123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610 |
- /*************************************************************************
- * Copyright (c) 2011 AT&T Intellectual Property
- * All rights reserved. This program and the accompanying materials
- * are made available under the terms of the Eclipse Public License v1.0
- * which accompanies this distribution, and is available at
- * https://www.eclipse.org/legal/epl-v10.html
- *
- * Contributors: Details at https://graphviz.org
- *************************************************************************/
- /* Modularity Quality definition:
- We assume undirected graph. Directed graph should be converted by summing edge weights.
- Given a partition P of V into k clusters.
- Let E(i,j) be the set of edges between cluster i and j.
- Let |E(i,j)| be the sum of edge weights of edges in E(i,j).
- Let E(i,i) be the set of edges within cluster i, but excluding self-edges.
- Let |E(i,i)| be the sum of edge weights of edges in E(i,i).
- Let V(i) be the sets of vertices in i
- The intra-cluster edges concentration for a cluster i is
- (the denominator could be |V(i)|*(|V(i)-1)/2 strictly speaking as we exclude self-edges):
- |E(i,i)|
- -----------
- (|V(i)|^2/2)
- The inter-cluster edges concentration between cluster i and j is
- |E(i,j)|
- ------------
- |V(i)|*|V(j)|
- So the cluster index is defined as the average intra cluster edge concentration, minus
- the inter-cluster edge concentration:
- . |E(i,i)| |E(i,j)|
- MQ(P) = (1/k) * \sum_{i=1...k} ------------ - (1/(k*(k-1)/2)) * \sum_{i<j} ------------------- = mq_in/k - mq_out/(k*(k-1)/2)
- . (|V(i)|^2/2) |V(i)|*|V(j)|
- or
- . |E(i,i)| |E(i,j)|
- MQ(P)/2 = (1/k) * \sum_{i=1...k} ------------ - (1/(k*(k-1))) * \sum_{i<j} ------------------ = mq_in/k - mq_out/(k*(k-1))
- . |V(i)|^2 |V(i)|*|V(j)|
- Notice that if we assume the graph is unweights (edge weights = 1), then 0<= MQ <= 1.
- For weighted graph, MQ may not be within 0 to 1. We could normalized it, but
- for comparing clustering quality of the same graph but different partitioning, this
- unnormalized quantity is not a problem.
- */
- #define STANDALONE
- #include <cgraph/list.h>
- #include <limits.h>
- #include <sparse/general.h>
- #include <sparse/SparseMatrix.h>
- #include <sparse/mq.h>
- #include <stdbool.h>
- #include <string.h>
- #include <util/alloc.h>
- static double get_mq(SparseMatrix A, int *assignment, int *ncluster0, double *mq_in0, double *mq_out0, double **dout0){
- /* given a symmetric matrix representation of a graph and an assignment of nodes into clusters, calculate the modularity quality.
- assignment: assignment[i] gives the cluster assignment of node i. 0 <= assignment[i] < ncluster.
- ncluster: number of clusters
- mq_in: the part of MQ to do with intra-cluster edges, before divide by 1/k
- mq_out: the part of MQ to do with inter-cluster edges, before divide by 1/(k*(k-1))
- mq = 2*(mq_in/k - mq_out/(k*(k-1)));
- */
- int ncluster = 0;
- int n = A->m;
- bool test_pattern_symmetry_only = false;
- int *counts, *ia = A->ia, *ja = A->ja, k, i, j, jj;
- double mq_in = 0, mq_out = 0, *a = NULL, Vi, Vj;
- int c;
- double *dout;
- assert(SparseMatrix_is_symmetric(A, test_pattern_symmetry_only));
- (void)test_pattern_symmetry_only;
- assert(A->n == n);
- if (A->type == MATRIX_TYPE_REAL) a = A->a;
- counts = gv_calloc(n, sizeof(int));
- for (i = 0; i < n; i++){
- assert(assignment[i] >= 0 && assignment[i] < n);
- if (counts[assignment[i]] == 0) ncluster++;
- counts[assignment[i]]++;
- }
- k = ncluster;
- assert(ncluster <= n);
- for (i = 0; i < n; i++){
- assert(assignment[i] < ncluster);
- c = assignment[i];
- Vi = counts[c];
- for (j = ia[i] ; j < ia[i+1]; j++){
- /* ASSUME UNDIRECTED */
- jj = ja[j];
- if (jj >= i) continue;
- assert(assignment[jj] < ncluster);
- Vj = counts[assignment[jj]];
- if (assignment[jj] == c){
- if (a) {
- mq_in += a[j]/(Vi*Vi);
- } else {
- mq_in += 1./(Vi*Vi);
- }
- } else {
- if (a) {
- mq_out += a[j]/(Vi*Vj);
- } else {
- mq_out += 1./(Vi*Vj);
- }
- }
-
- }
- }
- /* calculate scaled out degree */
- dout = gv_calloc(n, sizeof(double));
- for (i = 0; i < n; i++){
- for (j = ia[i]; j < ia[i+1]; j++){
- jj = ja[j];
- if (jj == i) continue;
- if (a){
- dout[i] += a[j]/(double) counts[assignment[jj]];
- } else {
- dout[i] += 1./(double) counts[assignment[jj]];
- }
- }
- }
- *ncluster0 = k;
- *mq_in0 = mq_in;
- *mq_out0 = mq_out;
- *dout0 = dout;
- free(counts);
- if (k > 1){
- return 2*(mq_in/k - mq_out/(k*(k-1)));
- } else {
- return 2*mq_in;
- }
- }
- static Multilevel_MQ_Clustering Multilevel_MQ_Clustering_init(SparseMatrix A, int level){
- Multilevel_MQ_Clustering grid;
- int n = A->n, i;
- int *matching;
- assert(A->type == MATRIX_TYPE_REAL);
- assert(SparseMatrix_is_symmetric(A, false));
- if (!A) return NULL;
- assert(A->m == n);
- grid = gv_alloc(sizeof(struct Multilevel_MQ_Clustering_struct));
- grid->level = level;
- grid->n = n;
- grid->A = A;
- grid->P = NULL;
- grid->next = NULL;
- grid->prev = NULL;
- grid->delete_top_level_A = false;
- matching = grid->matching = gv_calloc(n, sizeof(double));
- grid->deg_intra = NULL;
- grid->dout = NULL;
- grid->wgt = NULL;
- if (level == 0){
- double mq = 0, mq_in, mq_out;
- int ncluster;
- double *deg_intra, *wgt, *dout;
- grid->deg_intra = gv_calloc(n, sizeof(double));
- deg_intra = grid->deg_intra;
- grid->wgt = gv_calloc(n, sizeof(double));
- wgt = grid->wgt;
- for (i = 0; i < n; i++){
- deg_intra[i] = 0;
- wgt[i] = 1.;
- }
- for (i = 0; i < n; i++) matching[i] = i;
- mq = get_mq(A, matching, &ncluster, &mq_in, &mq_out, &dout);
- fprintf(stderr,"ncluster = %d, mq = %f\n", ncluster, mq);
- grid->mq = mq;
- grid->mq_in = mq_in;
- grid->mq_out = mq_out;
- grid->dout = dout;
- grid->ncluster = ncluster;
- }
- return grid;
- }
- static void Multilevel_MQ_Clustering_delete(Multilevel_MQ_Clustering grid){
- if (!grid) return;
- if (grid->A){
- if (grid->level == 0) {
- if (grid->delete_top_level_A) SparseMatrix_delete(grid->A);
- } else {
- SparseMatrix_delete(grid->A);
- }
- }
- SparseMatrix_delete(grid->P);
- free(grid->matching);
- free(grid->deg_intra);
- free(grid->dout);
- free(grid->wgt);
- Multilevel_MQ_Clustering_delete(grid->next);
- free(grid);
- }
- DEFINE_LIST(ints, int)
- static Multilevel_MQ_Clustering Multilevel_MQ_Clustering_establish(Multilevel_MQ_Clustering grid, int maxcluster){
- int *matching = grid->matching;
- SparseMatrix A = grid->A;
- int n = grid->n, level = grid->level, nc = 0, nclusters = n;
- double mq = 0, mq_in = 0, mq_out = 0, mq_new, mq_in_new, mq_out_new, mq_max = 0, mq_in_max = 0, mq_out_max = 0;
- int *ia = A->ia, *ja = A->ja;
- double amax = 0;
- double *deg_intra = grid->deg_intra, *wgt = grid->wgt;
- int i, j, k, jj, jc, jmax;
- double gain = 0, *dout = grid->dout, deg_in_i, deg_in_j, wgt_i, wgt_j, a_ij, dout_i, dout_j, dout_max = 0, wgt_jmax = 0;
- double maxgain = 0;
- double total_gain = 0;
- ints_t *neighbors = gv_calloc(n, sizeof(ints_t));
- mq = grid->mq;
- mq_in = grid->mq_in;
- mq_out = grid->mq_out;
- double *deg_intra_new = gv_calloc(n, sizeof(double));
- double *wgt_new = gv_calloc(n, sizeof(double));
- double *deg_inter = gv_calloc(n, sizeof(double));
- int *mask = gv_calloc(n, sizeof(int));
- double *dout_new = gv_calloc(n, sizeof(double));
- for (i = 0; i < n; i++) mask[i] = -1;
- assert(n == A->n);
- for (i = 0; i < n; i++) matching[i] = UNMATCHED;
- /* gain in merging node A into cluster B is
- mq_in_new = mq_in - |E(A,A)|/(V(A))^2 - |E(B,B)|/(V(B))^2 + (|E(A,A)|+|E(B,B)|+|E(A,B)|)/(|V(A)|+|V(B)|)^2
- . = mq_in - deg_intra(A)/|A|^2 - deg_intra(B)/|B|^2 + (deg_intra(A)+deg_intra(B)+a(A,B))/(|A|+|B|)^2
- mq_out_new = mq_out - |E(A,B)|/(|V(A)|*V(B)|)-\sum_{C and A connected, C!=B} |E(A,C)|/(|V(A)|*|V(C)|)-\sum_{C and B connected,C!=B} |E(B,C)|/(|V(B)|*|V(C)|)
- . + \sum_{C connected to A or B, C!=A, C!=B} (|E(A,C)|+|E(B,C)|)/(|V(C)|*(|V(A)|+|V(B)|)
- . = mq_out + a(A,B)/(|A|*|B|)-\sum_{C and A connected} a(A,C)/(|A|*|C|)-\sum_{C and B connected} a(B,C)/(|B|*|C|)
- . + \sum_{C connected to A or B, C!=A, C!=B} (a(A,C)+a(B,C))/(|C|*(|A|+|B|))
- Denote:
- dout(i) = \sum_{j -- i} a(i,j)/|j|
- then
- mq_out_new = mq_out - |E(A,B)|/(|V(A)|*V(B)|)-\sum_{C and A connected, C!=B} |E(A,C)|/(|V(A)|*|V(C)|)-\sum_{C and B connected,C!=B} |E(B,C)|/(|V(B)|*|V(C)|)
- . + \sum_{C connected to A or B, C!=A, C!=B} (|E(A,C)|+|E(B,C)|)/(|V(C)|*(|V(A)|+|V(B)|)
- . = mq_out + a(A,B)/(|A|*|B|)-dout(A)/|A| - dout(B)/|B|
- . + (dout(A)+dout(B))/(|A|+|B|) - (a(A,B)/|A|+a(A,B)/|B|)/(|A|+|B|)
- . = mq_out -dout(A)/|A| - dout(B)/|B| + (dout(A)+dout(B))/(|A|+|B|)
- after merging A and B into cluster AB,
- dout(AB) = dout(A) + dout(B);
- dout(C) := dout(C) - a(A,C)/|A| - a(B,C)/|B| + a(A,C)/(|A|+|B|) + a(B, C)/(|A|+|B|)
- mq_new = mq_in_new/(k-1) - mq_out_new/((k-1)*(k-2))
- gain = mq_new - mq
- */
- double *a = A->a;
- for (i = 0; i < n; i++){
- if (matching[i] != UNMATCHED) continue;
- /* accumulate connections between i and clusters */
- for (j = ia[i]; j < ia[i+1]; j++){
- jj = ja[j];
- if (jj == i) continue;
- if ((jc=matching[jj]) != UNMATCHED){
- if (mask[jc] != i) {
- mask[jc] = i;
- deg_inter[jc] = a[j];
- } else {
- deg_inter[jc] += a[j];
- }
- }
- }
- deg_in_i = deg_intra[i];
- wgt_i = wgt[i];
- dout_i = dout[i];
- maxgain = 0;
- jmax = -1;
- for (j = ia[i]; j < ia[i+1]; j++){
- jj = ja[j];
- if (jj == i) continue;
- jc = matching[jj];
- if (jc == UNMATCHED){
- a_ij = a[j];
- wgt_j = wgt[jj];
- deg_in_j = deg_intra[jj];
- dout_j = dout[jj];
- } else if (deg_inter[jc] < 0){
- continue;
- } else {
- a_ij = deg_inter[jc];
- wgt_j = wgt_new[jc];
- deg_inter[jc] = -1; // so that we do not redo the calculation when we hit another neighbor in cluster jc
- deg_in_j = deg_intra_new[jc];
- dout_j = dout_new[jc];
- }
- mq_in_new = mq_in - deg_in_i/pow(wgt_i, 2) - deg_in_j/pow(wgt_j,2)
- + (deg_in_i + deg_in_j + a_ij)/pow(wgt_i + wgt_j,2);
- mq_out_new = mq_out - dout_i/wgt_i - dout_j/wgt_j + (dout_i + dout_j)/(wgt_i + wgt_j);
- if (nclusters > 2){
- mq_new = 2*(mq_in_new/(nclusters - 1) - mq_out_new/((nclusters - 1)*(nclusters - 2)));
- } else {
- mq_new = 2*mq_in_new/(nclusters - 1);
- }
- #ifdef DEBUG
- {int ncluster;
- double mq2, mq_in2, mq_out2, *dout2;
- int nc2 = nc;
- int *matching2 = gv_calloc(A->m, sizeof(int));
- memcpy(matching2, matching, sizeof(double)*A->m);
- if (jc != UNMATCHED) {
- matching2[i] = jc;
- } else {
- matching2[i] = nc2;
- matching2[jj] = nc2;
- nc2++;
- }
- for (k = 0; k < n; k++) if (matching2[k] == UNMATCHED) matching2[k] =nc2++;
- mq2 = get_mq(A, matching2, &ncluster, &mq_in2, &mq_out2, &dout2);
- fprintf(stderr," {dout_i, dout_j}={%f,%f}, {predicted, calculated}: mq = {%f, %f}, mq_in ={%f,%f}, mq_out = {%f,%f}\n",dout_i, dout_j, mq_new, mq2, mq_in_new, mq_in2, mq_out_new, mq_out2);
- mq_new = mq2;
-
- }
- #endif
- gain = mq_new - mq;
- if (Verbose) fprintf(stderr,"gain in merging node %d with node %d = %f-%f = %f\n", i, jj, mq, mq_new, gain);
- if (j == ia[i] || gain > maxgain){
- maxgain = gain;
- jmax = jj;
- amax = a_ij;
- dout_max = dout_j;
- wgt_jmax = wgt_j;
- mq_max = mq_new;
- mq_in_max = mq_in_new;
- mq_out_max = mq_out_new;
- }
- }
- /* now merge i and jmax */
- if (maxgain > 0 || (nc >= 1 && nc > maxcluster)){
- total_gain += maxgain;
- jc = matching[jmax];
- if (jc == UNMATCHED){
- fprintf(stderr, "maxgain=%f, merge %d, %d\n",maxgain, i, jmax);
- ints_append(&neighbors[nc], jmax);
- ints_append(&neighbors[nc], i);
- dout_new[nc] = dout_i + dout_max;
- matching[i] = matching[jmax] = nc;
- wgt_new[nc] = wgt[i] + wgt[jmax];
- deg_intra_new[nc] = deg_intra[i] + deg_intra[jmax] + amax;
- nc++;
- } else {
- fprintf(stderr,"maxgain=%f, merge with existing cluster %d, %d\n",maxgain, i, jc);
- ints_append(&neighbors[jc], i);
- dout_new[jc] = dout_i + dout_max;
- wgt_new[jc] += wgt[i];
- matching[i] = jc;
- deg_intra_new[jc] += deg_intra[i] + amax;
- }
- mq = mq_max;
- mq_in = mq_in_max;
- mq_out = mq_out_max;
- nclusters--;
- } else {
- fprintf(stderr,"gain: %f -- no gain, skip merging node %d\n", maxgain, i);
- assert(maxgain <= 0);
- ints_append(&neighbors[nc], i);
- matching[i] = nc;
- deg_intra_new[nc] = deg_intra[i];
- wgt_new[nc] = wgt[i];
- nc++;
- }
- /* update scaled outdegree of neighbors of i and its merged node/cluster jmax */
- jc = matching[i];
- for (size_t l = ints_size(&neighbors[jc]) - 1; l != SIZE_MAX; --l) {
- mask[ints_get(&neighbors[jc], l)] = n + i;
- }
- for (size_t l = ints_size(&neighbors[jc]) - 1; l != SIZE_MAX; --l) {
- k = ints_get(&neighbors[jc], l);
- for (j = ia[k]; j < ia[k+1]; j++){
- jj = ja[j];
- if (mask[jj] == n+i) continue;/* link to within cluster */
- if ((jc = matching[jj]) == UNMATCHED){
- if (k == i){
- dout[jj] += -a[j]/wgt_i + a[j]/(wgt_i + wgt_jmax);
- } else {
- dout[jj] += -a[j]/wgt_jmax + a[j]/(wgt_i + wgt_jmax);
- }
- } else {
- if (k == i){
- dout_new[jc] += -a[j]/wgt_i + a[j]/(wgt_i + wgt_jmax);
- } else {
- dout_new[jc] += -a[j]/wgt_jmax + a[j]/(wgt_i + wgt_jmax);
- }
- }
- }
- }
- }
- fprintf(stderr,"verbose=%d\n",Verbose);
- if (Verbose) fprintf(stderr,"mq = %f new mq = %f level = %d, n = %d, nc = %d, gain = %g, mq_in = %f, mq_out = %f\n", mq, mq + total_gain,
- level, n, nc, total_gain, mq_in, mq_out);
-
- #ifdef DEBUG
- {int ncluster;
- mq = get_mq(A, matching, &ncluster, &mq_in, &mq_out, &dout);
- fprintf(stderr," mq = %f\n",mq);
- }
- #endif
- if (nc >= 1 && (total_gain > 0 || nc < n)){
- /* now set up restriction and prolongation operator */
- SparseMatrix P, R, R0, B, cA;
- double one = 1.;
- Multilevel_MQ_Clustering cgrid;
- R0 = SparseMatrix_new(nc, n, 1, MATRIX_TYPE_REAL, FORMAT_COORD);
- for (i = 0; i < n; i++){
- jj = matching[i];
- SparseMatrix_coordinate_form_add_entry(R0, jj, i, &one);
- }
- R = SparseMatrix_from_coordinate_format(R0);
- SparseMatrix_delete(R0);
- P = SparseMatrix_transpose(R);
- B = SparseMatrix_multiply(R, A);
- SparseMatrix_delete(R);
- if (!B) {
- free(deg_intra_new);
- free(wgt_new);
- free(dout_new);
- goto RETURN;
- }
- cA = SparseMatrix_multiply(B, P);
- SparseMatrix_delete(B);
- if (!cA) {
- free(deg_intra_new);
- free(wgt_new);
- free(dout_new);
- goto RETURN;
- }
- grid->P = P;
- level++;
- cgrid = Multilevel_MQ_Clustering_init(cA, level);
- deg_intra_new = gv_recalloc(deg_intra_new, n, nc, sizeof(double));
- wgt_new = gv_recalloc(wgt_new, n, nc, sizeof(double));
- cgrid->deg_intra = deg_intra_new;
- cgrid->mq = grid->mq + total_gain;
- cgrid->wgt = wgt_new;
- dout_new = gv_recalloc(dout_new, n, nc, sizeof(double));
- cgrid->dout = dout_new;
- cgrid = Multilevel_MQ_Clustering_establish(cgrid, maxcluster);
- grid->next = cgrid;
- cgrid->prev = grid;
- } else {
- /* no more improvement, stop and final clustering found */
- for (i = 0; i < n; i++) matching[i] = i;
- free(deg_intra_new);
- free(wgt_new);
- free(dout_new);
- }
- RETURN:
- for (i = 0; i < n; i++) ints_free(&neighbors[i]);
- free(neighbors);
- free(deg_inter);
- free(mask);
- return grid;
- }
- static Multilevel_MQ_Clustering Multilevel_MQ_Clustering_new(SparseMatrix A0, int maxcluster){
- /* maxcluster is used to specify the maximum number of cluster desired, e.g., maxcluster=10 means that a maximum of 10 clusters
- is desired. this may not always be realized, and mq may be low when this is specified. Default: maxcluster = 0 */
- Multilevel_MQ_Clustering grid;
- SparseMatrix A = A0;
- if (maxcluster <= 0) maxcluster = A->m;
- if (!SparseMatrix_is_symmetric(A, false) || A->type != MATRIX_TYPE_REAL){
- A = SparseMatrix_get_real_adjacency_matrix_symmetrized(A);
- }
- grid = Multilevel_MQ_Clustering_init(A, 0);
- grid = Multilevel_MQ_Clustering_establish(grid, maxcluster);
- if (A != A0) grid->delete_top_level_A = true; // be sure to clean up later
- return grid;
- }
- static void hierachical_mq_clustering(SparseMatrix A, int maxcluster,
- int *nclusters, int **assignment, double *mq){
- /* find a clustering of vertices by maximize mq
- A: symmetric square matrix n x n. If real value, value will be used as edges weights, otherwise edge weights are considered as 1.
- maxcluster: used to specify the maximum number of cluster desired, e.g., maxcluster=10 means that a maximum of 10 clusters
- . is desired. this may not always be realized, and mq may be low when this is specified. Default: maxcluster = 0
- nclusters: on output the number of clusters
- assignment: dimension n. Node i is assigned to cluster "assignment[i]". 0 <= assignment < nclusters
- */
- Multilevel_MQ_Clustering grid, cgrid;
- int *matching, i;
- SparseMatrix P;
- assert(A->m == A->n);
- *mq = 0.;
- grid = Multilevel_MQ_Clustering_new(A, maxcluster);
- /* find coarsest */
- cgrid = grid;
- while (cgrid->next){
- cgrid = cgrid->next;
- }
- /* project clustering up */
- double *u = gv_calloc(cgrid->n, sizeof(double));
- for (i = 0; i < cgrid->n; i++) u[i] = (double) (cgrid->matching)[i];
- *nclusters = cgrid->n;
- *mq = cgrid->mq;
- while (cgrid->prev){
- double *v = NULL;
- P = cgrid->prev->P;
- SparseMatrix_multiply_vector(P, u, &v);
- free(u);
- u = v;
- cgrid = cgrid->prev;
- }
- if (*assignment){
- matching = *assignment;
- } else {
- matching = gv_calloc(grid->n, sizeof(int));
- *assignment = matching;
- }
- for (i = 0; i < grid->n; i++) (matching)[i] = (int) u[i];
- free(u);
- Multilevel_MQ_Clustering_delete(grid);
- }
- void mq_clustering(SparseMatrix A, int maxcluster,
- int *nclusters, int **assignment, double *mq){
- /* find a clustering of vertices by maximize mq
- A: symmetric square matrix n x n. If real value, value will be used as edges weights, otherwise edge weights are considered as 1.
- maxcluster: used to specify the maximum number of cluster desired, e.g., maxcluster=10 means that a maximum of 10 clusters
- . is desired. this may not always be realized, and mq may be low when this is specified. Default: maxcluster = 0
- nclusters: on output the number of clusters
- assignment: dimension n. Node i is assigned to cluster "assignment[i]". 0 <= assignment < nclusters
- */
- SparseMatrix B;
- assert(A->m == A->n);
- B = SparseMatrix_symmetrize(A, false);
- if (B == A) {
- B = SparseMatrix_copy(A);
- }
- B = SparseMatrix_remove_diagonal(B);
- if (B->type != MATRIX_TYPE_REAL) B = SparseMatrix_set_entries_to_real_one(B);
- hierachical_mq_clustering(B, maxcluster, nclusters, assignment, mq);
- if (B != A) SparseMatrix_delete(B);
- }
|