123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- .TH GVGEN 1 "5 June 2012"
- .SH NAME
- gvgen \- generate graphs
- .SH SYNOPSIS
- .B gvgen
- [
- .B \-dv?
- ]
- [
- .BI \-i n
- ]
- [
- .BI \-c n
- ]
- [
- .BI \-C x,y
- ]
- [
- .BI \-g [\fBf\fP]x,y
- ]
- [
- .BI \-G [\fBf\fP]x,y
- ]
- [
- .BI \-h n
- ]
- [
- .BI \-k n
- ]
- [
- .BI \-b x,y
- ]
- [
- .BI \-B x,y
- ]
- [
- .BI \-m n
- ]
- [
- .BI \-M x,y
- ]
- [
- .BI \-p n
- ]
- [
- .BI \-r x,y
- ]
- [
- .BI \-R x
- ]
- [
- .BI \-s n
- ]
- [
- .BI \-S n
- ]
- [
- .BI \-S n,d
- ]
- [
- .BI \-t n
- ]
- [
- .BI \-t d,n
- ]
- [
- .BI \-T x,y
- ]
- [
- .BI \-T x,y,u,v
- ]
- [
- .BI \-w n
- ]
- [
- .BI \-n prefix
- ]
- [
- .BI \-N name
- ]
- [
- .BI \-o outfile
- ]
- .SH DESCRIPTION
- .B gvgen
- generates a variety of simple, regularly-structured abstract
- graphs.
- .SH OPTIONS
- The following options are supported:
- .TP
- .BI \-c " n"
- Generate a cycle with \fIn\fP vertices and edges.
- .TP
- .BI \-C " x,y"
- Generate an \fIx\fP by \fIy\fP cylinder.
- This will have \fIx*y\fP vertices and
- \fI2*x*y - y\fP edges.
- .TP
- .BI \-g " [\fBf\fP]x,y"
- Generate an \fIx\fP by \fIy\fP grid.
- If \fBf\fP is given, the grid is folded, with an edge
- attaching each pair of opposing corner vertices.
- This will have \fIx*y\fP vertices and
- \fI2*x*y - y - x\fP edges if unfolded and
- \fI2*x*y - y - x + 2\fP edges if folded.
- .TP
- .BI \-G " [\fBf\fP]x,y"
- Generate an \fIx\fP by \fIy\fP partial grid.
- If \fBf\fP is given, the grid is folded, with an edge
- attaching each pair of opposing corner vertices.
- This will have \fIx*y\fP vertices.
- .TP
- .BI \-h " n"
- Generate a hypercube of degree \fIn\fP.
- This will have \fI2^n\fP vertices and \fIn*2^(n-1)\fP edges.
- .TP
- .BI \-k " n"
- Generate a complete graph on \fIn\fP vertices with
- \fIn*(n-1)/2\fP edges.
- .TP
- .BI \-b " x,y"
- Generate a complete \fIx\fP by \fIy\fP bipartite graph.
- This will have \fIx+y\fP vertices and
- \fIx*y\fP edges.
- .TP
- .BI \-B " x,y"
- Generate an \fIx\fP by \fIy\fP ball, i.e., an \fIx\fP by \fIy\fP cylinder
- with two "cap" nodes closing the ends.
- This will have \fIx*y + 2\fP vertices
- and \fI2*x*y + y\fP edges.
- .TP
- .BI \-m " n"
- Generate a triangular mesh with \fIn\fP vertices on a side.
- This will have \fI(n+1)*n/2\fP vertices
- and \fI3*(n-1)*n/2\fP edges.
- .TP
- .BI \-M " x,y"
- Generate an x by y Moebius strip.
- This will have \fIx*y\fP vertices
- and \fI2*x*y - y\fP edges.
- .TP
- .BI \-p " n"
- Generate a path on \fIn\fP vertices.
- This will have \fIn-1\fP edges.
- .TP
- .BI \-r " x,y"
- Generate a random graph.
- The number of vertices will be the largest value of the form \fI2^n-1\fP less than or
- equal to \fIx\fP. Larger values of \fIy\fP increase the density of the graph.
- .TP
- .BI \-R " x"
- Generate a random rooted tree on \fIx\fP vertices.
- .TP
- .BI \-s " n"
- Generate a star on \fIn\fP vertices.
- This will have \fIn-1\fP edges.
- .TP
- .BI \-S " n"
- Generate a Sierpinski graph of order \fIn\fP.
- This will have \fI3*(3^(n-1) + 1)/2\fP vertices and
- \fI3^n\fP edges.
- .TP
- .BI \-S " n,d"
- Generate a \fId\fP-dimensional Sierpinski graph of order \fIn\fP.
- At present, \fId\fP must be 2 or 3.
- For d equal to 3, there will be \fI4*(4^(n-1) + 1)/2\fP vertices and
- \fI6 * 4^(n-1)\fP edges.
- .TP
- .BI \-t " n"
- Generate a binary tree of height \fIn\fP.
- This will have \fI2^n-1\fP vertices and
- \fI2^n-2\fP edges.
- .TP
- .BI \-t " h,n"
- Generate a n-ary tree of height \fIh\fP.
- .TP
- .BI \-T " x,y"
- .TP
- .BI \-T " x,y,u,v"
- Generate an \fIx\fP by \fIy\fP torus.
- This will have \fIx*y\fP vertices and
- \fI2*x*y\fP edges.
- If \fIu\fP and \fIv\fP are given, they specify twists of that amount in
- the horizontal and vertical directions, respectively.
- .TP
- .BI \-w " n"
- Generate a path on \fIn\fP vertices.
- This will have \fIn-1\fP edges.
- .TP
- .BI \-i " n"
- Generate \fIn\fP graphs of the requested type. At present, only available if
- the \fB\-R\fP flag is used.
- .TP
- .BI \-n " prefix"
- Normally, integers are used as node names. If \fIprefix\fP is specified,
- this will be prepended to the integer to create the name.
- .TP
- .BI \-N " name"
- Use \fIname\fP as the name of the graph.
- By default, the graph is anonymous.
- .TP
- .BI \-o " outfile"
- If specified, the generated graph is written into the file
- .I outfile.
- Otherwise, the graph is written to standard out.
- .TP
- .B \-d
- Make the generated graph directed.
- .TP
- .B \-v
- Verbose output.
- .TP
- .B \-?
- Print usage information.
- .SH "EXIT STATUS"
- .B gvgen
- exits with 0 on successful completion,
- and exits with 1 if given an ill-formed or incorrect flag,
- or if the specified output file could not be opened.
- .SH AUTHOR
- Emden R. Gansner <[email protected]>
- .SH "SEE ALSO"
- gc(1), acyclic(1), gvpr(1), gvcolor(1), ccomps(1), sccmap(1), tred(1), libgraph(3)
|