conc.c 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. /*************************************************************************
  2. * Copyright (c) 2011 AT&T Intellectual Property
  3. * All rights reserved. This program and the accompanying materials
  4. * are made available under the terms of the Eclipse Public License v1.0
  5. * which accompanies this distribution, and is available at
  6. * https://www.eclipse.org/legal/epl-v10.html
  7. *
  8. * Contributors: Details at https://graphviz.org
  9. *************************************************************************/
  10. /*
  11. * build edge_t concentrators for parallel edges with a common endpoint
  12. */
  13. #include <dotgen/dot.h>
  14. #include <stdbool.h>
  15. #define UP 0
  16. #define DOWN 1
  17. static bool samedir(edge_t * e, edge_t * f)
  18. {
  19. edge_t *e0, *f0;
  20. for (e0 = e; e0 != NULL && ED_edge_type(e0) != NORMAL; e0 = ED_to_orig(e0));
  21. if (e0 == NULL)
  22. return false;
  23. for (f0 = f; f0 != NULL && ED_edge_type(f0) != NORMAL; f0 = ED_to_orig(f0));
  24. if (f0 == NULL)
  25. return false;
  26. if (ED_conc_opp_flag(e0))
  27. return false;
  28. if (ED_conc_opp_flag(f0))
  29. return false;
  30. return ((ND_rank(agtail(f0)) - ND_rank(aghead(f0)))
  31. * (ND_rank(agtail(e0)) - ND_rank(aghead(e0))) > 0);
  32. }
  33. static bool downcandidate(node_t * v)
  34. {
  35. return ND_node_type(v) == VIRTUAL && ND_in(v).size == 1
  36. && ND_out(v).size == 1 && ND_label(v) == NULL;
  37. }
  38. static bool bothdowncandidates(node_t * u, node_t * v)
  39. {
  40. edge_t *e, *f;
  41. e = ND_in(u).list[0];
  42. f = ND_in(v).list[0];
  43. if (downcandidate(v) && agtail(e) == agtail(f)) {
  44. return samedir(e, f)
  45. && portcmp(ED_tail_port(e), ED_tail_port(f)) == 0;
  46. }
  47. return false;
  48. }
  49. static bool upcandidate(node_t * v)
  50. {
  51. return ND_node_type(v) == VIRTUAL && ND_out(v).size == 1
  52. && ND_in(v).size == 1 && ND_label(v) == NULL;
  53. }
  54. static bool bothupcandidates(node_t * u, node_t * v)
  55. {
  56. edge_t *e, *f;
  57. e = ND_out(u).list[0];
  58. f = ND_out(v).list[0];
  59. if (upcandidate(v) && aghead(e) == aghead(f)) {
  60. return samedir(e, f)
  61. && portcmp(ED_head_port(e), ED_head_port(f)) == 0;
  62. }
  63. return false;
  64. }
  65. static void mergevirtual(graph_t * g, int r, int lpos, int rpos, int dir)
  66. {
  67. int i, k;
  68. node_t *left, *right;
  69. edge_t *e, *f, *e0;
  70. left = GD_rank(g)[r].v[lpos];
  71. /* merge all right nodes into the leftmost one */
  72. for (i = lpos + 1; i <= rpos; i++) {
  73. right = GD_rank(g)[r].v[i];
  74. if (dir == DOWN) {
  75. while ((e = ND_out(right).list[0])) {
  76. for (k = 0; (f = ND_out(left).list[k]); k++)
  77. if (aghead(f) == aghead(e))
  78. break;
  79. if (f == NULL)
  80. f = virtual_edge(left, aghead(e), e);
  81. while ((e0 = ND_in(right).list[0])) {
  82. merge_oneway(e0, f);
  83. /*ED_weight(f) += ED_weight(e0); */
  84. delete_fast_edge(e0);
  85. }
  86. delete_fast_edge(e);
  87. }
  88. } else {
  89. while ((e = ND_in(right).list[0])) {
  90. for (k = 0; (f = ND_in(left).list[k]); k++)
  91. if (agtail(f) == agtail(e))
  92. break;
  93. if (f == NULL)
  94. f = virtual_edge(agtail(e), left, e);
  95. while ((e0 = ND_out(right).list[0])) {
  96. merge_oneway(e0, f);
  97. delete_fast_edge(e0);
  98. }
  99. delete_fast_edge(e);
  100. }
  101. }
  102. assert(ND_in(right).size + ND_out(right).size == 0);
  103. delete_fast_node(g, right);
  104. }
  105. k = lpos + 1;
  106. i = rpos + 1;
  107. while (i < GD_rank(g)[r].n) {
  108. node_t *n;
  109. n = GD_rank(g)[r].v[k] = GD_rank(g)[r].v[i];
  110. ND_order(n) = k;
  111. k++;
  112. i++;
  113. }
  114. GD_rank(g)[r].n = k;
  115. GD_rank(g)[r].v[k] = NULL;
  116. }
  117. static void infuse(graph_t * g, node_t * n)
  118. {
  119. node_t *lead;
  120. lead = GD_rankleader(g)[ND_rank(n)];
  121. if (lead == NULL || ND_order(lead) > ND_order(n))
  122. GD_rankleader(g)[ND_rank(n)] = n;
  123. }
  124. static int rebuild_vlists(graph_t * g)
  125. {
  126. int c, i, r, maxi;
  127. node_t *n, *lead;
  128. edge_t *rep;
  129. for (r = GD_minrank(g); r <= GD_maxrank(g); r++)
  130. GD_rankleader(g)[r] = NULL;
  131. dot_scan_ranks(g);
  132. for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
  133. infuse(g, n);
  134. for (edge_t *e = agfstout(g, n); e; e = agnxtout(g, e)) {
  135. for (rep = e; ED_to_virt(rep); rep = ED_to_virt(rep));
  136. while (rep != NULL && ND_rank(aghead(rep)) < ND_rank(aghead(e))) {
  137. infuse(g, aghead(rep));
  138. rep = ND_out(aghead(rep)).list[0];
  139. }
  140. }
  141. }
  142. for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
  143. lead = GD_rankleader(g)[r];
  144. if (lead == NULL) {
  145. agerrorf("rebuild_vlists: lead is null for rank %d\n", r);
  146. return -1;
  147. }
  148. else if (GD_rank(dot_root(g))[r].v[ND_order(lead)] != lead) {
  149. agerrorf("rebuild_vlists: rank lead %s not in order %d of rank %d\n",
  150. agnameof(lead), ND_order(lead), r);
  151. return -1;
  152. }
  153. GD_rank(g)[r].v =
  154. GD_rank(dot_root(g))[r].v + ND_order((GD_rankleader(g)[r]));
  155. maxi = -1;
  156. for (i = 0; i < GD_rank(g)[r].n; i++) {
  157. if ((n = GD_rank(g)[r].v[i]) == NULL)
  158. break;
  159. if (ND_node_type(n) == NORMAL) {
  160. if (agcontains(g, n))
  161. maxi = i;
  162. else
  163. break;
  164. } else {
  165. edge_t *e;
  166. for (e = ND_in(n).list[0]; e && ED_to_orig(e);
  167. e = ED_to_orig(e));
  168. if (e && agcontains(g, agtail(e))
  169. && agcontains(g, aghead(e)))
  170. maxi = i;
  171. }
  172. }
  173. if (maxi == -1)
  174. agwarningf("degenerate concentrated rank %s,%d\n", agnameof(g),
  175. r);
  176. GD_rank(g)[r].n = maxi + 1;
  177. }
  178. for (c = 1; c <= GD_n_cluster(g); c++) {
  179. int ret = rebuild_vlists(GD_clust(g)[c]);
  180. if (ret != 0) {
  181. return ret;
  182. }
  183. }
  184. return 0;
  185. }
  186. void dot_concentrate(graph_t * g)
  187. {
  188. int c, r, leftpos, rightpos;
  189. node_t *left, *right;
  190. if (GD_maxrank(g) - GD_minrank(g) <= 1)
  191. return;
  192. /* this is the downward looking pass. r is a candidate rank. */
  193. for (r = 1; GD_rank(g)[r + 1].n; r++) {
  194. for (leftpos = 0; leftpos < GD_rank(g)[r].n; leftpos++) {
  195. left = GD_rank(g)[r].v[leftpos];
  196. if (!downcandidate(left))
  197. continue;
  198. for (rightpos = leftpos + 1; rightpos < GD_rank(g)[r].n;
  199. rightpos++) {
  200. right = GD_rank(g)[r].v[rightpos];
  201. if (!bothdowncandidates(left, right))
  202. break;
  203. }
  204. if (rightpos - leftpos > 1)
  205. mergevirtual(g, r, leftpos, rightpos - 1, DOWN);
  206. }
  207. }
  208. /* this is the corresponding upward pass */
  209. while (r > 0) {
  210. for (leftpos = 0; leftpos < GD_rank(g)[r].n; leftpos++) {
  211. left = GD_rank(g)[r].v[leftpos];
  212. if (!upcandidate(left))
  213. continue;
  214. for (rightpos = leftpos + 1; rightpos < GD_rank(g)[r].n;
  215. rightpos++) {
  216. right = GD_rank(g)[r].v[rightpos];
  217. if (!bothupcandidates(left, right))
  218. break;
  219. }
  220. if (rightpos - leftpos > 1)
  221. mergevirtual(g, r, leftpos, rightpos - 1, UP);
  222. }
  223. r--;
  224. }
  225. for (c = 1; c <= GD_n_cluster(g); c++) {
  226. if (rebuild_vlists(GD_clust(g)[c]) != 0) {
  227. agerr(AGPREV, "concentrate=true may not work correctly.\n");
  228. return;
  229. }
  230. }
  231. }