shortest.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449
  1. /*************************************************************************
  2. * Copyright (c) 2011 AT&T Intellectual Property
  3. * All rights reserved. This program and the accompanying materials
  4. * are made available under the terms of the Eclipse Public License v1.0
  5. * which accompanies this distribution, and is available at
  6. * https://www.eclipse.org/legal/epl-v10.html
  7. *
  8. * Contributors: Details at https://graphviz.org
  9. *************************************************************************/
  10. #include <cgraph/list.h>
  11. #include <stdbool.h>
  12. #include <stdio.h>
  13. #include <stdint.h>
  14. #include <stdlib.h>
  15. #include <math.h>
  16. #include <pathplan/pathutil.h>
  17. #include <pathplan/tri.h>
  18. #include <util/prisize_t.h>
  19. #define DQ_FRONT 1
  20. #define DQ_BACK 2
  21. #define prerror(msg) \
  22. fprintf (stderr, "lib/pathplan/%s:%d: %s\n", __FILE__, __LINE__, (msg))
  23. #define POINTSIZE sizeof (Ppoint_t)
  24. typedef struct pointnlink_t {
  25. Ppoint_t *pp;
  26. struct pointnlink_t *link;
  27. } pointnlink_t;
  28. #define POINTNLINKSIZE sizeof (pointnlink_t)
  29. #define POINTNLINKPSIZE sizeof (pointnlink_t *)
  30. typedef struct {
  31. pointnlink_t *pnl0p;
  32. pointnlink_t *pnl1p;
  33. size_t right_index; ///< index into \p tris of the triangle to the right
  34. } tedge_t;
  35. typedef struct triangle_t {
  36. int mark;
  37. tedge_t e[3];
  38. } triangle_t;
  39. DEFINE_LIST(triangles, triangle_t)
  40. typedef struct deque_t {
  41. pointnlink_t **pnlps;
  42. size_t pnlpn, fpnlpi, lpnlpi, apex;
  43. } deque_t;
  44. static triangles_t tris;
  45. static Ppoint_t *ops;
  46. static size_t opn;
  47. static int triangulate(pointnlink_t **, size_t);
  48. static int loadtriangle(pointnlink_t *, pointnlink_t *, pointnlink_t *);
  49. static void connecttris(size_t, size_t);
  50. static bool marktripath(size_t, size_t);
  51. static void add2dq(deque_t *dq, int, pointnlink_t*);
  52. static void splitdq(deque_t *dq, int, size_t);
  53. static size_t finddqsplit(const deque_t *dq, pointnlink_t*);
  54. static int pointintri(size_t, Ppoint_t *);
  55. static int growops(size_t);
  56. static Ppoint_t point_indexer(void *base, size_t index) {
  57. pointnlink_t **b = base;
  58. return *b[index]->pp;
  59. }
  60. /* Pshortestpath:
  61. * Find a shortest path contained in the polygon polyp going between the
  62. * points supplied in eps. The resulting polyline is stored in output.
  63. * Return 0 on success, -1 on bad input, -2 on memory allocation problem.
  64. */
  65. int Pshortestpath(Ppoly_t * polyp, Ppoint_t eps[2], Ppolyline_t * output)
  66. {
  67. size_t pi, minpi;
  68. double minx;
  69. Ppoint_t p1, p2, p3;
  70. size_t trii, trij, ftrii, ltrii;
  71. int ei;
  72. pointnlink_t epnls[2], *lpnlp, *rpnlp, *pnlp;
  73. triangle_t *trip;
  74. /* make space */
  75. pointnlink_t *pnls = calloc(polyp->pn, sizeof(pnls[0]));
  76. if (polyp->pn > 0 && pnls == NULL) {
  77. prerror("cannot realloc pnls");
  78. return -2;
  79. }
  80. pointnlink_t **pnlps = calloc(polyp->pn, sizeof(pnlps[0]));
  81. if (polyp->pn > 0 && pnlps == NULL) {
  82. prerror("cannot realloc pnlps");
  83. free(pnls);
  84. return -2;
  85. }
  86. size_t pnll = 0;
  87. triangles_clear(&tris);
  88. deque_t dq = {.pnlpn = polyp->pn * 2};
  89. dq.pnlps = calloc(dq.pnlpn, POINTNLINKPSIZE);
  90. if (dq.pnlps == NULL) {
  91. prerror("cannot realloc dq.pnls");
  92. free(pnlps);
  93. free(pnls);
  94. return -2;
  95. }
  96. dq.fpnlpi = dq.pnlpn / 2;
  97. dq.lpnlpi = dq.fpnlpi - 1;
  98. /* make sure polygon is CCW and load pnls array */
  99. for (pi = 0, minx = HUGE_VAL, minpi = SIZE_MAX; pi < polyp->pn; pi++) {
  100. if (minx > polyp->ps[pi].x)
  101. minx = polyp->ps[pi].x, minpi = pi;
  102. }
  103. p2 = polyp->ps[minpi];
  104. p1 = polyp->ps[minpi == 0 ? polyp->pn - 1 : minpi - 1];
  105. p3 = polyp->ps[(minpi == polyp->pn - 1) ? 0 : minpi + 1];
  106. if ((p1.x == p2.x && p2.x == p3.x && p3.y > p2.y) ||
  107. ccw(p1, p2, p3) != ISCCW) {
  108. for (pi = polyp->pn - 1; polyp->pn > 0 && pi != SIZE_MAX; pi--) {
  109. if (pi < polyp->pn - 1
  110. && polyp->ps[pi].x == polyp->ps[pi + 1].x
  111. && polyp->ps[pi].y == polyp->ps[pi + 1].y)
  112. continue;
  113. pnls[pnll].pp = &polyp->ps[pi];
  114. pnls[pnll].link = &pnls[pnll % polyp->pn];
  115. pnlps[pnll] = &pnls[pnll];
  116. pnll++;
  117. }
  118. } else {
  119. for (pi = 0; pi < polyp->pn; pi++) {
  120. if (pi > 0 && polyp->ps[pi].x == polyp->ps[pi - 1].x &&
  121. polyp->ps[pi].y == polyp->ps[pi - 1].y)
  122. continue;
  123. pnls[pnll].pp = &polyp->ps[pi];
  124. pnls[pnll].link = &pnls[pnll % polyp->pn];
  125. pnlps[pnll] = &pnls[pnll];
  126. pnll++;
  127. }
  128. }
  129. #if defined(DEBUG) && DEBUG >= 1
  130. fprintf(stderr, "points\n%" PRISIZE_T "\n", pnll);
  131. for (size_t pnli = 0; pnli < pnll; pnli++)
  132. fprintf(stderr, "%f %f\n", pnls[pnli].pp->x, pnls[pnli].pp->y);
  133. #endif
  134. /* generate list of triangles */
  135. if (triangulate(pnlps, pnll)) {
  136. free(dq.pnlps);
  137. free(pnlps);
  138. free(pnls);
  139. return -2;
  140. }
  141. #if defined(DEBUG) && DEBUG >= 2
  142. fprintf(stderr, "triangles\n%" PRISIZE_T "\n", triangles_size(&tris));
  143. for (trii = 0; trii < triangles_size(&tris); trii++)
  144. for (ei = 0; ei < 3; ei++)
  145. fprintf(stderr, "%f %f\n", triangles_get(&tris, trii).e[ei].pnl0p->pp->x,
  146. triangles_get(&tris, trii).e[ei].pnl0p->pp->y);
  147. #endif
  148. /* connect all pairs of triangles that share an edge */
  149. for (trii = 0; trii < triangles_size(&tris); trii++)
  150. for (trij = trii + 1; trij < triangles_size(&tris); trij++)
  151. connecttris(trii, trij);
  152. /* find first and last triangles */
  153. for (trii = 0; trii < triangles_size(&tris); trii++)
  154. if (pointintri(trii, &eps[0]))
  155. break;
  156. if (trii == triangles_size(&tris)) {
  157. prerror("source point not in any triangle");
  158. free(dq.pnlps);
  159. free(pnlps);
  160. free(pnls);
  161. return -1;
  162. }
  163. ftrii = trii;
  164. for (trii = 0; trii < triangles_size(&tris); trii++)
  165. if (pointintri(trii, &eps[1]))
  166. break;
  167. if (trii == triangles_size(&tris)) {
  168. prerror("destination point not in any triangle");
  169. free(dq.pnlps);
  170. free(pnlps);
  171. free(pnls);
  172. return -1;
  173. }
  174. ltrii = trii;
  175. /* mark the strip of triangles from eps[0] to eps[1] */
  176. if (!marktripath(ftrii, ltrii)) {
  177. prerror("cannot find triangle path");
  178. free(dq.pnlps);
  179. free(pnlps);
  180. free(pnls);
  181. /* a straight line is better than failing */
  182. if (growops(2) != 0)
  183. return -2;
  184. output->pn = 2;
  185. ops[0] = eps[0], ops[1] = eps[1];
  186. output->ps = ops;
  187. return 0;
  188. }
  189. /* if endpoints in same triangle, use a single line */
  190. if (ftrii == ltrii) {
  191. free(dq.pnlps);
  192. free(pnlps);
  193. free(pnls);
  194. if (growops(2) != 0)
  195. return -2;
  196. output->pn = 2;
  197. ops[0] = eps[0], ops[1] = eps[1];
  198. output->ps = ops;
  199. return 0;
  200. }
  201. /* build funnel and shortest path linked list (in add2dq) */
  202. epnls[0].pp = &eps[0], epnls[0].link = NULL;
  203. epnls[1].pp = &eps[1], epnls[1].link = NULL;
  204. add2dq(&dq, DQ_FRONT, &epnls[0]);
  205. dq.apex = dq.fpnlpi;
  206. trii = ftrii;
  207. while (trii != SIZE_MAX) {
  208. trip = triangles_at(&tris, trii);
  209. trip->mark = 2;
  210. /* find the left and right points of the exiting edge */
  211. for (ei = 0; ei < 3; ei++)
  212. if (trip->e[ei].right_index != SIZE_MAX && triangles_get(&tris, trip->e[ei].right_index).mark == 1)
  213. break;
  214. if (ei == 3) { /* in last triangle */
  215. if (ccw(eps[1], *dq.pnlps[dq.fpnlpi]->pp,
  216. *dq.pnlps[dq.lpnlpi]->pp) == ISCCW)
  217. lpnlp = dq.pnlps[dq.lpnlpi], rpnlp = &epnls[1];
  218. else
  219. lpnlp = &epnls[1], rpnlp = dq.pnlps[dq.lpnlpi];
  220. } else {
  221. pnlp = trip->e[(ei + 1) % 3].pnl1p;
  222. if (ccw(*trip->e[ei].pnl0p->pp, *pnlp->pp,
  223. *trip->e[ei].pnl1p->pp) == ISCCW)
  224. lpnlp = trip->e[ei].pnl1p, rpnlp = trip->e[ei].pnl0p;
  225. else
  226. lpnlp = trip->e[ei].pnl0p, rpnlp = trip->e[ei].pnl1p;
  227. }
  228. /* update deque */
  229. if (trii == ftrii) {
  230. add2dq(&dq, DQ_BACK, lpnlp);
  231. add2dq(&dq, DQ_FRONT, rpnlp);
  232. } else {
  233. if (dq.pnlps[dq.fpnlpi] != rpnlp
  234. && dq.pnlps[dq.lpnlpi] != rpnlp) {
  235. /* add right point to deque */
  236. size_t splitindex = finddqsplit(&dq, rpnlp);
  237. splitdq(&dq, DQ_BACK, splitindex);
  238. add2dq(&dq, DQ_FRONT, rpnlp);
  239. /* if the split is behind the apex, then reset apex */
  240. if (splitindex > dq.apex)
  241. dq.apex = splitindex;
  242. } else {
  243. /* add left point to deque */
  244. size_t splitindex = finddqsplit(&dq, lpnlp);
  245. splitdq(&dq, DQ_FRONT, splitindex);
  246. add2dq(&dq, DQ_BACK, lpnlp);
  247. /* if the split is in front of the apex, then reset apex */
  248. if (splitindex < dq.apex)
  249. dq.apex = splitindex;
  250. }
  251. }
  252. trii = SIZE_MAX;
  253. for (ei = 0; ei < 3; ei++)
  254. if (trip->e[ei].right_index != SIZE_MAX && triangles_get(&tris, trip->e[ei].right_index).mark == 1) {
  255. trii = trip->e[ei].right_index;
  256. break;
  257. }
  258. }
  259. #if defined(DEBUG) && DEBUG >= 1
  260. fprintf(stderr, "polypath");
  261. for (pnlp = &epnls[1]; pnlp; pnlp = pnlp->link)
  262. fprintf(stderr, " %f %f", pnlp->pp->x, pnlp->pp->y);
  263. fprintf(stderr, "\n");
  264. #endif
  265. free(dq.pnlps);
  266. size_t i;
  267. for (i = 0, pnlp = &epnls[1]; pnlp; pnlp = pnlp->link)
  268. i++;
  269. if (growops(i) != 0) {
  270. free(pnlps);
  271. free(pnls);
  272. return -2;
  273. }
  274. output->pn = i;
  275. for (i = i - 1, pnlp = &epnls[1]; pnlp; i--, pnlp = pnlp->link)
  276. ops[i] = *pnlp->pp;
  277. output->ps = ops;
  278. free(pnlps);
  279. free(pnls);
  280. return 0;
  281. }
  282. /* triangulate polygon */
  283. static int triangulate(pointnlink_t **points, size_t point_count) {
  284. if (point_count > 3)
  285. {
  286. for (size_t pnli = 0; pnli < point_count; pnli++)
  287. {
  288. const size_t pnlip1 = (pnli + 1) % point_count;
  289. const size_t pnlip2 = (pnli + 2) % point_count;
  290. if (isdiagonal(pnli, pnlip2, points, point_count, point_indexer))
  291. {
  292. if (loadtriangle(points[pnli], points[pnlip1], points[pnlip2]) != 0)
  293. return -1;
  294. for (pnli = pnlip1; pnli < point_count - 1; pnli++)
  295. points[pnli] = points[pnli + 1];
  296. return triangulate(points, point_count - 1);
  297. }
  298. }
  299. prerror("triangulation failed");
  300. }
  301. else {
  302. if (loadtriangle(points[0], points[1], points[2]) != 0)
  303. return -1;
  304. }
  305. return 0;
  306. }
  307. static int loadtriangle(pointnlink_t * pnlap, pointnlink_t * pnlbp,
  308. pointnlink_t * pnlcp)
  309. {
  310. triangle_t trip = {0};
  311. trip.e[0].pnl0p = pnlap, trip.e[0].pnl1p = pnlbp, trip.e[0].right_index = SIZE_MAX;
  312. trip.e[1].pnl0p = pnlbp, trip.e[1].pnl1p = pnlcp, trip.e[1].right_index = SIZE_MAX;
  313. trip.e[2].pnl0p = pnlcp, trip.e[2].pnl1p = pnlap, trip.e[2].right_index = SIZE_MAX;
  314. if (triangles_try_append(&tris, trip) != 0) {
  315. prerror("cannot realloc tris");
  316. return -1;
  317. }
  318. return 0;
  319. }
  320. /* connect a pair of triangles at their common edge (if any) */
  321. static void connecttris(size_t tri1, size_t tri2) {
  322. triangle_t *tri1p, *tri2p;
  323. int ei, ej;
  324. for (ei = 0; ei < 3; ei++) {
  325. for (ej = 0; ej < 3; ej++) {
  326. tri1p = triangles_at(&tris, tri1);
  327. tri2p = triangles_at(&tris, tri2);
  328. if ((tri1p->e[ei].pnl0p->pp == tri2p->e[ej].pnl0p->pp &&
  329. tri1p->e[ei].pnl1p->pp == tri2p->e[ej].pnl1p->pp) ||
  330. (tri1p->e[ei].pnl0p->pp == tri2p->e[ej].pnl1p->pp &&
  331. tri1p->e[ei].pnl1p->pp == tri2p->e[ej].pnl0p->pp))
  332. tri1p->e[ei].right_index = tri2, tri2p->e[ej].right_index = tri1;
  333. }
  334. }
  335. }
  336. /* find and mark path from trii, to trij */
  337. static bool marktripath(size_t trii, size_t trij) {
  338. int ei;
  339. if (triangles_get(&tris, trii).mark)
  340. return false;
  341. triangles_at(&tris, trii)->mark = 1;
  342. if (trii == trij)
  343. return true;
  344. for (ei = 0; ei < 3; ei++)
  345. if (triangles_get(&tris, trii).e[ei].right_index != SIZE_MAX &&
  346. marktripath(triangles_get(&tris, trii).e[ei].right_index, trij))
  347. return true;
  348. triangles_at(&tris, trii)->mark = 0;
  349. return false;
  350. }
  351. /* add a new point to the deque, either front or back */
  352. static void add2dq(deque_t *dq, int side, pointnlink_t *pnlp) {
  353. if (side == DQ_FRONT) {
  354. if (dq->lpnlpi >= dq->fpnlpi)
  355. pnlp->link = dq->pnlps[dq->fpnlpi]; /* shortest path links */
  356. dq->fpnlpi--;
  357. dq->pnlps[dq->fpnlpi] = pnlp;
  358. } else {
  359. if (dq->lpnlpi >= dq->fpnlpi)
  360. pnlp->link = dq->pnlps[dq->lpnlpi]; /* shortest path links */
  361. dq->lpnlpi++;
  362. dq->pnlps[dq->lpnlpi] = pnlp;
  363. }
  364. }
  365. static void splitdq(deque_t *dq, int side, size_t index) {
  366. if (side == DQ_FRONT)
  367. dq->lpnlpi = index;
  368. else
  369. dq->fpnlpi = index;
  370. }
  371. static size_t finddqsplit(const deque_t *dq, pointnlink_t *pnlp) {
  372. for (size_t index = dq->fpnlpi; index < dq->apex; index++)
  373. if (ccw(*dq->pnlps[index + 1]->pp, *dq->pnlps[index]->pp, *pnlp->pp) == ISCCW)
  374. return index;
  375. for (size_t index = dq->lpnlpi; index > dq->apex; index--)
  376. if (ccw(*dq->pnlps[index - 1]->pp, *dq->pnlps[index]->pp, *pnlp->pp) == ISCW)
  377. return index;
  378. return dq->apex;
  379. }
  380. static int pointintri(size_t trii, Ppoint_t *pp) {
  381. int ei, sum;
  382. for (ei = 0, sum = 0; ei < 3; ei++)
  383. if (ccw(*triangles_get(&tris, trii).e[ei].pnl0p->pp,
  384. *triangles_get(&tris, trii).e[ei].pnl1p->pp, *pp) != ISCW)
  385. sum++;
  386. return sum == 3 || sum == 0;
  387. }
  388. static int growops(size_t newopn) {
  389. if (newopn <= opn)
  390. return 0;
  391. Ppoint_t *new_ops = realloc(ops, POINTSIZE * newopn);
  392. if (new_ops == NULL) {
  393. prerror("cannot realloc ops");
  394. return -1;
  395. }
  396. ops = new_ops;
  397. opn = newopn;
  398. return 0;
  399. }