gvmap.1 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167
  1. .de TQ
  2. . br
  3. . ns
  4. . TP \\$1
  5. ..
  6. .TH GVMAP 1 "3 March 2011"
  7. .SH NAME
  8. gvmap \- find clusters and create a geographical map highlighting clusters.
  9. .SH SYNOPSIS
  10. .B gvmap
  11. [
  12. .I options
  13. ]
  14. [
  15. .BI \-o
  16. .I outfile
  17. ]
  18. [
  19. .I files
  20. ]
  21. .SH DESCRIPTION
  22. .B gvmap
  23. takes as input a graph in DOT format, finds node clusters and produces a rendering of the graph as a geographic-style map, with clusters highlighted
  24. as countries, in xdot format.
  25. .P
  26. In the input graph, each node must have position, width and height information (pos, width and height attributes,
  27. respectively) defined, and nodes must not overlap.
  28. .P
  29. By default,
  30. .B gvmap
  31. will generate the clusters from the data. If desired, the input graph can specify
  32. cluster information by giving every node a \fIcluster\fP attribute whose value is
  33. a small positive integer. (It is works best if \fIcluster\fP values are all integers
  34. in the interval [1,K] for some K. Nodes sharing the same \fIcluster\fP attribute value will
  35. be put into the same cluster. \fBN.B.\fP For the \fIcluster\fP attribute to be used,
  36. all nodes must have a valid value.
  37. .P
  38. If the \fI\-D\fP flag is used,
  39. .B gvmap
  40. will use the top-level cluster subgraphs to determine the clustering. Any nodes not in
  41. such a cluster will be put into a single catch-all cluster.
  42. .P
  43. If the input specifies the desired clustering as described above, it can also
  44. specify a desired coloring by having some node in each cluster provide a
  45. \fIclustercolor\fP attribute. \fBN.B.\fP Unless one specifies \fI\-c0\fP, only the \fIclustercolor\fP
  46. of the last node in a cluster has an effect. In addition, unless one uses \fI\-O\fP, \fBgvmap\fP may
  47. permute the given colors.
  48. .SH OPTIONS
  49. The following options are supported:
  50. .TP
  51. .BI \-a " k"
  52. The integer k specifies the average number of artificial points added along
  53. the bounding box of the labels. Such artificial points are added to avoid
  54. a country boundary cutting through the boundary box of the labels. Computing
  55. time is proportional to k; hence, for large graphs, a small value of k is
  56. suggested. If k = -1, a suitable value of k is automatically selected based on
  57. the graph size. By default k = -1.
  58. .TP
  59. .BI \-b " v"
  60. The real number v specifies the line width used to draw the polygon boundaries, with v < 0 for no line. By default v = 0.
  61. .TP
  62. .BI \-c " k"
  63. The integer k specifies color scheme used to color the countries. By default k = 1.
  64. .TP
  65. Acceptable values are:
  66. 0 : no polygons
  67. 1 : pastel
  68. 2 : blue to yellow
  69. 3 : white to red
  70. 4 : light grey to red
  71. 5 : primary colors
  72. 6 : sequential single hue red
  73. 7 : sequential single hue lighter red
  74. 8 : light grey
  75. .TP
  76. .BI \-c_opacity= xy
  77. Specifies a two-character hexadecimal string specifying the opacity of the polygons.
  78. .TP
  79. .BI \-C " d"
  80. The integer d specifies the maximum number of clusters (countries) allowed. By default d = 0, which means that there is no limit.
  81. .TP
  82. .BI \-d " d"
  83. The integer d specifies the random seed used during color assignment optimization that maximize color difference between neighboring countries.
  84. .TP
  85. .BI \-D
  86. If specified, the graph's cluster subgraphs are used to specify the clustering.
  87. .TP
  88. .BI \-e
  89. If specified, edges will be included in the final output.
  90. .TP
  91. .BI \-g " c"
  92. Specifies the bounding box color. If not specified, a bounding box is not drawn.
  93. .TP
  94. .BI \-h " k"
  95. The number of artificial points added to maintain a bridge between endpoints. By default, this is zero.
  96. .TP
  97. .BI \-highlight= k
  98. Only draw cluster \fIk\fP. By default, all clusters are drawn.
  99. .TP
  100. .BI \-k
  101. If specified, increases the randomness of outer boundary.
  102. .TP
  103. .BI \-l " s"
  104. Use the string \fIs\fP as a label for the drawing.
  105. .TP
  106. .BI \-m " v"
  107. Generate a margin of \fIv\fP points around the drawing. By default, this is determined by \fBgvmap\fP.
  108. .TP
  109. .BI \-O
  110. Do NOT do color assignment optimization that maximizes color differences between neighboring countries
  111. .TP
  112. .BI \-o <file>
  113. Put output in <file>. Default output is stdout
  114. .TP
  115. .BI \-p " k"
  116. Indicates what level of points should be shown. By default, no points are shown.
  117. .TP
  118. Acceptable values are:
  119. 0 : no points
  120. 1 : all points
  121. 2 : label points
  122. 3 : random/artificial points
  123. .TP
  124. .BI \-Q
  125. Use modularity quality for clustering rather than the default modularity clustering.
  126. .TP
  127. .BI \-r " k"
  128. The number of random points k (integer) used to define sea and lake boundaries. If 0, auto assigned. By default v = 0
  129. .TP
  130. .BI \-s " v"
  131. The real number v specifies the depth of the sea and lake shores in points. If 0, auto assigned. By default v = 0.
  132. .TP
  133. .BI \-t " n"
  134. Make \fIn\fP attempts to improve cluster contiguity.
  135. .TP
  136. .BI \-v
  137. Verbose mode.
  138. .TP
  139. .BI \-z " c"
  140. Specified the polygon line color. Default is black.
  141. .TP
  142. .BI \-?
  143. Print usage and exit.
  144. .SH EXAMPLES
  145. .PP
  146. Given a graph foo.gv, one way to generate a layout and highlight the clusters
  147. is to first select a layout engine with a suitable overlap removal method, then
  148. feed the output to gvmap, and finally render the map using specific graphics
  149. format. For example, the following pipeline
  150. creates a map with edges in semi-transparent light gray and nodes laid
  151. out using sfdp:
  152. .PP
  153. sfdp \-Goverlap=prism foo.gv | gvmap \-e | neato \-n2 \-Ecolor=#55555522 \-Tpng > foo.png
  154. .PP
  155. The shell script gvmap.sh provides a shorthand for such pipelines. For example, the
  156. above pipeline can be achieved using
  157. .PP
  158. gvmap.sh \-Ae \-Ecolor=#55555522 \-Tpng foo.gv > foo.png
  159. .SH AUTHOR
  160. Yifan Hu <[email protected]>
  161. .SH "SEE ALSO"
  162. .PP
  163. gvmap.sh(1), sfdp(1), neato(1), gvpr(1)
  164. .PP
  165. E. R. Gansner, Y. Hu, S. G. Kobourov, "GMap: Visualizing graphs and clusters as maps," Proc. Pacific Vis. 2010, pp. 201\(hy208.