
Cgraph Tutorial

Stephen C. North
scnorth@gmail.com

Emden R. Gansner
erg@graphviz.com

February 7, 2014

1

Contents

1 Introduction 3

2 Graph Objects 3

3 Graphs 3

4 Nodes 5

5 Edges 5

6 Traversals 6

7 External Attributes 7

8 Internal Attributes 9

9 Subgraphs 10

10 Utility Functions and Macros 11

11 Error Handling 12

12 Strings 12

13 Expert-level Tweaks 14
13.1 Callbacks . 14
13.2 Disciplines . 15

13.2.1 Memory management . 15
13.2.2 I/O management . 16
13.2.3 ID management . 18

13.3 Flattened node and edge lists . 19

14 Related Libraries 20

15 Interfaces to Other Languages 21

16 Open Issues 22

17 Example 24

2

1 Introduction

Cgraph is a C library for graph programming. It defines data types and operations for graphs comprised of
attributed nodes, edges and subgraphs. Attributes may be string name-value pairs for convenient file I/O, or
internal C data structures for efficient algorithm implementation.

Cgraph is aimed at graph representation; it is not an library of higher-level algorithms such as shortest path
or network flow. We envision these as higher-level libraries written on top of Cgraph. Efforts were made in
Cgraph’s design to strive for time and space efficiency. The basic (unattributed) graph representation takes 104
bytes per node and 64 bytes per edge, so storage of graphs with millions of objects is reasonable. For attributed
graphs, Cgraph also maintains an internal shared string pool, so if all the nodes of a graph have color=red,
only one copy of "color" and "red" are made. There are other tricks that experts can exploit for flat-out
coding efficiency. For example, there are ways to inline the instructions for edge list traversal and internal data
structure access.

Cgraph uses Phong Vo’s dictionary library, libcdt, to store node and edge sets. This library provides a
uniform interface to hash tables and splay trees, and its API is usable for general programming (such as storing
multisets, hash tables, lists and queues) in Cgraph programs.

Notation In the following, we use TRUE to denote a non-zero value, and FALSE to denote zero.

2 Graph Objects

Almost all Cgraph programming can be done with pointers to these data types:

• Agraph_t: a graph or subgraph

• Agnode_t: a node from a particular graph or subgraph

• Agedge_t: an edge from a particular graph or subgraph

• Agsym_t: a descriptor for a string-value pair attribute

• Agrec_t: an internal C data record attribute of a graph object

Cgraph is responsible for its own memory management; allocation and deallocation of Cgraph data struc-
tures is always done through Cgraph calls.

3 Graphs

A top-level graph (also called a root graph) defines a universe of nodes, edges, subgraphs, data dictionaries and
other information. A graph has a name and two properties: whether it is directed or undirected, and whether it
is strict (multi-edges are forbidden). 1

1It is possible to specify that a graph is simple (neither multi-edges nor loops), or can have multi-edges but not loops.

3

Note that nodes, edges and subgraphs exists in exactly one root graph. They cannot be used independently
of that graph, or attached to another root graph.

The following examples use the convention that G and g are Agraph_t* (graph pointers), n, u, v, w are
Agnode_t* (node pointers), and e, f are Agedge_t* (edge pointers).

To make a new, empty top-level directed graph:

Agraph_t *g;
g = agopen("G", Agdirected, NULL);

The first argument to agopen is any string, and is not interpreted by Cgraph, except it is recorded and
preserved when the graph is written as a file.2 The second argument indicates the type of graph, and should
be one of Agdirected, Agstrictdirected, Agundirected, or Agstrictundirected. The third
argument is an optional pointer to a collection of methods for overriding certain default behaviors of Cgraph,
and in most situations can just be NULL.

You can get the name of a graph by agnameof(g), and you can get its properties by the predicate functions
agisdirected(g) and agisstrict(g).

You can also construct a new graph by reading a file:

g = agread(stdin,NULL);

Here, the graph’s name, type and contents including attributes depend on the file contents. (The second
argument is the same optional method pointer mentioned above for agopen).

Sometimes it is convenient to have the graph represented concretely as a character string str. In this case,
the graph can be created using:

g = agmemread (str);

You can write a representation of a graph to a file:

g = agwrite(g,stdout);

agwrite creates an external representation of a graph’s contents and attributes (except for internal at-
tributes), that can later be reconstructed by calling agread on the same file.3

agnnodes(g), agnedges(g) and agnsubg(g) return the count of nodes, edges and (immediate)
subgraphs in a graph (or subgraph).

To delete a graph and its associated data structures, freeing their memory, one uses:

agclose(g);

Finally, there is an interesting if obscure function to concatenate the contents of a graph file onto an existing
graph, as shown here.

g = agconcat(g,stdin,NULL);

2An application could, of course, maintain its own graph catalogue using graph names.
3It is the application programmer’s job to convert between internal attributes to external strings when graphs are read and written, if

desired. This seemed better than inventing a complicated way to automate this conversion.

4

4 Nodes

In Cgraph, a node is usually identified by a unique string name and a unique internal integer ID assigned by
Cgraph. (For convenience, you can also create ”anonymous” nodes by giving NULL as the node name.) A node
also has in- and out-edge sets, even in undirected graphs.

Once you have a graph, you can create or search for nodes this way:

Agnode_t *n;
n = agnode(g,"node28",TRUE);

The first argument is a graph or subgraph in which the node is to be created. The second is the name
(or NULL for anonymous nodes.) When the third argument is TRUE, the node is created if it doesn’t already
exist. When it’s FALSE, as shown below, then Cgraph searches to locate an existing node with the given name,
returning NULL if none is found.

n = agnode(g,"node28",FALSE);

The function agdegree(g, n, in, out) gives the degree of a node in (sub)graph g, where in and
out select the edge sets.

• agdegree(g,n,TRUE,FALSE) returns the in-degree.

• agdegree(g,n,FALSE,TRUE) returns the out-degree.

• agdegree(g,n,TRUE,TRUE) returns their sum.

The function agcountuniqedges is identical to agdegree except when the last two arguments are both
TRUE. In this case, a loop is only counted once.

agnameof(n) returns the printable string name of a node. Note that for various reasons this string may
be a temporary buffer that can be overwritten by subsequent calls. Thus, the usage

printf("%s %s\n",agnameof(agtail(e)),agnameof(aghead(e)));

is unsafe because the buffer may be overwritten when the arguments to printf are being computed.
A node can be deleted from a graph or subgraph by agdelnode(g,n).

5 Edges

An edge is a node pair: an ordered pair in a directed graph, unordered in an undirected graph. For convenience
there is a common edge data structure for both kinds and the endpoints are the fields tail and head. 4

Because an edge is implemented as an edge pair, there are two valid pointers to the same edge, so simple
pointer comparison does not work for edge equality. The function ageqedge(Agedge_t *e0, Agedge_t *e1)

4When an edge is created, the first node will be used as the tail node, and the second node as the head.

5

evaluates to true if the two pointers represent the same abstract edge, and should usually be used for edge com-
parisons.

An edge is made using

Agnode_t *u, *v;
Agedge_t *e;

/* assume u and v are already defined */
e = agedge(g,u,v,"e28",TRUE);

u and v must belong to the same graph or subgraph for the operation to succeed. The “name” of an edge
(more correctly, identifier) is treated as a unique identifier for edges between a particular node pair. That is,
there can only be at most one edge with name e28 between any given u and v, but there can be many other
edges e28 between other nodes.

agtail(e) and aghead(e) return the endpoints of e. If e is created as in the call to agedge above, u
will be the tail node and v will be the head node. This holds true even for undirected graphs.

The value e->node is the “other” endpoint with respect to the node from which e was obtained. That is, if
e is an out-edge of node n (equivalently, n is the tail of e), then e->node is the head of e. A common idiom
is:

for (e = agfstout(g,n); e; e = agnxtout(g,e))
/* do something with e->node */

agedge can also search for edges:

/* finds any u,v edge */
e = agedge(g,u,v,NULL,FALSE);
/* finds a u,v edge with name "e8" */
e = agedge(g,u,v,"e8",FALSE);

In an undirected graph, an edge search will consider the given vertices as both tail and head nodes.
An edge can be deleted from a graph or subgraph by agdeledge(g,e). The agnameof function can

be used to get the “name” of an edge. Note that this will be the identifier string provided at edge creation. The
names of the head and tail nodes will not be part of the string. In addition, it returns NULL for anonymous
edges.

6 Traversals

Cgraph has functions for iterating over graph objects. For example, we can scan all the edges of a graph (directed
or undirected) by the following:

6

for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
for (e = agfstout(g,n); e; e = agnxtout(g,e)) {

/* do something with e */
}

}

The functions agfstin(g,n) and afnxtin(g,e) are provided for walking in-edge lists.
In the case of a directed edge, the meanings of “in” and “out” are obvious. For undirected graphs, Cgraph

assigns an orientation based on the analogous order of the two nodes when the edge is created.
To visit all the edges of a node in an undirected graph:

for (e = agfstedge(g,n); e; e = agnxtedge(g,e,n))
/* do something with e */

Be careful if your code deletes an edge or node during the traversal, as then the object will no longer be
valid to get the next object. This is typically handled by code like:

for (e = agfstedge(g,n); e; e = f) {
f = agnxtedge(g,e,n))
/* delete e */

}

Traversals are guaranteed to visit the nodes of a graph, or edges of a node, in their order of creation in the
root graph (unless we allow programmers to override object ordering, as mentioned in section 16).

7 External Attributes

Graph objects may have associated string name-value pairs. When a graph file is read, Cgraph’s parser takes
care of the details of this, so attributes can just be added anywhere in the file. In C programs, values must be
declared before use.

Cgraph assumes that all objects of a given kind (graphs/subgraphs, nodes, or edges) have the same attributes
- there’s no notion of subtyping within attributes. Information about attributes is stored in data dictionaries.
Each graph has three (for graphs/subgraphs, nodes, and edges) for which you’ll need the predefined constants
AGRAPH, AGNODE and AGEDGE in calls to create, search and walk these dictionaries.

Thus, to create an attribute for nodes, one uses:

Agsym_t *sym;
sym = agattr(g,AGNODE,"shape","box");

If this succeeds, sym points to a descriptor for the newly created (or updated) attribute. (Thus, even if shape
was previously declared and had some other default value, it would be set to box by the above.)

By using a NULL pointer as the value, you can use the same function to search the attribute definitions of a
graph.

7

sym = agattr(g,AGNODE,"shape",0);
if (sym)
printf("The default shape is %s.\n",sym->defval);

If you have the pointer to some graph object, you can also use the function agattrsym.

Agnode_t* n;
Agsym_t* sym = agattrsym (n,"shape");
if (sym)

printf("The default shape is %s.\n",sym->defval);

Both functions return NULL if the attribute is not defined.
Instead of looking for a particular attribute, it is possible to iterate over all of them:

sym = 0; /* to get the first one */
while (sym = agnxtattr(g,AGNODE,sym)

printf("%s = %s\n",sym->name,sym->defval);

Assuming an attribute already exists for some object, its value can be obtained or set using its string name
or its Agsym_t descriptor. To use the string name, we have:

str = agget(n,"shape");
agset(n,"shape","hexagon");

If an attribute will be referenced often, it is faster to use its descriptor as an index, as shown here:

Agsym_t *sym = agattr(g,AGNODE,"shape","box");
str = agxget(n,sym);
agxset(n,sym,"hexagon");

Cgraph provides two helper functions for dealing with attributes. The function agsafeset(void *obj, char *name, char *value, char *def)
first checks that the attribute has been defined, defining it with the default value def if not. It then uses value
as the specific value assigned to obj.

It is sometimes useful to copy all of the values from one object to another. This can be easily done using
agcopyattr(void *src, void* tgt). This assumes that the source and target are the same type of
graph objects, and that the attributes of src have already been defined for tgt. If src and tgt belong to the
same root graph, this will automatically be true.

8

8 Internal Attributes

It would be possible to do everything using just string-valued attributes. In general, though, this will be too
inefficient. To deal with this, each graph object (graph, node or edge) may have a list of associated internal data
records. The layout of each such record is programmer-defined, except each must have an Agrec_t header.
The records are allocated through Cgraph. For example:

typedef struct mynode_s {
Agrec_t h;
int count;

} mynode_t;

mynode_t *data;
Agnode_t *n;
n = agnode(g,"mynodename",TRUE);
data = (mynode_t*)agbindrec(n,"mynode_t",
sizeof(mynode_t),FALSE);

data->count = 1;

In a similar way, aggetrec searches for a record, returning a pointer to the record if it exists and NULL
otherwise; agdelrec removes a record from an object.

Although each graph object may have its own unique, individual collection of records, for convenience,
there are functions that update an entire graph by allocating or removing the same record from all nodes, edges
or subgraphs at the same time. These functions are:

void aginit(Agraph_t *g, int kind, char *rec_name,
int rec_size, int move_to_front);

void agclean(Agraph_t *g, int kind, char *rec_name);

Note that in addition to agdelrec and agclean, records are removed and their storage freed when their
associated graph object is deleted. Only the record data structure is freed. If the application has attached any
additional heap memory to a record, it is the responsibility of the application to handle this before the actual
record is deleted.

For further efficiency, there is a way to “lock” the data pointer of a graph object to point to a given record.
This can be done by using TRUE as the last argument in agbindrec, aginit or aggetrec. If this is done,
in the above example we could then simply cast this pointer to the appropriate type for direct (un-typesafe)
access to the data.

(mydata_t*) (n->base.data)->count = 1;

Typically, it is convenient to encapsulate this access using macros. For example, we may have:

9

#define ND_count(n) (((mydata_t*)(AGDATA(n)))->count)
ND_count(n) = 1;

As this is unsafe if the record was not allocated for some object, it is good form to two versions of the macro:

#ifdef DEBUG
#define ND_count(n) \

(assert(aggetrec(n,"mynode_t",1)),((mynode_t*)(AGDATA(n)))->count)
#else
#define ND_count(n) (((mydata_t*)(AGDATA(n)))->count)
#endif

9 Subgraphs

Subgraphs are an important construct in Cgraph. They are intended for organizing subsets of graph objects and
can be used interchangeably with top-level graphs in almost all Cgraph functions.

A subgraph may contain any nodes or edges of its parent. (When an edge is inserted in a subgraph, its nodes
are also implicitly inserted if necessary. Similarly, insertion of a node or edge automatically implies insertion in
all containing subgraphs up to the root.) Subgraphs of a graph form a hierarchy (a tree). Cgraph has functions
to create, search, and iterate over subgraphs.

For example,

Agraph_t *g, *h;

/* search for subgraph by name */
h = agsubg(g,"mysubgraph",FALSE);
if (!h)

/* create subgraph by name */
h = agsubg(g,"mysubgraph",TRUE);

for (h = agfstsubg(g); h; h = agnxtsubg(h)) {
/* agparent is up one level */

assert (g == agparent(h));
/* Use subgraph h */

}

The function agparent returns the (sub)graph immediately containing the argument subgraph. The iter-
ation done using agfstsubg and agnxtsubg returns only immediate subgraphs. To find subgraphs further
down the hierarchy requires a recursive search.

It is not uncommon to want to populate a subgraph with nodes and edges that have already been created.
This can be done using the functions agsubnode and agsubedge,

10

Agnode_t *agsubnode(Agraph_t *g, Agnode_t *n, int create);
Agedge_t *agsubedge(Agraph_t *g, Agedge_t *e, int create);

which take a subgraph, and an object from another subgraph of the same graph (or possibly a top-level object)
and add it to the argument subgraph if the create flag is TRUE. It is also added to all enclosing subgraphs,
if necessary. If the create flag is FALSE, then the request is only treated as a search and returns NULL for
failure.

A subgraph can be removed by agdelsubg(g,subg) or by agclose(subg).

10 Utility Functions and Macros

For convenience, Cgraph provides some polymorphic functions and macros that apply to all Cgraph objects.
(Most of these functions could be implemented in terms of others already described, or by accessing fields in
the Agobj_t base object.

• AGTYPE(obj): object type - AGRAPH, AGNODE, or AGEDGE

• AGID(obj): internal object ID (an unsigned long)

• AGSEQ(obj): object creation timestamp (an integer)

• AGDATA(obj): data record pointer (an Agrec_t*)

Other useful functions include:

/* Returns root graph of obj */
Agraph_t *agroot(void* obj);

/* Returns root graph of obj or obj if a (sub)graph */
Agraph_t *agraphof(void* obj);

/* True of obj belongs to g */
int agcontains(Agraph_t *g, void *obj);

/* Delete obj from the (sub)graph */
int agdelete(Agraph_t *g, void *obj);

/* Synonym of AGTYPE */
int agobjkind(void *obj);

A root graph g will always have

g == agroot(g) == agraphof(g)

11

11 Error Handling

Cgraph provides some basic error handling functions, hampered by the lack of exceptions in C. At present, there
are basically two types of anomalies: warnings and errors.

To report an anomaly, one uses:

typedef enum { AGWARN, AGERR, AGMAX, AGPREV
} agerrlevel_t;

int agerr(agerrlevel_t level, const char *fmt, ...);

The agerr function has a printf-interface, with the first argument indicating the severity of the problem. A
message is only written if its severity is higher than a programmer-controlled minimum, which is AGWARN
by default. The programmer can set this value using agseterr, which returns the previous value. Calling
agseterr(AGMAX) turns off the writing of messages.

Sometimes additional context information is only available in functions calling the function where the error
is actually caught. In this case, the calling function can indicate that it is continuing the current error by using
AGPREV as the first argument.

The function agwarningf is shorthand for agerr(AGWARN,...); similarly, agerrorf is shorthand
for agerr(AGERR,...).

Some applications desire to directly control the writing of messages. Such an application can use the func-
tion agseterrf to register a function that the library should call to actually write the message:

typedef int (*agusererrf) (char*);

agusererrf agseterrf(agusererrf);

The previous error function is returned. By default, the messages are written to stderr. Errors not written are
stored in a log file. The last recorded error can be retrieved by calling aglasterr. The function agerrors
returns the maximum severity reported to agerr. The function agreseterrors is identical, except it also
resets the error level as though no errors have been reported.

12 Strings

As mentioned, Cgraph maintains a reference-counted shared string pool for each graph. As there are often many
identical strings used in a graph, this helps to reduce the memory overhead.

char *agstrdup(Agraph_t *, char *);
char *agstrbind(Agraph_t *, char*);
int agstrfree(Agraph_t *, char *);

12

char *agstrdup_html(Agraph_t *, char *);
int aghtmlstr(char *);

char *agcanonStr(char *str);
char *agstrcanon(char *, char *);
char *agcanon(char *, int);

Cgraph has functions to directly create and destroy references to shared strings. As with any reference-counted
object, you can use these as ordinary strings, though the data should not be modified. If you need to store
the pointer in some data structure, you should call agstrdup(g,s). This will create a new copy of s if
necessary, and increment the count of references, ensuring that the string will not be freed by some other part of
the program while you are still using it. Since agstrdup makes a copy of the string, the argument string can
use temporary storage.

A call to agstrfree(g,s) decrements the reference count and, if this becomes zero, frees the string.
The function agstrbind(g,s) checks if a shared string identical to s exists and, if so, returns it. Otherwise,
it returns NULL.

The DOT language supports a special type of string, containing HTML-like markups. To make sure that the
HTML semantics are used, the application should call agstrdup_html(g,s) rather than agstrdup(g,s).
The following code makes sure the node’s label will be interpreted as an HTML-like string and appear as a table.
If agstrdup were used, the label would appear as the literal string s.

Agraph_t* g;
Agnode_t* n;
char* s = "<TABLE><TR><TD>one cell</TD></TR></TABLE>";
agset (n, "label", agsgtrdup_html (g,s));

The predicate aghtmlstr returns TRUE if the argument string is marked as an HTML-like string. N.B. This
is only valid if the argument string is a shared string. HTML-like strings are also freed using agstrfree.

The DOT language uses various special characters and escape sequences. When writing out strings as
concrete text, it is important that these lexical features are used in order that the string can be re-read as DOT
and be interpreted correctly. Cgraph provides three functions to handle this. The simplest is agcanonStr(s).
It returns a pointer to a canonical version of the input string. It uses an internal buffer, so the returned string
should be written or copied before another call to agcanonStr. agstrcanon(s,buf) is identical, except
the calling function also supplies a buffer where the canonical version may be written. An application should
only use the returned pointer, as it is possible the buffer will not be used at all. The buffer needs to be large
enough to hold the canonical version. Normally, an expansion of 2*strlen(s)+2 is sufficient.

Both agcanonStr and agstrcanon assume that string argument is a shared string. For convenience,
the library also provides the function agcanon(s,h). This is identical to agcanonStr(s), except s can
be any string. If h is TRUE, the canonicalization assumes s is an HTML-like string.

13

13 Expert-level Tweaks

13.1 Callbacks

There is a way to register client functions to be called whenever graph objects are inserted into or deleted from a
graph or subgraph, or have their string attributes modified. The arguments to the callback functions for insertion
and deletion (an agobjfn_t) are the containing (sub)graph, the object and a pointer to a piece of state data
supplied by the application. The object update callback (an agobjupdfn_t) also receives the data dictionary
entry pointer for the name-value pair that was changed. The graph argument will be the root graph.

typedef void (*agobjfn_t)(Agraph_t*, Agobj_t*, void*);
typedef void (*agobjupdfn_t)(Agraph_t*, Agobj_t*,

void*, Agsym_t*);

struct Agcbdisc_s {
struct {

agobjfn_t ins;
agobjupdfn_t mod;
agobjfn_t del;

} graph, node, edge;
};

Callback functions are installed by agpushdisc, which also takes a pointer to the client data structure
state that is later passed to the callback function when it is invoked.

agpushdisc(Agraph_t *g, Agcbdisc_t *disc, void *state);

Callbacks are removed by agpopdisc, which deletes a previously installed set of callbacks anywhere in
the stack. This function returns zero for success. (In real life, this function isn’t used much; generally callbacks
are set up and left alone for the lifetime of a graph.)

int agpopdisc(Agraph_t *g, Agcbdisc_t *disc);

The default is for callbacks to be issued synchronously, but it is possible to hold them in a queue of pending
callbacks to be delivered on demand. This feature is controlled by the interface:

/* returns previous value */
int agcallbacks(Agraph_t *g, int flag);

If the flag is zero, callbacks are kept pending. If the flag is one, pending callbacks are immediately issued,
and the graph is put into immediate callback mode. (Therefore the state must be reset via agcallbacks if
they are to be kept pending again.)

14

N.B.: it is a small inconsistency that Cgraph depends on the client to maintain the storage for the call-
back function structure. (Thus it should probably not be allocated on the dynamic stack.) The semantics of
agpopdisc currently identify callbacks by the address of this structure so it would take a bit of reworking to
fix this. In practice, callback functions are usually passed in a static struct.

13.2 Disciplines

A graph has an associated set of methods (“disciplines”) for file I/O, memory management and graph object ID
assignment.

typedef struct {
Agmemdisc_t *mem;
Agiddisc_t *id;
Agiodisc_t *io;

} Agdisc_t;

A pointer to an Agdisc_t structure is used as an argument when a graph is created or read using agopen,
agread and agconcat. If the pointer is NULL, the default Cgraph disciplines are used. An application can
pass in its own disciplines to override the defaults. Note that it doesn’t need to provide disciplines for all three
fields. If any field is the NULL pointer, Cgraph will use the default discipline for that task.

The default disciplines are also accessible by name.

Agmemdisc_t AgMemDisc;
Agiddisc_t AgIdDisc;
Agiodisc_t AgIoDisc;
Agdisc_t AgDefaultDisc;

This is useful because, unlike with Agdisc_t, all of the fields of specific disciplines must be non-NULL.
Cgraph copies the three individual pointers. Thus, these three structures must remain allocated for the life

of the graph, though the Agdisc_t may be temporary.

13.2.1 Memory management

The memory management discipline allows calling alternative versions of malloc, particularly, Vo’s Vmalloc,
which offers memory allocation in arenas or pools. The benefit is that Cgraph can allocate a graph and its
objects within a shared pool, to provide fine-grained tracking of its memory resources and the option of freeing
the entire graph and associated objects by closing the area in constant time, if finalization of individual graph
objects isn’t needed.5

5This could be fixed.

15

typedef struct Agmemdisc_s {
void *(*open)(void);
void *(*alloc)(void *state, size_t req);
void *(*resize)(void *state, void *ptr, size_t old,

size_t req);
void (*free)(void *state, void *ptr);
void (*close)(void *state);

} Agmemdisc_t;

When a graph is created, but before any memory is allocated, Cgraph calls the discipline’s open function.
The application should then perform any necessary initializations of its memory system, and return a pointer
to any state data structure necessary for subsequent memory allocation. When the graph is closed, Cgraph will
call the discipline’s close function, passing it the associated state, so the application can finalize and free any
resources involved.

The other three discipline functions alloc, resize and free should have semantics roughly identical to
the standard C library functions malloc, realloc and free. The main difference is that any new memory
returned by alloc and resize should be zeroed out, and that resize is passed the old buffer size in addition
to the requested new size. In addition, they all take the memory state as the first argument.

To simplify the use of the memory discipline, Cgraph provides three wrapper functions that hide the task of
obtaining the memory state. These are the same functions Cgraph uses to handle memory for a graph.

void *agalloc(Agraph_t *g, size_t size);
void *agrealloc(Agraph_t *g, void *ptr, size_t oldsize,

size_t size);
void agfree(Agraph_t *g, void *ptr);

13.2.2 I/O management

The I/O discipline is probably the most frequently used of the three, as the I/O requirements of applications vary
widely.

typedef struct Agiodisc_s {
int (*afread)(void *chan, char *buf, int bufsize);
int (*putstr)(void *chan, char *str);
int (*flush)(void *chan);

} Agiodisc_t ;

The default I/O discipline uses stdio and the FILE structure for reading and writing. The functions afread,
putstr and flush should have semantics roughly equivalent to fread, fputs and fflush, with the
obvious permutation of arguments.

The implementation of the agmemread function of Cgraph provides a typical example of using a tailored
I/O discipline. The idea is to read a graph from a given string of characters. The implementation of the function

16

is given below. The rdr_t provides a miniature version of FILE, providing the necessary state information.
The function memiofread fills the role of afread using the state provided by rdr_t. The agmemread
puts everything together, creating the needed state using the argument string, and constructing a discipline
structure using memiofread and the defaults. It then calls agread with the state and discipline to actually
create the graph.

typedef struct {
const char *data;
int len;
int cur;

} rdr t;

static int memiofread(void *chan, char *buf, int bufsize)
{

const char *ptr;
char *optr; 10
char c;
int l;
rdr t *s;

if (bufsize == 0) return 0;
s = (rdr t *) chan;
if (s−>cur >= s−>len)

return 0;
l = 0;
ptr = s−>data + s−>cur; 20
optr = buf;
do {

*optr++ = c = *ptr++;
l++;

} while (c && (c != ’\n’) && (l < bufsize));
s−>cur += l;
return l;

}

static Agiodisc t memIoDisc = {memiofread, 0, 0}; 30

Agraph t *agmemread(const char *cp)
{

rdr t rdr;
Agdisc t disc;
Agiodisc t memIoDisc;

memIoDisc.putstr = AgIoDisc.putstr;
memIoDisc.flush = AgIoDisc.flush;
rdr.data = cp; 40
rdr.len = strlen(cp);
rdr.cur = 0;

17

disc.mem = NULL;
disc.id = NULL;
disc.io = &memIoDisc;
return agread (&rdr, &disc);

}

13.2.3 ID management

Graph objects (nodes, edges, subgraphs) use an uninterpreted long integer value as keys. The ID discipline gives
the application control over how these keys are allocated, and how they are mapped to and from strings. The ID
discipline makes it possible for a Cgraph client control this mapping. For instance, in one application, the client
may create IDs that are pointers into another object space defined by a front-end interpreter. In general, the ID
discipline must provide a map between internal IDs and external strings.

typedef unsigned long ulong;

typedef struct Agiddisc_s {
void *(*open)(Agraph_t *g, Agdisc_t*);
long (*map)(void *state, int objtype, char *name,

ulong *id, int createflag);
long (*alloc)(void *state, int objtype, ulong id);
void (*free)(void *state, int objtype, ulong id);
char *(*print)(void *state, int objtype, ulong id);
void (*close)(void *state);
void (*idregister) (void *state, int objtype, void *obj);

} Agiddisc_t;

The open function permits the ID discipline to initialize any data structures that it maintains per individual
graph. Its return value is then passed as the first argument (void *state) to all subsequent ID manager
calls. When the graph is closed, the discipline’s close function is called to allow for finalizing and freeing any
resources used.

The alloc and free functions explicitly create and destroy IDs. The former is used by Cgraph to see if
the given ID is available for use. If it is available, the function should allocate it and return TRUE; otherwise,
it should return FALSE. If it is not available, the calling function will abort the operation. free is called to
inform the ID manager that the object labeled with the given ID is about to be deleted.

If supported buy the ID discipline, the map function is called to convert a string name into an ID for a given
object type (AGRAPH, AGNODE, or AGEDGE), with an optional flag that tells if the ID should be allocated if
it does not already exist.

There are four cases:

18

name && createflag Map the string (e.g., a name in a graph file) into an ID. If the ID manager can comply,
then it stores the result in the id parameter and returns TRUE. It is then also responsible for being able to
print the ID again as a string. Otherwise, the ID manager may return FALSE but it must implement the
following case, at least in order for the reading and writing of graph files to work.

!name && createflag Create a unique new ID. It may return FALSE if it does not support anonymous
objects, but this is strongly discouraged in order for Cgraph to support “local names” in graph files.

name && !createflag Test if name has already been mapped and allocated. If so, the ID should be re-
turned in the id parameter. Otherwise, the ID manager may either return FALSE, or may store any
unallocated ID into result. This is convenient, for example, if names are known to be digit strings that are
directly converted into integer values.

!name && !createflag Never used.

The print function is called to convert an internal ID back to a string. It is allowed to return a pointer to
a static buffer; a caller must copy its value if needed past subsequent calls. NULL should be returned by ID
managers that do not map names.

Note that the alloc and map functions do not receive pointers to any newly created object. If a client
needs to install object pointers in a handle table, it can obtain them via new object callbacks (Section 13.1).

To make this mechanism accessible, Cgraph provides functions to create objects by ID instead of external
name:

Agnode_t *agidnode(Agraph_t *g, unsigned long id, int create);
Agedge_t *agidedge(Agraph_t *g, Agnode_t *t, Agnode_t *h,

unsigned long id, int create);
Agraph_t *agidsubg(Agraph_t *g, unsigned long id, int create);

Note that, with the default ID discipline, these functions return NULL.

13.3 Flattened node and edge lists

For random access, nodes and edges are usually stored in splay trees. This adds a small but noticeable overhead
when traversing the “lists.” For flat-out efficiency, there is a way of linearizing the splay trees in which node and
edge sets are stored, converting them into flat lists. After this they can be traversed very quickly. The function
agflatten(Agraph_t *g, int flag) will flatten the trees if flag is TRUE, or reconstruct the trees
if flag is FALSE. Note that if any call adds or removes a graph object, the corresponding list is automatically
returned to its tree form.

The library provides various macros to automate the flattening and simplify the standard traversals. For
example, the following code performs the usual traversal over all out-edges of a graph:

Agnode_t* n;
Agedge_t* e;

19

Agnoderef_t* nr;
Agedgeref_t* er;
for (nr = FIRSTNREF(g); nr; nr = NEXTNREF(g,nr)) {

n = NODEOF(nr);
/* do something with node n */
for (er = FIRSTOUTREF(g,nr); er; er = NEXTEREF(g,er)) {

e = EDGEOF(er);
/* do something with edge e */

}
}

Compare this with the code in shown on page 7.

14 Related Libraries

Libgraph is a predecessor of Cgraph and is now considered obsolete. All of the Graphviz code is now written
using Cgraph. As some older applications using libgraph may need to be converted to Cgraph, we note some of
the main differences.

A key difference between the two libraries is the handling of C data structure attributes. Libgraph hard-wires
these at the end of the graph, node and edge structuress. That is, an application programmer defines the structs
graphinfo, nodeinfo and edgeinfo before including graph.h, and the library inquires of the size of
these structures at runtime so it can allocate graph objects of the proper size. Because there is only one shot
at defining attributes, this design creates an impediment to writing separate algorithm libraries. The dynamic
Agrec_t structures, described in Section 8, allows each algorithm to attach its own required data structure.

As noted in Section 5, edges are implemented slightly differently in the two libraries, so comparison of
edge pointers for equality should be replaced with ageqedge unless you are certain that the two pointers have
consistent types. As an example where problems could arise, we have the following code:

void traverse(Agraph_t *g, Agedge_t *e0)
{

Agnode_t *n = aghead (e0);
Agedge_t *e;

for (e = agfstout(g, n); n; n = agnxtout(g, e)) {
if (e == e0) continue; /* avoid entry edge */
/* do something with e */

}

If e0 is an in-edge (AGTYPE(e) == AGINEDGE), the comparison with e will always fail, as the latter is an
out-edge.

20

In Cgraph, the nesting of subgraphs forms a tree. In libgraph, a subgraph can belong to more than one parent,
so they form a DAG (directed acyclic graph). Libgraph actually represents this DAG as a special meta-graph
that is navigated by libgraph calls. After gaining experience with libgraph, we decided this complexity was not
worth its cost. In libgraph, the code for traversing subgraphs would have a form something like:

Agedge_t* me;
Agnode_t* mn;
Agraph_t* mg = g->meta_node->graph;
Agraph_t* subg;
for (me = agfstout(mg, g->meta_node); me; me = agnxtout(mg, me)) {

mn = me->head;
subg = agusergraph(mn);

/* use subgraph subg */
}

The similar traversal using Cgraph would have the form

Agraph_t* subg;
for (subg = agfstsubg(g); subg; subg = agnxtsubg(subg)) {

/* use subgraph subg */
}

Finally, there are some small syntactic differences in the APIs. For example, in libgraph, the name of a
node or graph and the head and tail nodes of an edge are directly accessible via pointers while in Cgraph, it is
necessary to use the functions agnameof, agtail and aghead. Libgraph tends to have separate functions
for creating and finding an object, or for handling different types of objects, e.g., agnode and agfindnode.
Instead, Cgraph will use a single function with an additional parameter. Overall, the two libraries are vary close,
both syntactically and semantically, so conversion is fairly straightforward.

Tables 1–3 list the common constants and operations in libgraph, and the corresponding value or procedure
in Cgraph, if any.

Lgraph is a successor to Cgraph, written in C++ by Gordon Woodhull. It follows Cgraph’s overall graph
model (particularly, its subgraphs and emphasis on efficient dynamic graph operations) but uses the C++ type
system of templates and inheritance to provide typesafe, modular and efficient internal attributes. (LGraph relies
on cdt for dictionary sets, with an STL-like C++ interface layer.) A fairly mature prototype of the Dynagraph
system (a successor to dot and neato to handle online maintenance of dynamic diagrams) has been prototyped
in LGraph. See the dgwin (Dynagraph for Windows) page http://www.dynagraph.org/dgwin/ for
further details.

15 Interfaces to Other Languages

If enabled, the Graphviz package contains bindings for Cgraph in a variety of languages, including Java, Perl,
PHP, Tcl, Python and Ruby.

21

libgraph Cgraph
AGRAPH Agundirected
AGRAPHSTRICT Agstrictundirected
AGDIGRAPH Agdirected
AGDIGRAPHSTRICT Agstrictdirected
aginit not necessary6

agopen(name,type) agopen(name,type,NULL)
agread(filep) agread(filep,NULL)
agread_usergets(filep,gets) Agmemdisc_t mem = AgMemDisc;

Agiddisc_t id = AgIdDisc;
Agiodisc_t io = AgIoDisc;
io.afread = gets;7

agread(filep,disc);
agsetiodisc no direct analogue; see above
obj->name agnameof(obj);
graph->root agroot(graph);
node->graph aggraphof(node);
edge->head aghead(edge);
edge->tail agtail(edge);
AG_IS_DIRECTED(graph) agisdirected(graph)
AG_IS_STRICT(graph) agisstrict(graph)
agobjkind(obj) AGTYPE(obj)
agsubg(parent,name) agsubg(parent,name,1)
agfindsubg(parent,name) agsubg(parent,name,0)
g->meta_node_graph agfstsubg/agnxtsubg
agusergraph(graph) See the examples on Page 21
aginsert(graph, obj) agsubnode(graph,obj); if obj is a node

agsubedge(graph,obj); if obj is a edge
not allowed if obj is a graph

Table 1: Graph function conversions

16 Open Issues

Node and Edge Ordering. The intent in Cgraph’s design was to eventually support user-defined node and edge
set ordering, overriding the default (which is object creation timestamp order). For example, in topologically
embedded graphs, edge lists could potentially be sorted in clockwise order around nodes. Because Cgraph
assumes that all edge sets in the same Agraph_t have the same ordering, there should probably be a new
primitive to switching node or edge set ordering functions. Please contact the author if you need this feature.

22

libgraph Cgraph
agnode(graph,name) agnode(graph,name,1)
agfindnode(graph,name) agnode(graph,name,0)
agedge(graph,tail,head) agedge(graph,tail,head,NULL,1)
agfindedge(graph,tail,head) agedge(graph,tail,head,NULL,0)

Table 2: Node and edge function conversions

libgraph Cgraph
agprotograph() no analogue
agprotonode(graph) not used
agprotoedge(graph) not used
agattr(obj, name, default) agattr(agroot(obj),AGTYPE(obj),name,default)
agfindattr(obj, name) agattrsym(obj,name)
agraphattr(graph, name default) agattr(graph,AGRAPH,name,default)
agnodeattr(graph, name, default) agattr(graph,AGNODE,name,default)
agedgeattr(graph, name, default) agattr(graph,AGEDGE,name,default)
agfstattr(obj) agnxtattr(agroot(obj),AGTYPE(obj),NULL)
agnxtattr(obj,sym) agnxtattr(agroot(obj),AGTYPE(obj),sym)
aglstattr(obj) no analogue
agprvattr(obj, sym) no analogue

Table 3: Attribute function conversions

XML. XML dialects such as GXL and GraphML have been proposed for graphs. Although it is simple
to encode nodes and edges in XML, there are subtleties to representing more complicated structures, such as
Cgraph’s subgraphs and nesting of attribute defaults. On the other hand, GXL and GraphML provide notions
of compound graphs, which are not available in DOT. We’ve prototyped an XML parser and would like to
complete and release this work if we had a compelling application. (Simple XML output of graphs is not
difficult to program.)

Graph views; external graphs. At times it would be convenient to relate one graph’s objects to another’s
without making one into a subgraph of another. At other times there is a need to populate a graph from ob-
jects delivered on demand from a foreign API (such as a relational database that stores graphs). We are now
experimenting with attacks on some of these problems.

6The Cgraph library has a function called aginit, but it has a different signature and semantics.
7Note that the order of the parameters differs from the gets used in libgraph.

23

17 Example

The following is a simple Cgraph filter that reads a graph and emits its strongly connected components, each as a
separate graph, plus an overview map of the relationships between the components. To save space, the auxiliary
functions in the header ingraph.h are not shown; the entire program can be found in the Graphviz source code
release under cmd/tools.

About lines 32-41 are the declarations for internal records for graphs and nodes. Line 43-48 define access
macros for fields in these records. Lines 52-83 define a simple stack structure needed for the strongly connected
component algorithm and down to line 97 are some global definitions for the program.

The rest of the code can be read from back-to-front. From around line 262 to the end is boilerplate code
that handles command-line arguments and opening multiple graph files. The real work is done starting with
the function process about line 223, which works on one graph at a time. After initializing the node and graph
internal records using it aginit, it creates a new graph for the overview map, and it calls visit on unvisited nodes
to find components. visit implements a standard algorithm to form the next strongly connected component on a
stack. When one has been completed, a new subgraph is created and the nodes of the component are installed.
(There is an option to skip trivial components that contain only one node.) nodeInduce is called to process the
out-edges of nodes in this subgraph. Such edges either belong to the component (and are added to it), or else
point to a node in another component that must already have been processed.

/***
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors: See CVS logs. Details at http://www.graphviz.org/
***/ 10

#ifdef HAVE CONFIG H
#include "config.h"
#endif

#include <stdio.h>
#include <stdlib.h>
#ifdef HAVE UNISTD H
#include <unistd.h>
#endif 20
#include "cgraph.h"
#include "ingraphs.h"

#ifdef HAVE GETOPT H
#include <getopt.h>
#else

24

#include "compat_getopt.h"
#endif

#define INF ((unsigned int)(−1)) 30

typedef struct Agraphinfo t {
Agrec t h;
Agnode t *rep;

} Agraphinfo t;

typedef struct Agnodeinfo t {
Agrec t h;
unsigned int val;
Agraph t *scc; 40

} Agnodeinfo t;

#define getrep(g) (((Agraphinfo t*)(g−>base.data))−>rep)
#define setrep(g,rep) (getrep(g) = rep)
#define getscc(n) (((Agnodeinfo t*)((n)−>base.data))−>scc)
#define setscc(n,sub) (getscc(n) = sub)
#define getval(n) (((Agnodeinfo t*)((n)−>base.data))−>val)
#define setval(n,newval) (getval(n) = newval)

/********* stack ***********/ 50
typedef struct {

Agnode t **data;
Agnode t **ptr;

} Stack;

static void initStack(Stack * sp, int sz)
{

sp−>data = (Agnode t **) malloc(sz * sizeof(Agnode t *));
sp−>ptr = sp−>data;

} 60

static void freeStack(Stack * sp)
{

free(sp−>data);
}

static void push(Stack * sp, Agnode t * n)
{

*(sp−>ptr++) = n;
} 70

static Agnode t *top(Stack * sp)
{

return *(sp−>ptr − 1);
}

25

static Agnode t *pop(Stack * sp)
{

sp−>ptr−−;
return *(sp−>ptr); 80

}

/********* end stack ***********/

typedef struct {
int Comp;
int ID;
int N nodes in nontriv SCC;

} sccstate;
90

static int wantDegenerateComp;
static int Silent;
static int StatsOnly;
static int Verbose;
static char *CmdName;
static char **Files;
static FILE *outfp; /* output; stdout by default */

static void nodeInduce(Agraph t * g, Agraph t * map)
{ 100

Agnode t *n;
Agedge t *e;
Agraph t *rootg = agroot(g);

for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
for (e = agfstout(rootg, n); e; e = agnxtout(rootg, e)) {

if (agsubnode(g, aghead(e), FALSE))
agsubedge(g, e, TRUE);

else { 110
Agraph t *tscc = getscc(agtail(e));
Agraph t *hscc = getscc(aghead(e));
if (tscc && hscc)

agedge(map, getrep(tscc),
getrep(hscc), NIL(char *), TRUE);

}
}

}
}

120
static int visit(Agnode t * n, Agraph t * map, Stack * sp, sccstate * st)
{

unsigned int m, min;
Agnode t *t;

26

Agraph t *subg;
Agedge t *e;

min = ++(st−>ID);
setval(n, min);
push(sp, n); 130

for (e = agfstout(n−>root, n); e; e = agnxtout(n−>root, e)) {
t = aghead(e);
if (getval(t) == 0)

m = visit(t, map, sp, st);
else

m = getval(t);
if (m < min)

min = m;
} 140

if (getval(n) == min) {
if (!wantDegenerateComp && (top(sp) == n)) {

setval(n, INF);
pop(sp);

} else {
char name[32];
Agraph t *G = agraphof(n);;
sprintf(name, "cluster_%d", (st−>Comp)++);
subg = agsubg(G, name, TRUE); 150
agbindrec(subg, "scc_graph", sizeof(Agraphinfo t), TRUE);
setrep(subg, agnode(map, name, TRUE));
do {

t = pop(sp);
agsubnode(subg, t, TRUE);
setval(t, INF);
setscc(t, subg);
st−>N nodes in nontriv SCC++;

} while (t != n);
nodeInduce(subg, map); 160
if (!StatsOnly)

agwrite(subg, outfp);
}

}
return min;

}

static int label(Agnode t * n, int nodecnt, int *edgecnt)
{

Agedge t *e; 170

setval(n, 1);
nodecnt++;

27

for (e = agfstedge(n−>root, n); e; e = agnxtedge(n−>root, e, n)) {
(*edgecnt) += 1;
if (e−>node == n)

e = agopp(e);
if (!getval(e−>node))

nodecnt = label(e−>node, nodecnt, edgecnt);
} 180
return nodecnt;

}

static int
countComponents(Agraph t * g, int *max degree, float *nontree frac)
{

int nc = 0;
int sum edges = 0;
int sum nontree = 0;
int deg; 190
int n edges;
int n nodes;
Agnode t *n;

for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
if (!getval(n)) {

nc++;
n edges = 0;
n nodes = label(n, 0, &n edges);
sum edges += n edges; 200
sum nontree += (n edges − n nodes + 1);

}
}
if (max degree) {

int maxd = 0;
for (n = agfstnode(g); n; n = agnxtnode(g, n)) {

deg = agdegree(g, n, TRUE, TRUE);
if (maxd < deg)

maxd = deg;
setval(n, 0); 210

}
*max degree = maxd;

}
if (nontree frac) {

if (sum edges > 0)
*nontree frac = (float) sum nontree / (float) sum edges;

else
*nontree frac = 0.0;

}
return nc; 220

}

28

static void process(Agraph t * G)
{

Agnode t *n;
Agraph t *map;
int nc = 0;
float nontree frac = 0;
int Maxdegree = 0;
Stack stack; 230
sccstate state;

aginit(G, AGRAPH, "scc_graph", sizeof(Agraphinfo t), TRUE);
aginit(G, AGNODE, "scc_node", sizeof(Agnodeinfo t), TRUE);
state.Comp = state.ID = 0;
state.N nodes in nontriv SCC = 0;

if (Verbose)
nc = countComponents(G, &Maxdegree, &nontree frac);

240
initStack(&stack, agnnodes(G) + 1);
map = agopen("scc_map", Agdirected, (Agdisc t *) 0);
for (n = agfstnode(G); n; n = agnxtnode(G, n))

if (getval(n) == 0)
visit(n, map, &stack, &state);

freeStack(&stack);
if (!StatsOnly)

agwrite(map, outfp);
agclose(map);

250
if (Verbose)

fprintf(stderr, "%d %d %d %d %.4f %d %.4f\n",
agnnodes(G), agnedges(G), nc, state.Comp,
state.N nodes in nontriv SCC / (double) agnnodes(G),
Maxdegree, nontree frac);

else if (!Silent)
fprintf(stderr, "%d nodes, %d edges, %d strong components\n",

agnnodes(G), agnedges(G), state.Comp);

} 260

static FILE *openFile(char *name, char *mode)
{

FILE *fp;
char *modestr;

fp = fopen(name, mode);
if (!fp) {

if (*mode == ’r’)
modestr = "reading"; 270

else

29

modestr = "writing";
fprintf(stderr, "gvpack: could not open file %s for %s\n",

name, modestr);
exit(1);

}
return (fp);

}

static char *useString = "Usage: %s [-sdv?] <files>\n\ 280
-s - only produce statistics\n\
-S - silent\n\
-d - allow degenerate components\n\
-o<outfile> - write to <outfile> (stdout)\n\
-v - verbose\n\
-? - print usage\n\

If no files are specified, stdin is used\n";

static void usage(int v)
{ 290

printf(useString, CmdName);
exit(v);

}

static void scanArgs(int argc, char **argv)
{

int c;

CmdName = argv[0];
opterr = 0; 300
while ((c = getopt(argc, argv, ":o:sdvS")) != EOF) {

switch (c) {
case ’s’:

StatsOnly = 1;
break;

case ’d’:
wantDegenerateComp = 1;
break;

case ’o’:
outfp = openFile(optarg, "w"); 310
break;

case ’v’:
Verbose = 1;
break;

case ’S’:
Verbose = 0;
Silent = 1;
break;

case ’?’:
if (optopt == ’?’) 320

30

usage(0);
else

fprintf(stderr, "%s: option -%c unrecognized - ignored\n",
CmdName, optopt);

break;
}

}
argv += optind;
argc −= optind;

330
if (argc)

Files = argv;
if (!outfp)

outfp = stdout; /* stdout the default */
}

static Agraph t *gread(FILE * fp)
{

return agread(fp, (Agdisc t *) 0);
} 340

int main(int argc, char **argv)
{

Agraph t *g;
ingraph state ig;

scanArgs(argc, argv);
newIngraph(&ig, Files, gread);

while ((g = nextGraph(&ig)) != 0) { 350
if (agisdirected(g))

process(g);
else

fprintf(stderr, "Graph %s in %s is undirected - ignored\n",
agnameof(g), fileName(&ig));

agclose(g);
}

return 0;
} 360

31

