123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618 |
- /*************************************************************************
- * Copyright (c) 2011 AT&T Intellectual Property
- * All rights reserved. This program and the accompanying materials
- * are made available under the terms of the Eclipse Public License v1.0
- * which accompanies this distribution, and is available at
- * https://www.eclipse.org/legal/epl-v10.html
- *
- * Contributors: Details at https://graphviz.org
- *************************************************************************/
- #include <algorithm>
- #include <common/types.h>
- #include <common/globals.h>
- #include <sparse/general.h>
- #include <math.h>
- #include <sparse/SparseMatrix.h>
- #include <mingle/edge_bundling.h>
- #include <time.h>
- #include <sparse/clustering.h>
- #include <mingle/ink.h>
- #include <mingle/agglomerative_bundling.h>
- #include <string.h>
- #include <vector>
- #define SMALL 1.e-10
- static double norm(int n, const double *x) {
- double res = 0;
- int i;
- for (i = 0; i < n; i++) res += x[i]*x[i];
- return sqrt(res);
- }
- static double sqr_dist(int dim, const double *x, const double *y) {
- int i;
- double res = 0;
- for (i = 0; i < dim; i++) res += (x[i] - y[i])*(x[i] - y[i]);
- return res;
- }
- static double dist(int dim, const double *x, const double *y) {
- return sqrt(sqr_dist(dim,x,y));
- }
- static pedge pedge_new(int np, int dim, const double *x) {
- pedge e;
- e.npoints = np;
- e.dim = dim;
- e.len = np;
- e.x.assign(x, &x[dim * e.len]);
- e.edge_length = dist(dim, &x[0 * dim], &x[(np - 1) * dim]);
- e.wgt = 1;
- return e;
- }
- pedge pedge_wgt_new(int np, int dim, double *x, double wgt) {
- pedge e;
- e.npoints = np;
- e.dim = dim;
- e.len = np;
- e.x.assign(x, &x[dim * e.len]);
- e.edge_length = dist(dim, &x[0 * dim], &x[(np - 1) * dim]);
- e.wgt = wgt;
- e.wgts = std::vector<double>(np - 1, wgt);
- return e;
- }
- void pedge_delete(pedge &) { }
- static double edge_compatibility(const pedge &e1, const pedge &e2) {
- /* two edges are u1->v1, u2->v2.
- return 1 if two edges are exactly the same, 0 if they are very different.
- */
- double dist1, dist2, len1, len2;
- const int dim = e1.dim;
- bool flipped = false;
- const double *u1 = e1.x.data();
- const double *v1 = e1.x.data() + e1.npoints * dim - dim;
- const double *u2 = e2.x.data();
- const double *v2 = e2.x.data() + e2.npoints * dim - dim;
- dist1 = sqr_dist(dim, u1, u2) + sqr_dist(dim, v1, v2);
- dist2 = sqr_dist(dim, u1, v2) + sqr_dist(dim, v1, u2);
- if (dist1 > dist2){
- std::swap(u2, v2);
- dist1 = dist2;
- flipped = true;
- }
- len1 = dist(dim, u1, v1);
- len2 = dist(dim, u2, v2);
- dist1 = std::max(0.1, dist1 / (len1 + len2 + 0.0001 * dist1));
- if (flipped){
- return -1/dist1;
- } else {
- return 1/dist1;
- }
- }
- static double edge_compatibility_full(const pedge &e1, const pedge &e2) {
- /* two edges are u1->v1, u2->v2.
- return 1 if two edges are exactly the same, 0 if they are very different.
- This is based on Holten and van Wijk's paper
- */
- double dist1, dist2, len1, len2, len;
- double tmp, ca, cp, cs;
- int dim = e1.dim, i;
- bool flipped = false;
- const double *u1 = e1.x.data();
- const double *v1 = e1.x.data() + e1.npoints * dim - dim;
- const double *u2 = e2.x.data();
- const double *v2 = e2.x.data() + e2.npoints * dim - dim;
- dist1 = sqr_dist(dim, u1, u2) + sqr_dist(dim, v1, v2);
- dist2 = sqr_dist(dim, u1, v2) + sqr_dist(dim, v1, u2);
- if (dist1 > dist2){
- std::swap(u2, v2);
- dist1 = dist2;
- flipped = true;
- }
- len1 = std::max(dist(dim, u1, v1), SMALL);
- len2 = std::max(dist(dim, u2, v2), SMALL);
- len = 0.5*(len1+len2);
- /* angle compatibility */
- ca = 0;
- for (i = 0; i < dim; i++)
- ca += (v1[i]-u1[i])*(v2[i]-u2[i]);
- ca = fabs(ca/(len1*len2));
- assert(ca > -0.001);
- /* scale compatibility */
- cs = 2 / (std::max(len1, len2) / len + len / std::min(len1, len2));
- assert(cs > -0.001 && cs < 1.001);
-
- /* position compatibility */
- cp = 0;
- for (i = 0; i < dim; i++) {
- tmp = .5*(v1[i]+u1[i])-.5*(v2[i]+u2[i]);
- cp += tmp*tmp;
- }
- cp = sqrt(cp);
- cp = len/(len + cp);
- assert(cp > -0.001 && cp < 1.001);
- /* visibility compatibility */
- dist1 = cp*ca*cs;
- if (flipped){
- return -dist1;
- } else {
- return dist1;
- }
- }
- static void fprint_rgb(FILE* fp, int r, int g, int b, int alpha){
- fprintf(fp, "#%02x%02x%02x%02x", r, g, b, alpha);
- }
- void pedge_export_gv(FILE *fp, int ne, const std::vector<pedge> &edges) {
- double t;
- int i, j, k, kk, dim, sta, sto;
- double maxwgt = 0, len, len_total0;
- int r, g, b;
- double tt1[3]={0.15,0.5,0.85};
- double tt2[4]={0.15,0.4,0.6,0.85};
- double *tt;
- fprintf(fp,"strict graph{\n");
- /* points */
- for (i = 0; i < ne; i++){
- const pedge &edge = edges[i];
- const std::vector<double> &x = edge.x;
- dim = edge.dim;
- sta = 0;
- sto = edge.npoints - 1;
- fprintf(fp, "%d [pos=\"", i);
- for (k = 0; k < dim; k++) {
- if (k != 0) fprintf(fp, ",");
- fprintf(fp, "%f", x[sta*dim+k]);
- }
- fprintf(fp, "\"];\n");
- fprintf(fp, "%d [pos=\"", i + ne);
- for (k = 0; k < dim; k++) {
- if (k != 0) fprintf(fp, ",");
- fprintf(fp, "%f", x[sto*dim+k]);
- }
- fprintf(fp, "\"];\n");
- }
- /* figure out max number of bundled original edges in a pedge */
- for (i = 0; i < ne; i++){
- const pedge &edge = edges[i];
- if (!edge.wgts.empty()) {
- for (j = 0; j < edge.npoints - 1; j++) {
- maxwgt = std::max(maxwgt, edge.wgts[j]);
- }
- }
- }
- /* spline and colors */
- for (i = 0; i < ne; i++){
- fprintf(fp,"%d -- %d [pos=\"", i, i + ne);
- const pedge &edge = edges[i];
- const std::vector<double> &x = edge.x;
- dim = edge.dim;
- /* splines */
- for (j = 0; j < edge.npoints; j++) {
- if (j != 0) {
- int mm = 3;
- fprintf(fp," ");
- /* there are ninterval+1 points, add 3*ninterval+2 points, get rid of internal ninternal-1 points,
- make into 3*ninterval+4 points so that gviz spline rendering can work */
- if (j == 1 || j == edge.npoints - 1) {
- // every interval gets 3 points inserted except the first and last one
- tt = tt2;
- mm = 4;
- } else {
- tt = tt1;
- }
- for (kk = 1; kk <= mm; kk++){
- t = tt[kk-1];
- for (k = 0; k < dim; k++) {
- if (k != 0) fprintf(fp,",");
- fprintf(fp, "%f", (x[(j-1)*dim+k]*(1-t)+x[j*dim+k]*(t)));
- }
- fprintf(fp," ");
- }
- }
- if (j == 0 || j == edge.npoints - 1){
- for (k = 0; k < dim; k++) {
- if (k != 0) fprintf(fp,",");
- fprintf(fp, "%f", x[j*dim+k]);
- }
- }
- }
- /* colors based on how much bundling */
- if (!edge.wgts.empty()) {
- fprintf(fp, "\", wgts=\"");
- for (j = 0; j < edge.npoints - 1; j++){
- if (j != 0) fprintf(fp,",");
- fprintf(fp, "%f", edge.wgts[j]);
- }
- len_total0 = 0;
- fprintf(fp, "\", color=\"");
- for (j = 0; j < edge.npoints - 1; j++){
- len = 0;
- for (k = 0; k < dim; k++){
- len += (edge.x[dim * j + k] - edge.x[dim * (j + 1) + k]) * (edge.x[dim * j + k] - edge.x[dim * (j + 1) + k]);
- }
- len = sqrt(len/k);
- len_total0 += len;
- }
- for (j = 0; j < edge.npoints - 1; j++) {
- len = 0;
- for (k = 0; k < dim; k++){
- len += (edge.x[dim * j + k] - edge.x[dim * (j + 1) + k]) * (edge.x[dim * j + k] - edge.x[dim * (j + 1) + k]);
- }
- len = sqrt(len/k);
- t = edge.wgts[j] / maxwgt;
- // interpolate between red (t = 1) to blue (t = 0)
- r = 255*t; g = 0; b = 255*(1-t); b = 255*(1-t);
- if (j != 0) fprintf(fp,":");
- fprint_rgb(fp, r, g, b, 85);
- if (j < edge.npoints - 2) fprintf(fp, ";%f", len / len_total0);
- }
- }
- fprintf(fp, "\"];\n");
-
- }
- fprintf(fp,"}\n");
- }
- #ifdef DEBUG
- static void pedge_print(char *comments, const pedge &e) {
- int i, j, dim;
- dim = e.dim;
- fprintf(stderr,"%s", comments);
- for (i = 0; i < e.npoints; i++){
- if (i > 0) fprintf(stderr,",");
- fprintf(stderr,"{");
- for (j = 0; j < dim; j++){
- if (j > 0) fprintf(stderr,",");
- fprintf(stderr, "%f", e.x[dim * i + j]);
- }
- fprintf(stderr,"}");
- }
- fprintf(stderr,"\n");
- }
- #endif
- void pedge_wgts_realloc(pedge &e, int n) {
- int i;
- if (n <= e.npoints)
- return;
- e.x.resize(e.dim * n, 0);
- if (e.wgts.empty()) {
- e.wgts.resize(n - 1);
- for (i = 0; i < e.npoints; i++)
- e.wgts[i] = e.wgt;
- } else {
- e.wgts.resize(n - 1);
- }
- e.len = n;
- }
- void pedge_double(pedge &e) {
- /* double the number of points (more precisely, add a point between two points in the polyline */
- int npoints = e.npoints, len = e.len, i, dim = e.dim;
- int j, ii, ii2, np;
- assert(npoints >= 2);
- if (npoints*2-1 > len){
- len = 3*npoints;
- e.x.resize(dim * len, 0);
- }
- std::vector<double> &x = e.x;
- for (i = npoints - 1; i >= 0; i--){
- ii = 2*i;
- for (j = 0; j < dim; j++){
- x[dim*ii + j] = x[dim*i + j];
- }
- }
- for (i = 0; i < npoints - 1; i++){
- ii = 2*i;/* left and right interpolant of a new point */
- ii2 = 2*(i+1);
- for (j = 0; j < dim; j++){
- x[dim*(2*i + 1) + j] = 0.5*(x[dim*ii + j] + x[dim*ii2 + j]);
- }
- }
- e.len = len;
- np = e.npoints = 2 * e.npoints - 1;
- e.edge_length = dist(dim, &x.data()[0 * dim], &x.data()[(np - 1) * dim]);
- }
- static void edge_tension_force(std::vector<double> &force, const pedge &e) {
- const std::vector<double> &x = e.x;
- const int dim = e.dim;
- const int np = e.npoints;
- int i, left, right, j;
- double s;
- /* tension force = ((np-1)*||2x-xleft-xright||)/||e||, so the force is nominal and unitless
- */
- s = (np - 1) / std::max(SMALL, e.edge_length);
- for (i = 1; i <= np - 2; i++){
- left = i - 1;
- right = i + 1;
- for (j = 0; j < dim; j++) force[i*dim + j] += s*(x[left*dim + j] - x[i*dim + j]);
- for (j = 0; j < dim; j++) force[i*dim + j] += s*(x[right*dim + j] - x[i*dim + j]);
- }
- }
- static void edge_attraction_force(double similarity, const pedge &e1,
- const pedge &e2, std::vector<double> &force) {
- /* attractive force from x2 applied to x1 */
- const std::vector<double> &x1 = e1.x, &x2 = e2.x;
- const int dim = e1.dim;
- const int np = e1.npoints;
- int i, j;
- double dist, s, ss;
- const double edge_length = e1.edge_length;
- assert(e1.npoints == e2.npoints);
- /* attractive force = 1/d where d = D/||e1|| is the relative distance, D is the distance between e1 and e2.
- so the force is nominal and unitless
- */
- if (similarity > 0){
- s = edge_length;
- s = similarity*edge_length;
- for (i = 1; i <= np - 2; i++){
- dist = sqr_dist(dim, &x1.data()[i*dim], &x2.data()[i*dim]);
- if (dist < SMALL) dist = SMALL;
- ss = s/(dist+0.1*edge_length*sqrt(dist));
- for (j = 0; j < dim; j++) force[i*dim + j] += ss*(x2[i*dim + j] - x1[i*dim + j]);
- }
- } else {/* clip e2 */
- s = -edge_length;
- s = -similarity*edge_length;
- for (i = 1; i <= np - 2; i++){
- dist = sqr_dist(dim, &x1.data()[i*dim], &x2.data()[(np - 1 - i)*dim]);
- if (dist < SMALL) dist = SMALL;
- ss = s/(dist+0.1*edge_length*sqrt(dist));
- for (j = 0; j < dim; j++) force[i*dim + j] += ss*(x2[(np - 1 - i)*dim + j] - x1[i*dim + j]);
- }
- }
- }
- static void force_directed_edge_bundling(SparseMatrix A,
- std::vector<pedge> &edges, int maxit,
- double step0, double K) {
- int i, j, ne = A->n, k;
- int *ia = A->ia, *ja = A->ja, iter = 0;
- double *a = (double*) A->a;
- const int np = edges[0].npoints, dim = edges[0].dim;
- double step = step0;
- double fnorm_a, fnorm_t, edge_length, start;
-
- if (Verbose > 1)
- fprintf(stderr, "total interaction pairs = %d out of %d, avg neighbors per edge = %f\n",A->nz, A->m*A->m, A->nz/(double) A->m);
- std::vector<double> force_t(dim * np);
- std::vector<double> force_a(dim * np);
- while (step > 0.001 && iter < maxit){
- start = clock();
- iter++;
- for (i = 0; i < ne; i++){
- for (j = 0; j < dim*np; j++) {
- force_t[j] = 0.;
- force_a[j] = 0.;
- }
- pedge &e1 = edges[i];
- std::vector<double> &x = e1.x;
- edge_tension_force(force_t, e1);
- for (j = ia[i]; j < ia[i+1]; j++){
- const pedge &e2 = edges[ja[j]];
- edge_attraction_force(a[j], e1, e2, force_a);
- }
- fnorm_t = std::max(SMALL, norm(dim * (np - 2), &force_t.data()[dim]));
- fnorm_a = std::max(SMALL, norm(dim * (np - 2), &force_a.data()[dim]));
- edge_length = e1.edge_length;
- for (j = 1; j <= np - 2; j++){
- for (k = 0; k < dim; k++) {
- x[j * dim + k] += step * edge_length
- * (force_t[j * dim + k] + K * force_a[j * dim+k])
- / hypot(fnorm_t, K * fnorm_a);
- }
- }
-
- }
- step = step*0.9;
- if (Verbose > 1)
- fprintf(stderr, "iter ==== %d cpu = %f npoints = %d\n",iter, ((double) (clock() - start))/CLOCKS_PER_SEC, np - 2);
- }
- }
- static void modularity_ink_bundling(int dim, int ne, SparseMatrix B,
- std::vector<pedge> &edges,
- double angle_param, double angle) {
- int *assignment = NULL, nclusters;
- double modularity;
- int *clusterp, *clusters;
- SparseMatrix D, C;
- point_t meet1, meet2;
- double ink0, ink1;
- int i, j, jj;
- SparseMatrix BB;
- /* B may contain negative entries */
- BB = SparseMatrix_copy(B);
- BB = SparseMatrix_apply_fun(BB, fabs);
- modularity_clustering(BB, true, 0, &nclusters, &assignment, &modularity);
- SparseMatrix_delete(BB);
- if (Verbose > 1) fprintf(stderr, "there are %d clusters, modularity = %f\n",nclusters, modularity);
-
- C = SparseMatrix_new(1, 1, 1, MATRIX_TYPE_PATTERN, FORMAT_COORD);
-
- for (i = 0; i < ne; i++){
- jj = assignment[i];
- SparseMatrix_coordinate_form_add_entry(C, jj, i, NULL);
- }
-
- D = SparseMatrix_from_coordinate_format(C);
- SparseMatrix_delete(C);
- clusterp = D->ia;
- clusters = D->ja;
- for (i = 0; i < nclusters; i++) {
- ink1 = ink(edges, clusterp[i + 1] - clusterp[i], &clusters[clusterp[i]],
- &ink0, &meet1, &meet2, angle_param, angle);
- if (Verbose > 1)
- fprintf(stderr,"nedges = %d ink0 = %f, ink1 = %f\n",clusterp[i+1] - clusterp[i], ink0, ink1);
- if (ink1 < ink0){
- for (j = clusterp[i]; j < clusterp[i+1]; j++){
- /* make this edge 5 points, insert two meeting points at 1 and 2, make 3 the last point */
- pedge_double(edges[clusters[j]]);
- pedge_double(edges[clusters[j]]);
- pedge &e = edges[clusters[j]];
- e.x[1 * dim] = meet1.x;
- e.x[1 * dim + 1] = meet1.y;
- e.x[2 * dim] = meet2.x;
- e.x[2 * dim + 1] = meet2.y;
- e.x[3 * dim] = e.x[4 * dim];
- e.x[3 * dim + 1] = e.x[4 * dim + 1];
- e.npoints = 4;
- }
- }
- }
- SparseMatrix_delete(D);
- }
- static SparseMatrix check_compatibility(SparseMatrix A, int ne,
- const std::vector<pedge> &edges,
- int compatibility_method, double tol) {
- /* go through the links and make sure edges are compatible */
- SparseMatrix B, C;
- int *ia, *ja, i, j, jj;
- double start;
- double dist;
- B = SparseMatrix_new(1, 1, 1, MATRIX_TYPE_REAL, FORMAT_COORD);
- ia = A->ia; ja = A->ja;
- start = clock();
- for (i = 0; i < ne; i++){
- for (j = ia[i]; j < ia[i+1]; j++){
- jj = ja[j];
- if (i == jj) continue;
- if (compatibility_method == COMPATIBILITY_DIST){
- dist = edge_compatibility_full(edges[i], edges[jj]);
- } else if (compatibility_method == COMPATIBILITY_FULL){
- dist = edge_compatibility(edges[i], edges[jj]);
- }
- if (fabs(dist) > tol){
- B = SparseMatrix_coordinate_form_add_entry(B, i, jj, &dist);
- B = SparseMatrix_coordinate_form_add_entry(B, jj, i, &dist);
- }
- }
- }
- C = SparseMatrix_from_coordinate_format(B);
- SparseMatrix_delete(B);
- B = C;
- if (Verbose > 1)
- fprintf(stderr, "edge compatibilitu time = %f\n",((double) (clock() - start))/CLOCKS_PER_SEC);
- return B;
- }
- std::vector<pedge> edge_bundling(SparseMatrix A0, int dim,
- const std::vector<double> &x, int maxit_outer,
- double K, int method, int nneighbor,
- int compatibility_method, int max_recursion,
- double angle_param, double angle) {
- /* bundle edges.
- A: edge graph
- x: edge i is at {p,q},
- . where p = x[2*dim*i : 2*dim*i+dim-1]
- . and q = x[2*dim*i+dim : 2*dim*i+2*dim-1]
- maxit_outer: max outer iteration for force directed bundling. Every outer iter subdivide each edge segment into 2.
- K: nominal edge length in force directed bundling
- method: which method to use.
- nneighbor: number of neighbors to be used in forming nearest neighbor graph. Used only in agglomerative method
- compatibility_method: which method to use to calculate compatibility. Used only in force directed.
- max_recursion: used only in agglomerative method. Specify how many level of recursion to do to bundle bundled edges again
- */
- int ne = A0->m;
- SparseMatrix A = A0, B = NULL;
- int i;
- double tol = 0.001;
- int k;
- double step0 = 0.1, start = 0.0;
- int maxit = 10;
- assert(A->n == ne);
- std::vector<pedge> edges;
- edges.reserve(ne);
- for (i = 0; i < ne; i++){
- edges.emplace_back(pedge_new(2, dim, &x.data()[dim * 2 * i]));
- }
- A = SparseMatrix_symmetrize(A0, true);
- if (Verbose) start = clock();
- if (method == METHOD_INK){
- /* go through the links and make sure edges are compatible */
- B = check_compatibility(A, ne, edges, compatibility_method, tol);
- modularity_ink_bundling(dim, ne, B, edges, angle_param, angle);
- } else if (method == METHOD_INK_AGGLOMERATE){
- /* plan: merge a node with its neighbors if doing so improve. Form coarsening graph, repeat until no more ink saving */
- agglomerative_ink_bundling(dim, A, edges, nneighbor, max_recursion,
- angle_param, angle);
- } else if (method == METHOD_FD){/* FD method */
-
- /* go through the links and make sure edges are compatible */
- B = check_compatibility(A, ne, edges, compatibility_method, tol);
- for (k = 0; k < maxit_outer; k++){
- for (i = 0; i < ne; i++){
- pedge_double(edges[i]);
- }
- step0 /= 2;
- force_directed_edge_bundling(B, edges, maxit, step0, K);
- }
-
- } else if (method == METHOD_NONE){
- ;
- } else {
- assert(0);
- }
- if (Verbose)
- fprintf(stderr, "total edge bundling cpu = %f\n",((double) (clock() - start))/CLOCKS_PER_SEC);
- if (B != A) SparseMatrix_delete(B);
- if (A != A0) SparseMatrix_delete(A);
- return edges;
- }
|