: json_t *json_pack_ex(json_error_t *error, size_t flags, const char *fmt, ...)
|
|
|
+ json_t *json_vpack_ex(json_error_t *error, size_t flags, const char *fmt, va_list ap)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Like :func:`json_pack()`, but an in the case of an error, an error
|
|
|
+ message is written to *error*, if it's not *NULL*. The *flags*
|
|
|
+ parameter is currently unused and should be set to 0.
|
|
|
+
|
|
|
+ As only the errors in format string (and out-of-memory errors) can
|
|
|
+ be caught by the packer, these two functions are most likely only
|
|
|
+ useful for debugging format strings.
|
|
|
+
|
|
|
+More examples::
|
|
|
+
|
|
|
+ /* Build an empty JSON object */
|
|
|
+ json_pack("{}");
|
|
|
+
|
|
|
+ /* Build the JSON object {"foo": 42, "bar": 7} */
|
|
|
+ json_pack("{sisi}", "foo", 42, "bar", 7);
|
|
|
+
|
|
|
+ /* Like above, ':', ',' and whitespace are ignored */
|
|
|
+ json_pack("{s:i, s:i}", "foo", 42, "bar", 7);
|
|
|
+
|
|
|
+ /* Build the JSON array [[1, 2], {"cool": true}] */
|
|
|
+ json_pack("[[i,i],{s:b}]", 1, 2, "cool", 1);
|
|
|
+
|
|
|
+ /* Build a string from a non-null terminated buffer */
|
|
|
+ char buffer[4] = {'t', 'e', 's', 't'};
|
|
|
+ json_pack("s#", buffer, 4);
|
|
|
+
|
|
|
+ /* Concatenate strings together to build the JSON string "foobarbaz" */
|
|
|
+ json_pack("s++", "foo", "bar", "baz");
|
|
|
+
|
|
|
+ /* Create an empty object or array when optional members are missing */
|
|
|
+ json_pack("{s:s*,s:o*,s:O*}", "foo", NULL, "bar", NULL, "baz", NULL);
|
|
|
+ json_pack("[s*,o*,O*]", NULL, NULL, NULL);
|
|
|
+
|
|
|
+
|
|
|
+.. _apiref-unpack:
|
|
|
+
|
|
|
+Parsing and Validating Values
|
|
|
+=============================
|
|
|
+
|
|
|
+This section describes functions that help to validate complex values
|
|
|
+and extract, or *unpack*, data from them. Like :ref:`building values
|
|
|
+<apiref-pack>`, this is also based on format strings.
|
|
|
+
|
|
|
+While a JSON value is unpacked, the type specified in the format
|
|
|
+string is checked to match that of the JSON value. This is the
|
|
|
+validation part of the process. In addition to this, the unpacking
|
|
|
+functions can also check that all items of arrays and objects are
|
|
|
+unpacked. This check be enabled with the format specifier ``!`` or by
|
|
|
+using the flag ``JSON_STRICT``. See below for details.
|
|
|
+
|
|
|
+Here's the full list of format specifiers. The type in parentheses
|
|
|
+denotes the JSON type, and the type in brackets (if any) denotes the C
|
|
|
+type whose address should be passed.
|
|
|
+
|
|
|
+``s`` (string) [const char \*]
|
|
|
+ Convert a JSON string to a pointer to a null terminated UTF-8
|
|
|
+ string. The resulting string is extracted by using
|
|
|
+ :func:`json_string_value()` internally, so it exists as long as
|
|
|
+ there are still references to the corresponding JSON string.
|
|
|
+
|
|
|
+``s%`` (string) [const char \*, size_t \*]
|
|
|
+ Convert a JSON string to a pointer to a null terminated UTF-8
|
|
|
+ string and its length.
|
|
|
+
|
|
|
+ .. versionadded:: 2.6
|
|
|
+
|
|
|
+``n`` (null)
|
|
|
+ Expect a JSON null value. Nothing is extracted.
|
|
|
+
|
|
|
+``b`` (boolean) [int]
|
|
|
+ Convert a JSON boolean value to a C :type:`int`, so that ``true``
|
|
|
+ is converted to 1 and ``false`` to 0.
|
|
|
+
|
|
|
+``i`` (integer) [int]
|
|
|
+ Convert a JSON integer to C :type:`int`.
|
|
|
+
|
|
|
+``I`` (integer) [json_int_t]
|
|
|
+ Convert a JSON integer to C :type:`json_int_t`.
|
|
|
+
|
|
|
+``f`` (real) [double]
|
|
|
+ Convert a JSON real to C :type:`double`.
|
|
|
+
|
|
|
+``F`` (integer or real) [double]
|
|
|
+ Convert a JSON number (integer or real) to C :type:`double`.
|
|
|
+
|
|
|
+``o`` (any value) [json_t \*]
|
|
|
+ Store a JSON value with no conversion to a :type:`json_t` pointer.
|
|
|
+
|
|
|
+``O`` (any value) [json_t \*]
|
|
|
+ Like ``o``, but the JSON value's reference count is incremented.
|
|
|
+ Storage pointers should be initialized NULL before using unpack.
|
|
|
+ The caller is responsible for releasing all references incremented
|
|
|
+ by unpack, even when an error occurs.
|
|
|
+
|
|
|
+``[fmt]`` (array)
|
|
|
+ Convert each item in the JSON array according to the inner format
|
|
|
+ string. ``fmt`` may contain objects and arrays, i.e. recursive
|
|
|
+ value extraction is supported.
|
|
|
+
|
|
|
+``{fmt}`` (object)
|
|
|
+ Convert each item in the JSON object according to the inner format
|
|
|
+ string ``fmt``. The first, third, etc. format specifier represent
|
|
|
+ a key, and must be ``s``. The corresponding argument to unpack
|
|
|
+ functions is read as the object key. The second fourth, etc.
|
|
|
+ format specifier represent a value and is written to the address
|
|
|
+ given as the corresponding argument. **Note** that every other
|
|
|
+ argument is read from and every other is written to.
|
|
|
+
|
|
|
+ ``fmt`` may contain objects and arrays as values, i.e. recursive
|
|
|
+ value extraction is supported.
|
|
|
+
|
|
|
+ .. versionadded:: 2.3
|
|
|
+ Any ``s`` representing a key may be suffixed with a ``?`` to
|
|
|
+ make the key optional. If the key is not found, nothing is
|
|
|
+ extracted. See below for an example.
|
|
|
+
|
|
|
+``!``
|
|
|
+ This special format specifier is used to enable the check that
|
|
|
+ all object and array items are accessed, on a per-value basis. It
|
|
|
+ must appear inside an array or object as the last format specifier
|
|
|
+ before the closing bracket or brace. To enable the check globally,
|
|
|
+ use the ``JSON_STRICT`` unpacking flag.
|
|
|
+
|
|
|
+``*``
|
|
|
+ This special format specifier is the opposite of ``!``. If the
|
|
|
+ ``JSON_STRICT`` flag is used, ``*`` can be used to disable the
|
|
|
+ strict check on a per-value basis. It must appear inside an array
|
|
|
+ or object as the last format specifier before the closing bracket
|
|
|
+ or brace.
|
|
|
+
|
|
|
+Whitespace, ``:`` and ``,`` are ignored.
|
|
|
+
|
|
|
+.. function:: int json_unpack(json_t *root, const char *fmt, ...)
|
|
|
+
|
|
|
+ Validate and unpack the JSON value *root* according to the format
|
|
|
+ string *fmt*. Returns 0 on success and -1 on failure.
|
|
|
+
|
|
|
+.. function:: int json_unpack_ex(json_t *root, json_error_t *error, size_t flags, const char *fmt, ...)
|
|
|
+ int json_vunpack_ex(json_t *root, json_error_t *error, size_t flags, const char *fmt, va_list ap)
|
|
|
+
|
|
|
+ Validate and unpack the JSON value *root* according to the format
|
|
|
+ string *fmt*. If an error occurs and *error* is not *NULL*, write
|
|
|
+ error information to *error*. *flags* can be used to control the
|
|
|
+ behaviour of the unpacker, see below for the flags. Returns 0 on
|
|
|
+ success and -1 on failure.
|
|
|
+
|
|
|
+.. note::
|
|
|
+
|
|
|
+ The first argument of all unpack functions is ``json_t *root``
|
|
|
+ instead of ``const json_t *root``, because the use of ``O`` format
|
|
|
+ specifier causes the reference count of ``root``, or some value
|
|
|
+ reachable from ``root``, to be increased. Furthermore, the ``o``
|
|
|
+ format specifier may be used to extract a value as-is, which allows
|
|
|
+ modifying the structure or contents of a value reachable from
|
|
|
+ ``root``.
|
|
|
+
|
|
|
+ If the ``O`` and ``o`` format specifiers are not used, it's
|
|
|
+ perfectly safe to cast a ``const json_t *`` variable to plain
|
|
|
+ ``json_t *`` when used with these functions.
|
|
|
+
|
|
|
+The following unpacking flags are available:
|
|
|
+
|
|
|
+``JSON_STRICT``
|
|
|
+ Enable the extra validation step checking that all object and
|
|
|
+ array items are unpacked. This is equivalent to appending the
|
|
|
+ format specifier ``!`` to the end of every array and object in the
|
|
|
+ format string.
|
|
|
+
|
|
|
+``JSON_VALIDATE_ONLY``
|
|
|
+ Don't extract any data, just validate the JSON value against the
|
|
|
+ given format string. Note that object keys must still be specified
|
|
|
+ after the format string.
|
|
|
+
|
|
|
+Examples::
|
|
|
+
|
|
|
+ /* root is the JSON integer 42 */
|
|
|
+ int myint;
|
|
|
+ json_unpack(root, "i", &myint);
|
|
|
+ assert(myint == 42);
|
|
|
+
|
|
|
+ /* root is the JSON object {"foo": "bar", "quux": true} */
|
|
|
+ const char *str;
|
|
|
+ int boolean;
|
|
|
+ json_unpack(root, "{s:s, s:b}", "foo", &str, "quux", &boolean);
|
|
|
+ assert(strcmp(str, "bar") == 0 && boolean == 1);
|
|
|
+
|
|
|
+ /* root is the JSON array [[1, 2], {"baz": null} */
|
|
|
+ json_error_t error;
|
|
|
+ json_unpack_ex(root, &error, JSON_VALIDATE_ONLY, "[[i,i], {s:n}]", "baz");
|
|
|
+ /* returns 0 for validation success, nothing is extracted */
|
|
|
+
|
|
|
+ /* root is the JSON array [1, 2, 3, 4, 5] */
|
|
|
+ int myint1, myint2;
|
|
|
+ json_unpack(root, "[ii!]", &myint1, &myint2);
|
|
|
+ /* returns -1 for failed validation */
|
|
|
+
|
|
|
+ /* root is an empty JSON object */
|
|
|
+ int myint = 0, myint2 = 0, myint3 = 0;
|
|
|
+ json_unpack(root, "{s?i, s?[ii]}",
|
|
|
+ "foo", &myint1,
|
|
|
+ "bar", &myint2, &myint3);
|
|
|
+ /* myint1, myint2 or myint3 is no touched as "foo" and "bar" don't exist */
|
|
|
+
|
|
|
+
|
|
|
+Equality
|
|
|
+========
|
|
|
+
|
|
|
+Testing for equality of two JSON values cannot, in general, be
|
|
|
+achieved using the ``==`` operator. Equality in the terms of the
|
|
|
+``==`` operator states that the two :type:`json_t` pointers point to
|
|
|
+exactly the same JSON value. However, two JSON values can be equal not
|
|
|
+only if they are exactly the same value, but also if they have equal
|
|
|
+"contents":
|
|
|
+
|
|
|
+* Two integer or real values are equal if their contained numeric
|
|
|
+ values are equal. An integer value is never equal to a real value,
|
|
|
+ though.
|
|
|
+
|
|
|
+* Two strings are equal if their contained UTF-8 strings are equal,
|
|
|
+ byte by byte. Unicode comparison algorithms are not implemented.
|
|
|
+
|
|
|
+* Two arrays are equal if they have the same number of elements and
|
|
|
+ each element in the first array is equal to the corresponding
|
|
|
+ element in the second array.
|
|
|
+
|
|
|
+* Two objects are equal if they have exactly the same keys and the
|
|
|
+ value for each key in the first object is equal to the value of the
|
|
|
+ corresponding key in the second object.
|
|
|
+
|
|
|
+* Two true, false or null values have no "contents", so they are equal
|
|
|
+ if their types are equal. (Because these values are singletons,
|
|
|
+ their equality can actually be tested with ``==``.)
|
|
|
+
|
|
|
+.. function:: int json_equal(json_t *value1, json_t *value2)
|
|
|
+
|
|
|
+ Returns 1 if *value1* and *value2* are equal, as defined above.
|
|
|
+ Returns 0 if they are unequal or one or both of the pointers are
|
|
|
+ *NULL*.
|
|
|
+
|
|
|
+
|
|
|
+Copying
|
|
|
+=======
|
|
|
+
|
|
|
+Because of reference counting, passing JSON values around doesn't
|
|
|
+require copying them. But sometimes a fresh copy of a JSON value is
|
|
|
+needed. For example, if you need to modify an array, but still want to
|
|
|
+use the original afterwards, you should take a copy of it first.
|
|
|
+
|
|
|
+Jansson supports two kinds of copying: shallow and deep. There is a
|
|
|
+difference between these methods only for arrays and objects. Shallow
|
|
|
+copying only copies the first level value (array or object) and uses
|
|
|
+the same child values in the copied value. Deep copying makes a fresh
|
|
|
+copy of the child values, too. Moreover, all the child values are deep
|
|
|
+copied in a recursive fashion.
|
|
|
+
|
|
|
+Copying objects preserves the insertion order of keys.
|
|
|
+
|
|
|
+.. function:: json_t *json_copy(json_t *value)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Returns a shallow copy of *value*, or *NULL* on error.
|
|
|
+
|
|
|
+.. function:: json_t *json_deep_copy(const json_t *value)
|
|
|
+
|
|
|
+ .. refcounting:: new
|
|
|
+
|
|
|
+ Returns a deep copy of *value*, or *NULL* on error.
|
|
|
+
|
|
|
+
|
|
|
+.. _apiref-custom-memory-allocation:
|
|
|
+
|
|
|
+Custom Memory Allocation
|
|
|
+========================
|
|
|
+
|
|
|
+By default, Jansson uses :func:`malloc()` and :func:`free()` for
|
|
|
+memory allocation. These functions can be overridden if custom
|
|
|
+behavior is needed.
|
|
|
+
|
|
|
+.. type:: json_malloc_t
|
|
|
+
|
|
|
+ A typedef for a function pointer with :func:`malloc()`'s
|
|
|
+ signature::
|
|
|
+
|
|
|
+ typedef void *(*json_malloc_t)(size_t);
|
|
|
+
|
|
|
+.. type:: json_free_t
|
|
|
+
|
|
|
+ A typedef for a function pointer with :func:`free()`'s
|
|
|
+ signature::
|
|
|
+
|
|
|
+ typedef void (*json_free_t)(void *);
|
|
|
+
|
|
|
+.. function:: void json_set_alloc_funcs(json_malloc_t malloc_fn, json_free_t free_fn)
|
|
|
+
|
|
|
+ Use *malloc_fn* instead of :func:`malloc()` and *free_fn* instead
|
|
|
+ of :func:`free()`. This function has to be called before any other
|
|
|
+ Jansson's API functions to ensure that all memory operations use
|
|
|
+ the same functions.
|
|
|
+
|
|
|
+.. function:: void json_get_alloc_funcs(json_malloc_t *malloc_fn, json_free_t *free_fn)
|
|
|
+
|
|
|
+ Fetch the current malloc_fn and free_fn used. Either parameter
|
|
|
+ may be NULL.
|
|
|
+
|
|
|
+ .. versionadded:: 2.8
|
|
|
+
|
|
|
+**Examples:**
|
|
|
+
|
|
|
+Circumvent problems with different CRT heaps on Windows by using
|
|
|
+application's :func:`malloc()` and :func:`free()`::
|
|
|
+
|
|
|
+ json_set_alloc_funcs(malloc, free);
|
|
|
+
|
|
|
+Use the `Boehm's conservative garbage collector`_ for memory
|
|
|
+operations::
|
|
|
+
|
|
|
+ json_set_alloc_funcs(GC_malloc, GC_free);
|
|
|
+
|
|
|
+.. _Boehm's conservative garbage collector: http://www.hboehm.info/gc/
|
|
|
+
|
|
|
+Allow storing sensitive data (e.g. passwords or encryption keys) in
|
|
|
+JSON structures by zeroing all memory when freed::
|
|
|
+
|
|
|
+ static void *secure_malloc(size_t size)
|
|
|
+ {
|
|
|
+ /* Store the memory area size in the beginning of the block */
|
|
|
+ void *ptr = malloc(size + 8);
|
|
|
+ *((size_t *)ptr) = size;
|
|
|
+ return ptr + 8;
|
|
|
+ }
|
|
|
+
|
|
|
+ static void secure_free(void *ptr)
|
|
|
+ {
|
|
|
+ size_t size;
|
|
|
+
|
|
|
+ ptr -= 8;
|
|
|
+ size = *((size_t *)ptr);
|
|
|
+
|
|
|
+ guaranteed_memset(ptr, 0, size + 8);
|
|
|
+ free(ptr);
|
|
|
+ }
|
|
|
+
|
|
|
+ int main()
|
|
|
+ {
|
|
|
+ json_set_alloc_funcs(secure_malloc, secure_free);
|
|
|
+ /* ... */
|
|
|
+ }
|
|
|
+
|
|
|
+For more information about the issues of storing sensitive data in
|
|
|
+memory, see
|
|
|
+http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/protect-secrets.html.
|
|
|
+The page also explains the :func:`guaranteed_memset()` function used
|
|
|
+in the example and gives a sample implementation for it.
|