graph_generator.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661
  1. /*************************************************************************
  2. * Copyright (c) 2011 AT&T Intellectual Property
  3. * All rights reserved. This program and the accompanying materials
  4. * are made available under the terms of the Eclipse Public License v1.0
  5. * which accompanies this distribution, and is available at
  6. * https://www.eclipse.org/legal/epl-v10.html
  7. *
  8. * Contributors: Details at https://graphviz.org
  9. *************************************************************************/
  10. #include "config.h"
  11. #include <cgraph/list.h>
  12. #include <stdbool.h>
  13. #include <stdio.h>
  14. #include <stdint.h>
  15. #include <stdlib.h>
  16. #include <math.h>
  17. #include <time.h>
  18. #include <graph_generator.h>
  19. #include <util/alloc.h>
  20. #include <util/exit.h>
  21. void makePath(unsigned n, edgefn ef){
  22. if (n == 1) {
  23. ef (1, 0);
  24. return;
  25. }
  26. for (unsigned i = 2; i <= n; i++)
  27. ef (i - 1, i);
  28. }
  29. void makeComplete(unsigned n, edgefn ef) {
  30. if (n == 1) {
  31. ef (1, 0);
  32. return;
  33. }
  34. for (unsigned i = 1; i < n; i++) {
  35. for (unsigned j = i + 1; j <= n; j++) {
  36. ef ( i, j);
  37. }
  38. }
  39. }
  40. void makeCircle(unsigned n, edgefn ef) {
  41. if (n < 3) {
  42. fprintf(stderr, "Warning: degenerate circle of %u vertices\n", n);
  43. makePath(n, ef);
  44. return;
  45. }
  46. for (unsigned i = 1; i < n; i++)
  47. ef ( i, i + 1);
  48. ef (1, n);
  49. }
  50. void makeStar(unsigned n, edgefn ef) {
  51. if (n < 3) {
  52. fprintf(stderr, "Warning: degenerate star of %u vertices\n", n);
  53. makePath(n, ef);
  54. return;
  55. }
  56. for (unsigned i = 2; i <= n; i++)
  57. ef (1, i);
  58. }
  59. void makeWheel(unsigned n, edgefn ef) {
  60. if (n < 4) {
  61. fprintf(stderr, "Warning: degenerate wheel of %u vertices\n", n);
  62. makeComplete(n, ef);
  63. return;
  64. }
  65. makeStar(n, ef);
  66. for (unsigned i = 2; i < n; i++)
  67. ef( i, i + 1);
  68. ef (2, n);
  69. }
  70. void makeCompleteB(unsigned dim1, unsigned dim2, edgefn ef) {
  71. for (unsigned i = 1; i <= dim1; i++) {
  72. for (unsigned j = 1; j <= dim2; j++) {
  73. ef ( i, dim1 + j);
  74. }
  75. }
  76. }
  77. void makeTorus(unsigned dim1, unsigned dim2, edgefn ef) {
  78. for (unsigned i = 1, n = 0; i <= dim1; i++) {
  79. for (unsigned j = 1; j < dim2; j++) {
  80. ef( n + j, n + j + 1);
  81. }
  82. ef( n + 1, n + dim2);
  83. n += dim2;
  84. }
  85. for (unsigned i = 1; i <= dim2; i++) {
  86. for (unsigned j = 1; j < dim1; j++) {
  87. ef( dim2 * (j - 1) + i, dim2 * j + i);
  88. }
  89. ef( i, dim2 * (dim1 - 1) + i);
  90. }
  91. }
  92. void makeTwistedTorus(unsigned dim1, unsigned dim2, unsigned t1, unsigned t2,
  93. edgefn ef) {
  94. for (unsigned i = 0; i < dim1; i++) {
  95. for (unsigned j = 0; j < dim2; j++) {
  96. unsigned li = (i + t1) % dim1;
  97. unsigned lj = (j + 1) % dim2;
  98. ef (i+j*dim1+1, li+lj*dim1+1);
  99. li = (i + 1) % dim1;
  100. lj = (j + t2) % dim2;
  101. ef(i+j*dim1+1, li+lj*dim1+1);
  102. }
  103. }
  104. }
  105. void makeCylinder(unsigned dim1, unsigned dim2, edgefn ef) {
  106. for (unsigned i = 1, n = 0; i <= dim1; i++) {
  107. for (unsigned j = 1; j < dim2; j++) {
  108. ef( n + j, n + j + 1);
  109. }
  110. ef( n + 1, n + dim2);
  111. n += dim2;
  112. }
  113. for (unsigned i = 1; i <= dim2; i++) {
  114. for (unsigned j = 1; j < dim1; j++) {
  115. ef( dim2 * (j - 1) + i, dim2 * j + i);
  116. }
  117. }
  118. }
  119. #define OUTE(h) if (tl < (hd=(h))) ef( tl, hd)
  120. void makeSquareGrid(unsigned dim1, unsigned dim2, int connect_corners, int partial, edgefn ef)
  121. {
  122. for (unsigned i = 0; i < dim1; i++)
  123. for (unsigned j = 0; j < dim2; j++) {
  124. // write the neighbors of the node i*dim2+j+1
  125. const unsigned tl = i * dim2 + j + 1;
  126. unsigned hd;
  127. if (j + 1 < dim2
  128. && (!partial || j < 2 * dim2 / 6 || j >= 4 * dim2 / 6
  129. || i <= 2 * dim1 / 6 || i > 4 * dim1 / 6)) {
  130. ef(tl, i * dim2 + j + 2);
  131. }
  132. if (i + 1 < dim1) {
  133. ef(tl, (i + 1) * dim2 + j + 1);
  134. }
  135. if (connect_corners == 1) {
  136. if (i == 0 && j == 0) { // upper left
  137. OUTE((dim1 - 1) * dim2 + dim2);
  138. } else if (i + 1 == dim1 && j == 0) { // lower left
  139. OUTE(dim2);
  140. } else if (i == 0 && j + 1 == dim2) { // upper right
  141. OUTE((dim1 - 1) * dim2 + 1);
  142. } else if (i + 1 == dim1 && j + 1 == dim2) { // lower right
  143. OUTE(1);
  144. }
  145. } else if (connect_corners == 2) {
  146. if (i == 0 && j == 0) { // upper left
  147. OUTE(dim2);
  148. } else if (i + 1 == dim1 && j == 0) { // lower left
  149. OUTE((dim1 - 1) * dim2 + dim2);
  150. } else if (i == 0 && j + 1 == dim2) { // upper right
  151. OUTE(1);
  152. } else if (i + 1 == dim1 && j + 1 == dim2) { // lower right
  153. OUTE((dim1 - 1) * dim2 + 1);
  154. }
  155. }
  156. }
  157. }
  158. void makeTree(unsigned depth, unsigned nary, edgefn ef) {
  159. const double n = (pow(nary, depth) - 1) / (nary - 1); // no. of non-leaf nodes
  160. unsigned idx = 2;
  161. for (unsigned i = 1; i <= n; i++) {
  162. for (unsigned j = 0; j < nary; j++) {
  163. ef (i, idx++);
  164. }
  165. }
  166. }
  167. void makeBinaryTree(unsigned depth, edgefn ef) {
  168. const unsigned n = (1u << depth) - 1;
  169. for (unsigned i = 1; i <= n; i++) {
  170. ef( i, 2 * i);
  171. ef( i, 2 * i + 1);
  172. }
  173. }
  174. typedef struct {
  175. unsigned nedges;
  176. unsigned *edges;
  177. } vtx_data;
  178. static void constructSierpinski(unsigned v1, unsigned v2, unsigned v3,
  179. unsigned depth, vtx_data *graph) {
  180. static unsigned last_used_node_name = 3;
  181. if (depth > 0) {
  182. const unsigned v4 = ++last_used_node_name;
  183. const unsigned v5 = ++last_used_node_name;
  184. const unsigned v6 = ++last_used_node_name;
  185. constructSierpinski(v1, v4, v5, depth - 1, graph);
  186. constructSierpinski(v2, v5, v6, depth - 1, graph);
  187. constructSierpinski(v3, v4, v6, depth - 1, graph);
  188. return;
  189. }
  190. // depth==0, Construct graph:
  191. unsigned nedges = graph[v1].nedges;
  192. graph[v1].edges[nedges++] = v2;
  193. graph[v1].edges[nedges++] = v3;
  194. graph[v1].nedges = nedges;
  195. nedges = graph[v2].nedges;
  196. graph[v2].edges[nedges++] = v1;
  197. graph[v2].edges[nedges++] = v3;
  198. graph[v2].nedges = nedges;
  199. nedges = graph[v3].nedges;
  200. graph[v3].edges[nedges++] = v1;
  201. graph[v3].edges[nedges++] = v2;
  202. graph[v3].nedges = nedges;
  203. }
  204. void makeSierpinski(unsigned depth, edgefn ef) {
  205. vtx_data* graph;
  206. depth--;
  207. const unsigned n = 3 * (1 + ((unsigned)(pow(3.0, depth) + 0.5) - 1) / 2);
  208. graph = gv_calloc(n + 1, sizeof(vtx_data));
  209. unsigned *edges = gv_calloc(4 * n, sizeof(unsigned));
  210. for (unsigned i = 1; i <= n; i++) {
  211. graph[i].edges = edges;
  212. edges += 4;
  213. graph[i].nedges = 0;
  214. }
  215. constructSierpinski(1, 2, 3, depth, graph);
  216. for (unsigned i = 1; i <= n; i++) {
  217. // write the neighbors of the node i
  218. for (unsigned j = 0; j < graph[i].nedges; j++) {
  219. const unsigned nghbr = graph[i].edges[j];
  220. if (i < nghbr) ef( i, nghbr);
  221. }
  222. }
  223. free(graph[1].edges);
  224. free(graph);
  225. }
  226. static void constructTetrix(unsigned v1, unsigned v2, unsigned v3, unsigned v4,
  227. unsigned depth, vtx_data* graph) {
  228. static unsigned last_used_node_name = 4;
  229. if (depth > 0) {
  230. const unsigned v5 = ++last_used_node_name;
  231. const unsigned v6 = ++last_used_node_name;
  232. const unsigned v7 = ++last_used_node_name;
  233. const unsigned v8 = ++last_used_node_name;
  234. const unsigned v9 = ++last_used_node_name;
  235. const unsigned v10 = ++last_used_node_name;
  236. constructTetrix(v1, v5, v6, v8, depth - 1, graph);
  237. constructTetrix(v2, v6, v7, v9, depth - 1, graph);
  238. constructTetrix(v3, v5, v7, v10, depth - 1, graph);
  239. constructTetrix(v4, v8, v9, v10, depth - 1, graph);
  240. return;
  241. }
  242. // depth==0, Construct graph:
  243. unsigned nedges = graph[v1].nedges;
  244. graph[v1].edges[nedges++] = v2;
  245. graph[v1].edges[nedges++] = v3;
  246. graph[v1].edges[nedges++] = v4;
  247. graph[v1].nedges = nedges;
  248. nedges = graph[v2].nedges;
  249. graph[v2].edges[nedges++] = v1;
  250. graph[v2].edges[nedges++] = v3;
  251. graph[v2].edges[nedges++] = v4;
  252. graph[v2].nedges = nedges;
  253. nedges = graph[v3].nedges;
  254. graph[v3].edges[nedges++] = v1;
  255. graph[v3].edges[nedges++] = v2;
  256. graph[v3].edges[nedges++] = v4;
  257. graph[v3].nedges = nedges;
  258. nedges = graph[v4].nedges;
  259. graph[v4].edges[nedges++] = v1;
  260. graph[v4].edges[nedges++] = v2;
  261. graph[v4].edges[nedges++] = v3;
  262. graph[v4].nedges = nedges;
  263. }
  264. void makeTetrix(unsigned depth, edgefn ef) {
  265. vtx_data* graph;
  266. depth--;
  267. const unsigned n = 4 + 2 * (((unsigned)(pow(4.0, depth) + 0.5) - 1));
  268. graph = gv_calloc(n + 1, sizeof(vtx_data));
  269. unsigned *edges = gv_calloc(6 * n, sizeof(unsigned));
  270. for (unsigned i = 1; i <= n; i++) {
  271. graph[i].edges = edges;
  272. edges += 6;
  273. graph[i].nedges = 0;
  274. }
  275. constructTetrix(1, 2, 3, 4, depth, graph);
  276. for (unsigned i = 1; i <= n; i++) {
  277. // write the neighbors of the node i
  278. for (unsigned j = 0; j < graph[i].nedges; j++) {
  279. const unsigned nghbr = graph[i].edges[j];
  280. if (i < nghbr) ef( i, nghbr);
  281. }
  282. }
  283. free(graph[1].edges);
  284. free(graph);
  285. }
  286. void makeHypercube(unsigned dim, edgefn ef) {
  287. const unsigned n = 1u << dim;
  288. for (unsigned i = 0; i < n; i++) {
  289. for (unsigned j = 0; j < dim; j++) {
  290. const unsigned neighbor = (i ^ (1u << j)) + 1;
  291. if (i < neighbor)
  292. ef( i + 1, neighbor);
  293. }
  294. }
  295. }
  296. void makeTriMesh(unsigned sz, edgefn ef) {
  297. if (sz == 1) {
  298. ef (1, 0);
  299. return;
  300. }
  301. ef(1,2);
  302. ef(1,3);
  303. unsigned idx = 2;
  304. for (unsigned i = 2; i < sz; i++) {
  305. for (unsigned j = 1; j <= i; j++) {
  306. ef(idx,idx+i);
  307. ef(idx,idx+i+1);
  308. if (j < i)
  309. ef(idx,idx+1);
  310. idx++;
  311. }
  312. }
  313. for (unsigned j = 1; j < sz; j++) {
  314. ef (idx,idx+1);
  315. idx++;
  316. }
  317. }
  318. void makeBall(unsigned w, unsigned h, edgefn ef) {
  319. makeCylinder (w, h, ef);
  320. for (unsigned i = 1; i <= h; i++)
  321. ef (0, i);
  322. const unsigned cap = w * h + 1;
  323. for (unsigned i = (w - 1) * h + 1; i <= w * h; i++)
  324. ef (i, cap);
  325. }
  326. /* makeRandom:
  327. * No. of nodes is largest 2^n - 1 less than or equal to h.
  328. */
  329. void makeRandom(unsigned h, unsigned w, edgefn ef) {
  330. srand((unsigned)time(0));
  331. const int type = rand() % 2;
  332. unsigned size = 0;
  333. unsigned depth = 0;
  334. while (size <= h) {
  335. size += 1u << depth;
  336. depth++;
  337. }
  338. depth--;
  339. if (size > h) {
  340. size -= 1u << depth;
  341. depth--;
  342. }
  343. if (type)
  344. makeBinaryTree (depth, ef);
  345. else
  346. makePath (size, ef);
  347. for (unsigned i = 3; i <= size; i++) {
  348. for (unsigned j = 1; j + 1 < i; j++) {
  349. const unsigned th = (unsigned)rand() % (size * size);
  350. if ((th <= w * w && (i < 5 || (i + 4 > h && j + 4 > h))) || th <= w)
  351. ef(j,i);
  352. }
  353. }
  354. }
  355. void makeMobius(unsigned w, unsigned h, edgefn ef) {
  356. if (h == 1) {
  357. fprintf(stderr, "Warning: degenerate Moebius strip of %u vertices\n", w);
  358. makePath(w, ef);
  359. return;
  360. }
  361. if (w == 1) {
  362. fprintf(stderr, "Warning: degenerate Moebius strip of %u vertices\n", h);
  363. makePath(h, ef);
  364. return;
  365. }
  366. for (unsigned i = 0; i + 1 < w; i++) {
  367. for (unsigned j = 1; j < h; j++){
  368. ef(j + i*h, j + (i+1)*h);
  369. ef(j + i*h, j+1 + i*h);
  370. }
  371. }
  372. for (unsigned i = 1; i < h; i++){
  373. ef (i + (w-1)*h, i+1 + (w-1)*h);
  374. }
  375. for (unsigned i=1; i < w; i++) {
  376. ef(i*h , (i+1)*h);
  377. ef(i*h, (w-i)*h+1);
  378. }
  379. ef(1,w*h);
  380. }
  381. typedef struct {
  382. unsigned j, d;
  383. } pair;
  384. typedef struct {
  385. unsigned top, root;
  386. unsigned* p;
  387. } tree_t;
  388. static tree_t *mkTree(unsigned sz) {
  389. tree_t* tp = gv_alloc(sizeof(tree_t));
  390. tp->root = 0;
  391. tp->top = 0;
  392. tp->p = gv_calloc(sz, sizeof(unsigned));
  393. return tp;
  394. }
  395. static void
  396. freeTree (tree_t* tp)
  397. {
  398. free (tp->p);
  399. free (tp);
  400. }
  401. static void
  402. resetTree (tree_t* tp)
  403. {
  404. tp->root = 0;
  405. tp->top = 0;
  406. }
  407. static unsigned treeRoot(tree_t* tp) {
  408. return tp->root;
  409. }
  410. static unsigned prevRoot(tree_t *tp) {
  411. return tp->p[tp->root];
  412. }
  413. static unsigned treeSize(tree_t *tp) {
  414. return tp->top - tp->root + 1;
  415. }
  416. static unsigned treeTop(tree_t *tp) {
  417. return tp->top;
  418. }
  419. static void
  420. treePop (tree_t* tp)
  421. {
  422. tp->root = prevRoot(tp);
  423. }
  424. static void addTree(tree_t *tp, unsigned sz) {
  425. tp->p[tp->top+1] = tp->root;
  426. tp->root = tp->top+1;
  427. tp->top += sz;
  428. if (sz > 1) tp->p[tp->top] = tp->top-1;
  429. }
  430. static void treeDup(tree_t *tp, unsigned J) {
  431. unsigned M = treeSize(tp);
  432. unsigned L = treeRoot(tp);
  433. unsigned LL = prevRoot(tp);
  434. unsigned LS = L + (J-1)*M - 1;
  435. for (unsigned i = L; i <= LS; i++) {
  436. if ((i-L)%M == 0) tp->p[i+M] = LL;
  437. else tp->p[i+M] = tp->p[i] + M;
  438. }
  439. tp->top = LS + M;
  440. }
  441. /*****************/
  442. DEFINE_LIST(int_stack, unsigned)
  443. static void push(int_stack_t *sp, unsigned j, unsigned d) {
  444. int_stack_push_back(sp, j);
  445. int_stack_push_back(sp, d);
  446. }
  447. static pair pop(int_stack_t *sp) {
  448. // extract ints in the opposite order in which they were pushed
  449. const unsigned d = int_stack_pop_back(sp);
  450. const unsigned j = int_stack_pop_back(sp);
  451. return (pair){j, d};
  452. }
  453. /*****************/
  454. static unsigned *genCnt(unsigned NN) {
  455. unsigned* T = gv_calloc(NN + 1, sizeof(unsigned));
  456. unsigned NLAST = 1;
  457. T[1] = 1;
  458. while (NN > NLAST) {
  459. unsigned SUM = 0;
  460. for (unsigned D = 1; D <= NLAST; D++) {
  461. unsigned I = NLAST + 1;
  462. const unsigned TD = T[D] * D;
  463. for (unsigned J = 1; J <= NLAST; J++) {
  464. if (I <= D) break;
  465. I = I-D;
  466. SUM += T[I]*TD;
  467. }
  468. }
  469. NLAST++;
  470. T[NLAST] = SUM/(NLAST-1);
  471. }
  472. return T;
  473. }
  474. static double
  475. drand(void)
  476. {
  477. double d;
  478. d = rand();
  479. d = d / RAND_MAX;
  480. return d;
  481. }
  482. static void genTree(unsigned NN, unsigned *T, int_stack_t *stack,
  483. tree_t *TREE) {
  484. double v;
  485. pair p;
  486. unsigned J;
  487. unsigned N = NN;
  488. while (1) {
  489. while (N > 2) {
  490. v = (N-1)*T[N];
  491. double Z = floor(v * drand());
  492. unsigned D = 0;
  493. bool more = true;
  494. unsigned M;
  495. do {
  496. D++;
  497. const unsigned TD = D*T[D];
  498. M = N;
  499. J = 0;
  500. do {
  501. J++;
  502. if (M < D + 1) break;
  503. M -= D;
  504. if (Z < T[M] * TD) {
  505. more = false;
  506. break;
  507. }
  508. Z -= T[M]*TD;
  509. } while (true);
  510. } while (more);
  511. push(stack, J, D);
  512. N = M;
  513. }
  514. addTree (TREE, N);
  515. while (1) {
  516. p = pop(stack);
  517. N = p.d;
  518. if (N != 0) {
  519. push(stack,p.j,0);
  520. break;
  521. }
  522. J = p.j;
  523. if (J > 1) treeDup (TREE, J);
  524. if (treeTop(TREE) == NN) return;
  525. treePop(TREE);
  526. }
  527. }
  528. }
  529. static void
  530. writeTree (tree_t* tp, edgefn ef)
  531. {
  532. for (unsigned i = 2; i <= tp->top; i++)
  533. ef (tp->p[i], i);
  534. }
  535. struct treegen_s {
  536. unsigned N;
  537. unsigned* T;
  538. int_stack_t sp;
  539. tree_t* tp;
  540. };
  541. treegen_t *makeTreeGen(unsigned N) {
  542. treegen_t* tg = gv_alloc(sizeof(treegen_t));
  543. tg->N = N;
  544. tg->T = genCnt(N);
  545. tg->sp = (int_stack_t){0};
  546. tg->tp = mkTree(N+1);
  547. srand((unsigned)time(0));
  548. return tg;
  549. }
  550. void makeRandomTree (treegen_t* tg, edgefn ef)
  551. {
  552. int_stack_clear(&tg->sp);
  553. resetTree(tg->tp);
  554. genTree(tg->N, tg->T, &tg->sp, tg->tp);
  555. writeTree (tg->tp, ef);
  556. }
  557. void
  558. freeTreeGen(treegen_t* tg)
  559. {
  560. free (tg->T);
  561. int_stack_free(&tg->sp);
  562. freeTree (tg->tp);
  563. free (tg);
  564. }