

GLScene Guide

© GLS Team, 1997-2025

Page 2/36

Contents

Disclaimer ... 6

Installing GLScene ... 8

How does it work? .. 9

‘Hello world !’ example ..10

Basic things you should know about 3D graphics ..11

Coordinate system ..11

Floating point numbers ...11

Vectors ..11

Rendering ...12

OpenGL...12

Components ...13

GLScene Panel ...13

GLScene ...13

GLSceneViewer ..13

GLFullScreenViewer ...13

GLMemoryViewer ..13

GLMaterialLibrary ..13

GLCadencer ..14

GLGuiLayout ...14

GLBitmapFont ..15

GLWindowsBitmapFont ..15

GLStoredBitmapFont ..15

GLScriptLibrary ..15

GLSoundLibrary ...15

GLSMWaveOut ... Ошибка! Закладка не определена.

GLODEManager ..15

GLODEJointList ...16

GLSMBASS ...16

GLSMFMOD ..16

GLScene PFX ...16

GLCustomPFXManager ..16

GLPolygonPFXManager ...16

GLPointLightPFXManager ..16

GLCustomSpritePFXManager ..17

GLPerlinPFXManager ...17

GLFireFXManager ...17

GLThorFXManager ...17

GLScene Utils ...17

GLAsyncTimer ...17

GLStaticImposterBuilder ...17

GLBitmapHDS ...17

TGLCustomHDS ...18

GLHeightTileFileHDS ..18

GLBumpmapHDS ..18

GLPerlinHDS ...18

GLCollisionManager ..18

GLAnimationControler ...18

GLJoystick ...18

GLScreenSaver ...18

GLAVIRecorder ...18

GLTimeEventsMGR ..18

GLVfsPAK ...18

GLNavigator ..18

GLUserInterface ..18

GLDCEManager ..18

GLApplicationFileIO ..19

GLScene Shaders ...19

GLTexCombineShader..20

GLMultiMaterialShader..20

GLUserShader ..20

GLOutLineShader ...20

GLHiddenLineShader ..20

GLScene Objects ...21

Common object properties ..21

TGLLightSource ..23

TGLDummyCube ..24

Basic geometry ...24

TGLSprite ..24

TGLPoints ...24

TGLLines ...25

TGLPolygon ..25

TGLCube ...25

TGLFrustrum ...25

TGLSphere ..25

TGLDisk ..25

TGLCone ...25

TGLCylinder ..25

TGLDodecahedron ..25

TGLIcosahedron ..25

Advanced geometry ..25

TGLAnimatedSprite ...26

TGLArrowLine ...26

TGLAnnulus ..26

TGLExtrusionSolid ..26

TGLMultiPolygon ...26

TGLPipe ..26

TGLRevolutionSolid ..26

TGLTorus ..26

Mesh objects ...26

TGLActor ...26

TGLFreeForm ..27

TGLMesh ...27

TGLTilePlane ..28

TGLPortal ..28

TGLTerrainRenderer ...28

Graph-plotting objects ...28

TGLFlatText ..28

TGLHeightField ...28

TGLXYZGrid ..28

Particle systems ..28

TGLParticles ..28

TGLPFXRenderer ...29

Environment objects ...29

TGLEarthSkyDome ...29

TGLSkyDome ..29

TGLSkyBox ...29

HUD objects ..29

TGLHUDSprite ..29

TGLHUDText ...29

GUI objects ...29

TGLRootControl ..30

TGLPopupMenu ..30

TGLForm ...30

TGLPanel ..30

TGLButton ...30

TGLCheckBox ...30

TGLEdit ...30

TGLLabel ...30

TGLAdvancedLabel...30

TGLScrollBar ...30

TGLStringGrid ...30

TGLBitmapControl ...30

Special objects ..30

TGLLensFlare ...30

TGLTextureLensFlare ...30

TGLMirror ..30

TGLShadowPlane ...30

TGLShadowVolume ..31

TGLZShadows ..31

TGLTextureEmitter ..31

TGLProjectedTextures ..31

TGLBlur ...31

TGLTrail ..31

Doodad objects ...31

TGLSpaceText ..31

TGLTeapot ..31

TGLTree ..31

TGLWaterPlane ...31

Other objects ...31

TGLDirectOpenGL ..31

TGLProxyObject ..31

TGLMultiProxy ...32

TGLRenderPoint ...32

TGLImposterSprite ..32

TGLOpenGLFeedback ..32

Runtime object creation ..33

Case study: 3D Tetris ...35

Design ...35

Structure ..35

T3DTBlock class ...36

Homework ...37

Links ...48

Conclusion ..49

Index ...50

References ...51

Page 3/36

Disclaimer

This guide is intended to quick start for using GLScene as official documentation. It’s also

strongly recommend using source code as a primary source of information in comments directly in

source code. Especially when the source code is being developed constantly and is changing all the

time. Another great source of knowledge are GLScene\Demos. However GLScene is enough complex

that is rather difficult for anyone who never used it before to start learning.

If you are an experienced Delphi or C++Builder user you will probably find this document

very simple and we would be happy for any feedback from you. There are sections without description

and these parts are marked. If you are willing to contribute to this book, please, feel free to send your

chapter in discussion forum and we will add it to the text together with your credit. Any corrections

of the current text are also welcome.

GLScene's guide

Page 4/36

What is GLScene ?

Reading this document you have probably already seen some GLScene applications or even

worked with GLScene itself. Simply said GLScene is Delphi/C++Builder library for OpenGL

graphics. OpenGL is graphics API originally developed by Silicone Graphics. OpenGL is a standard

and it should be installed on almost any PC nowadays. GLScene makes developing OpenGL

applications very easy and simple. GLScene applications made with Delphi are primarily targeted for

Windows platform, there is clone of GLScene for Lazarus so porting to other platforms could be

possible.

GLScene was founded by Mike Lischke and from the very beginning it was developed as an

open source library for programmer's community. Later on it was taken over by Eric Grange and is

steadily growing ever since. There is a number of GLScene’s administrators now. GLScene is hosted

by SourceForge at www.sourceforge.net/projects/GLScene and by GitHub at

https://github.com/glscene. There is countless number of projects made with GLScene ranging from

simple game demos to complex scientific applications you may find at pages

https://sourceforge.net/p/glscene/code/HEAD/tree/branches/ and

https://github.com/GLScene/ExCBuilderGLS.

http://www.sourceforge.net/projects/GLScene
https://github.com/glscene
https://sourceforge.net/p/glscene/code/HEAD/tree/branches/
https://github.com/GLScene/ExCBuilderGLS

Page 5/36

Installing GLScene

There are two ways how to obtain GLScene source code. Which one will you choose depends

on your intentions with this library. If you just want to try it out download the snapshot version.

Snapshot is an archive file containing all source code files. Snapshot is available from

www.glscene.org. It is packed with 7zip format (www.7-zip.org). Just unpack it wherever you want

your GLScene to reside.

Another way how to download GLScene is using SVN or GIT. Svn is an Internet protocol

system used by SourceForge for on line accessing source code repositories by developers. Choose

this method if you want to have the latest version of GLScene and check frequently for changes and

updates. You will need recommended TortoiseSVN client in order to download or TortoiseGIT client

to clone it on your computer.

All SVN/GIT clients have one thing in common. It is called SVN root. It is a string, in fact an

address that is used to access web.

If you have TortoiseSVN installed right click in directory where you want GLScene to be

downloaded and select SVN Checkout. Enter the above SVN root. Once you have all GLScene files

on your hard drive you can compile the packages in Delphi. Choose corresponding directory to your

version. There are several packages in GLScene.

1. GLScene_RT/DT.dpk – core package containing GLScene itself.

2. GLScene_PHYSICS_RT/DT.dpk – ODE is physics plug-in for GLScene.

3. GLScene_PARALLEL_RT/DT.dpk

4. GLScene_SOUNDS_RT/DT.dpk

5. GLScene_Cg_RT/DT.dpk – Cg shaders.

You may have to manually add GLScene directories in compiler search path. After successful

compilation there will be four new tabs with components. By default they will be placed in the

rightmost position next to other component tabs. You will have to scroll to the right in order to see

them or rearrange the tabs. Now you are ready to use GLScene!

http://www.glscene.org/
http://www.7-zip.org/

Page 6/36

How does it work?

You are probably used to Delphi/C++Builder VCL design time functions. Designing form is

a straightforward procedure. Visual components that you put on the form can be right visible. With

GLScene things are not that simple. Some components are visible at design time some are not. This

chapter will explain the philosophy of GLScene and the way GLScene is organized.

According to Delphi naming conventions every GLScene class will start with TGL... prefix.

First of all you should keep in mind that everything in GLScene has a strict hierarchy. Every

object belongs to other object which belongs to another object. This is called parent <-> child

relationship. Every object can have unlimited number of children but only one parent. The top of the

object tree is TGLScene. The analogy to this would be a TButton placed on a TPanel which is placed

on TForm. There is one interesting issue in the hierarchy. An object always has a parent and a owner.

Parent and owner are not the same. Owner must always be TGLScene because it is registered there.

Parent however can be another object or TGLScene.Objects class.

There are basically two kinds of objects in GLScene : components and scene objects.

Components are organized in four component tabs and can be placed on the form and accessed only

in object inspector. They can be considered 'servicing components' for the second type of objects.

Scene objects can be added, edited and deleted in the scene editor. Scene objects actually represent

the content that is going to be rendered in the scene. Scene objects are also displayed in object

inspector but object inspector lacks the functionality of scene editor. This is my own classification

and has nothing to do with Delphi’s interpretation of words ‘object’ and ‘component’.

Scene editor is the heart of GLScene. To open scene editor TGLScene has to be placed on the

form. Double click on it in object inspector. New window pops up. There are editing buttons in the

top row and a tree view box below. You can add, select, move and delete scene object in the tree view

box. You can also display each object's effects and behaviors here.

Page 7/36

‘Hello world !’ example

Many programming guides contain the obligatory ‘Hello world !’ example. It is usually simple

application where user presses button and message window saying ‘Hello world !’ appears. This is

necessary for readers that can’t wait to start with something in practice. In my opinion the equivalent

to this in 3D graphics programming is a spinning cube.

So here is step by step guide how to create spinning cube in GLScene:

1. Start new application in Delphi.

2. Double click on GLScene to add GLScene1 – white cube on GLScene tab first from left.

3. Double click on GLSceneViewer to add GLSceneViewer1 – white cube with camera on GLScene

tab second from left.

4. Select alClient as Align property for GLSceneViewer1.

5. Double click on GLCadencer to add GLCadencer1 – metronome on GLScene tab fifth from left.

6. Select GLScene1 as Scene property of GLCadencer1.

7. Double click on GLScene1 in object tree view to open GLScene editor.

8. Right click on Cameras in GLScene editor and click on Add camera.

9. Select Camera1 and set Position.X := 5; Position.Y := 5; Position.Z := 5; to move the camera

back so it can overlook the scene.

10.Right click on Scene objects in GLScene editor and select Add object then LightSource.

11.Select GLLightSource1 and set Position.Z := 10 to move the light up so it can shine on the cube

from above. 12.Right click on Scene objects in GLScene editor and select Add object then Basic

geometry then

Cube. 13.Select Camera1 and set GLCube1 as Target property to make the camera look at the

cube. 14.Select GLSceneViewer1 and select GLCamera1 as Camera property. 15.Double click on

GLCube1 in object tree view to add progress event on the form. 16.Write GLCube1.TurnAngle :=

GLCube1.TurnAngle + deltaTime * 100; this will make the cube spin around Z axis. 17.Press F9

and see your first spinning cube!

One might say that a spinning cube is a trivial thing. It indeed is with GLScene but let’s

reconsider what it takes to draw a spinning cube on modern hardware and operating system. First

GLScene itself has good few thousands of lines of code. Not all of it is used to render a cube of

course. Then we have OpenGL with all the possible drivers. And in the end there is the operating

system on top of all that. So you can see there was a lot of work and effort done by other people so

you can make your spinning cube.

Page 8/36

Basic things you should know about 3D graphics

GLScene is a very powerful tool but you still need to know at least something about 3D

computer graphics. Skip this chapter if you are familiar with this topic. There is a lot of theory about

3D graphics and here provided only some basic things specific to GLScene and OpenGL.

Coordinate system
A three dimensional world is described with three axes: X, Y, Z. They intersect in the origin

point at position [0,0,0] with 90° angle. The orientation of these axes can be a bit confusing. Math

conventions anticipate that the up and down axis is Y, left and right axis is X and the depth is described

by Z. But OpenGL standard says that Z is up and down and Y is the depth. X axis remains the same.

So you should remember that OpenGL coordinate system is different then for example the one other

3D editing applications use. You can display objects’ axes by setting ShowAxes:=true. They will be

represented by red, green and blue dotted lines both design and run time. To make things even more

complicated some objects use the conventional coordinate system like TGLGraph and

TGLTerrainRenderer.

In the end which direction is up will depend on the camera rotation. You can position your

object in the scene in whichever orientation you like. By default a new object will be placed in the

direction facing positive Y axis and top of the object pointing to positive Z axis.

It is important to understand the difference between global and local coordinate system. Every

child object exists in its own local coordinate system. If parent changes it’s position or rotation the

child will move with the parent but it’s local position will remain the same although it changed global

position. This may look a bit complicated at the beginning but it is an important feature that allows

keeping the scene hierarchy well organized.

Floating point numbers
OpenGL uses single precision system. What does it mean? It means that every decimal

number is 8 bits long. Let's explain this more. Decimal numbers can have unlimited number of digits

after the decimal separator. The π constant is a good example. Computer can calculate the π constant

for as many digits as it's memory is capable of. But that is not very practical. So where do we set the

limit? Everyone can understand the difference between 3.14 and 3.1415926535. Delphi has strong

support for types. In Delphi we have single, double and extended types for decimal numbers. Single

is 8 bit long so it means the program allocates 8 bits of memory for it. The number of digits is limited.

The π constant would be 3.1415926 in single type format. But what happens if we add 1000 ? The

result should be 3000.1415926. But there are too many digits in this decimal number for the single

type format. What happens is that the last digits are trimmed and we get the right length : 3000.1415.

This model is simplified because the whole math is happening on binary level but you get the picture.

Remember that single precision is not accurate enough when working with high numbers or

when you need extra precision. If you are doing some scientific calculations you can use extended

type to get more exact results. But if there is an OpenGL graphical output like a graph all extended

numbers will be down sampled to single precision.

It is not recommended to use Delphi's native Math unit with GLScene because the functions

in this unit are too slow for real time rendering. Avoid using Math unit if you can.

Vectors
Now when we know what floating point numbers are we can explain what they are used for.

Page 9/36

In GLScene a lot of calculations is done with vectors. Vector is an universal type that can describe

almost anything from object's position, rotation, speed even color. There are different types of vectors:

Vector3f, Vector4f, AffineVector. But vector generally is an array of three singles [X,Y,Z]. Some

vectors have the mysterious fourth member called W. W is used for describing rotations or alpha

value of the color. Many GLScene functions are overloaded and you can supply most of the vector

types as a parameter.

OpenGL internally does not operate on vectors but on matrices. Matrix is a two dimensional

array of 4 x 4 singles. Matrix transformations take care about useful things like vector rotations,

scaling etc. You do not really need to know about matrix transformations because GLScene has

functions to do the job for you. These functions are in VectorGeometry unit. Detailed description of

vector geometry functions is far beyond the scope of this book but there is a good article at

www.flipcode.com about vector math.

Rendering
Every object in 3D graphics is composed of polygons. Even curved surfaces are made up of

polygons only very small ones. Polygon is a triangular face delimited by three vertices. Vertex is a

point in space. Each polygon has front and back sides defined by face normal. Normal is a vector

pointing in front direction of the face. Another information stored by face is connectivity with other

faces. Polygon knows which surrounding polygons are attached to which side of it. This is used for

smoothing edges between two adjacent polygons. Polygon also stores information about how texture

is stretched over its surface. Texture coordinates of every vertex are defined by two numbers in range

from 0 to 1. These are called U and V coordinates and specify exact position of the vertex on texture.

When the polygon gets rendered possible surrounding lights are considered, the angle between

face normal and direction to camera and lights is considered and the polygon is lit and textured

according to shading model. Different shades of polygon along curved surface create illusion of

plasticity.

To render whole object which is made up of polygons the object has to be first transformed in

position, rotation and scale. Every rendered pixel is stored in Z buffer. Z buffer is memory allocated

for all pixels on the screen together with Z depth – distance from the camera. Every time a new polygon

is rendered the resulting pixels overwrite possible existing ones only if the Z depth is smaller than the

one stored in Z buffer for that particular pixel. More understandably new polygon is rendered only if

it is closer than other polygons.

OpenGL
This is a wide topic, too complicated for this book. You don't necessarily need to know much

about OpenGL to use GLScene but it is certainly better to have some understanding of it.

http://www.flipcode.com/

Page 10/36

GLScene Components

This chapter is divided in four parts describing four groups of GLScene components: GLScene,

GLScene PFX, GLScene utils and GLScene shaders.

GLScene Panel

TGLScene

The basic component. You can open GLScene editor by double clicking on it.

TGLSceneViewer

The scene viewer represents a rectangular canvas where the scene gets rendered. It's size or width -

length ration is not restricted. The bigger the viewer the slower the rendering will be. You must

specify Scene and Camera properties. Change important rendering context through Buffer property.

However leaving Buffer default properties will suffice in most cases.

TGLFullScreenViewer

Same as TGLSceneViewer but switches to fullscreen mode. The resolution has to be readable for the

graphics card and monitor. So it should be something like 800 x 600 or 1024 x 768.

TGLMemoryViewer

Memory viewer is a virtual canvas. You can render on it, read it’s output from the memory. But you

can not see any picture on the screen. It is used for example for rendering cube maps for real time

reflections or more advanced shadow techniques.

TGLMaterialLibrary

Material library is a storage component for materials. It has collection of materials and you can access

individual materials by index or the material name.

At this point I should explain something about how materials are handled in GLScene. Each

object where material is applicable has its Material property. You can edit materials directly in object

inspector or double click on the ellipsis icon next to material and open material editor. Material editor

has three tabs and a window with an example cube textured with current material. The three tabs are:

1. Front properties - edit material quality of object’s front faces. Diffuse color being the most

important. It defines color of the object on direct light. Ambient color defines the color of object

in dark spots. Specular color is color of high reflections and shininess defines how big those

reflections are. Emission color makes the object glow. But for now just remember that to change

object’s basic color use diffuse color. Other material qualities like reflection and shininess can

be achieved more realistically with material shaders.

2. Back properties - same as front properties but for faces that would be normally invisible. The

back faces become visible only if the material is transparent and if back face culling is off.

3. Texture - in order for the texture to become visible you have to set disabled property off. This

property is by default on which means that the object is not using any texture. It is colored and

shaded with settings described by front and back properties. If you want to apply a texture to the

material uncheck disabled checkbox and load an image. Formats supported by GLScene are

bmp, jpg and tga. Then you have to set texture modulation to tmModulate for realistic lightning.

Remember that a light has to illuminate the object so you can see the material. Another

important thing is that texture should have the size of power of two. It means

4,8,16,32,64,128,512… The length and width don’t have to be the same. You can have a texture

32 x 512. If you use a texture with size other than power of two it will be displayed but it will

also be much slower because GLScene will have to resize it.

At bottom of material editor there is material blending mode listbox selection. You can specify

how the material will blend or overlay other materials. Opaque blending mode creates a solid surfaced

object. Transparent blending will make it possible to see through the object. The object can be

uniformly transparent or the transparency can be defined by texture. Additive blending combines the

colors of the object with colors behind it.

Although each object can have its own material it is strongly advised to store the materials

you use in material library. Especially if many objects share the same texture. If you have 100 cubes

with the same texture and you load the texture to each cube it will occupy the memory of 100 textures.

You can load this texture in material library once and let the 100 cubes refer to that texture. To do this

set MaterialMaterialLibrary to the material library and Material.LibMaterialName to the name of

the material you want to use. Warning ! Objects have MaterialLibrary property themselves, you have

to use MaterialMaterialLibrary !

Material library has one handy function: AddTextureMaterial In this function you specify new

material name and image file to be loaded. A new material is added to the material library with

Texture.Disabled:=false and TextureModulation:=tmModulate.

TGLCadencer

Most of the GLScene applications do real time rendering. The time element takes important part here.

We need some kind of time manager to deal with it. It is not a simple thing at all. First of all we do

not know how long will it take for the computer to render the scene. The camera may be looking at

complex geometry with a lot of polygons or the user may turn the camera away and no polygons will

be rendered. The program may run on an old hardware configuration or a top high-tech PC with the

latest CPU and graphics accelerator. These are factors you don’t know in advance and you must take

them into account.

If you want to progress you scene over time add TGLCadencer on the form. It will take care

of proper synchronizing and updating objects frame by frame. You must assign it to

TGLScene.Cadencer property.

The process of rendering a frame results in event called Progress in GLScene. Every GLScene

object has onProgress event where you can code all extra actions to be executed every time the scene

is rendered. Double clicking on an object in object inspector adds onProgress event to the form.

The progress procedure passes one important variable: deltaTime. It is a time period in

seconds that took since the last frame was rendered. The longer it is the more jerky the motion in the

scene will be. Ideal frame rate is 30 frames per second. DeltaTime would be 0.033333. Any time you

want to do any calculations related to time you have to include this parameter in your equations. For example if

you want to move a cube along X axes with speed of 10 units per second. The formula would be like this:

Position.X:=Position.X + 10 * deltaTime.

Cadencer has enabled property. You ca simply turn cadencer on and off. When it is turned off the scene will

freeze. There are also several modes cadencer can run in. cmASAP is the default mode and it will progress the

scene whenever it can giving it the highest priority. cmIdle will progress scene only when other processes are

finished and with cmManual the scene will only progress when you make it to do so. Another interesting feature

is minDeltaTime. If you set value for minDeltaTime the scene will not progress until that time has passed even

if all rendering is done. This can give some rest for the system. maxDeltaTime on the other hand will not allow

the cadencer to run faster then specified.

TGLGuiLayout

GUI stands for ‘graphical user interface’. The purpose of GUI components is to create

2D window controllers well known from Delphi - forms, panels, labels, check boxes etc. In GUI manager you

specify GUI layout which is a file with .layout extension created with GUI editor. This layout specifies regions

on a bitmap which is used for the graphic output. This topic will be covered in more detail later in GUI objects

chapter.

TGLBitmapFont

You can display 2D text with TGLBitmapFont This component is used together with TGLHUDText. You have
to load a bitmap that contains letters arranged in rows and columns. The letters must be on black background
for correct transparency. Ranges property specifies which regions of the bitmap correspond to which letter.
Each range has width and length in pixels of the letter together with starting and ending character in alphabet in
ASCII standard. Bitmap font will create array of textures each representing one character. TGLHUDText can
read these textures and display words. Disadvantage of TGLBitmapFont is that all the letters must have same
width. ‘I’ is same wide as ‘M’. The advantage is that you can make a bitmap you like with colored characters
and different transparency.

TGLWindowsBitmapFont

If you don’t want to bother with making the bitmap you can use existing Windows font. You just select Font
property and TGLWindowsBitmapFont will create all textures for TGLHUDText. With this component any true
type fonts will be displayed correctly but you have to use some common fonts that will most likely be installed
on the target computer.

TGLStoredBitmapFont

This is the third and in my opinion the most useful font component in GLScene. You can distribute your font
with the application saved in .glsf file. This file is created with very easily from any Windows font. This way
you can use some more exotic fonts and you do not have to worry if they are installed on other computers or
not. Both TGLWindowsBitmapFont and TGLStoredFont can’t have characters with different colors. You can
only change a color as a whole.

TGLScriptLibrary

TGLSoundLibrary

GLScene is not only great for graphics you can also add 3D sound to your applications.

Sound library is similarly like material library a storage room for sound tracks. Load different sound

files in Samples. Wav and mp3 formats are supported. Beware that longer mp3 sounds like music

may produce errors when playing through sound library. Sound library has to be used together with

TGLSMWaveOut, TGLSMBASS or TGLSMFMOD. To play the sound add sound behavior to scene

object, specify which sound to play by index or name and the sound will be emitted by the object in

3D space.

TGLODEManager

ODE is ‘Open Dynamics Engine’. It is physics simulation library. Its home page is www.ode.org .

You can find documentation and help files there. ODE is distributed in single dll file. ode.dll must

be in the same directory as your application executable file or in Windows system directory. Simply

said any scene object with ODE behavior will naturally react to gravity, collide and bounce off

other objects. You can create cars, rag doll effect simple machines. To make ODE object in the

scene add ODE behavior to it. There are two kinds of ODE behaviors:

1. Static - objects are supposed to remain stable in the scene. They will not move whatever

may hit them. Example would be ground floor or walls.

2. Dynamic - objects have their weight and can move around the scene interacting with other

objects or joints. Example is a ball.

http://www.ode.org/

Apart from the kind of behavior you must select proper collider. It is a shape attached to the
object that stands for the mass of the object. Collider can be simple cube, sphere, cylinder or can be
extracted from mesh geometry or heightfield data. One object can have multiple colliders creating
complex shape.

ODE manager runs the simulation through ode.dll and updates each object’s position and

rotation. You must call Step procedure every frame for the system to progress. This is usually done

in cadencer’s onProgress event.

TGLODEJointList

If you want to use joints in ODE you must add them in the joint list. Each item describes the type of
the joint, the two objects it attaches and other parameters like joint restrictions, angles, offset positions
etc. For more information about joints go to www.ode.org .

TGLSMBASS

BASS is a sound library. Again bass.dll must be either in application or Windows system

directory. TGLBASS is sound manager that is used together with TGLSoundLibrary and object

sound behavior to play sounds.

TGLSMFMOD

Same as BASS only uses fmod.dll.

TGLSMWaveOut
Basic sound manager based on WinMM waveOut function.
This manager has NO 3D miximing capacity, this is merely a default manager that should work on any
windows based system, and help showcasing/testing basic GLSS core functionality.
Apart from 3D, mute, pause, priority and volume are ignored too, and only sampling conversions supported
by the windows ACM driver are supported (ie. no 4bits samples playback etc.).

GLScene PFX

In general all components on this tab are managers for particle effects. PFX manager takes care
about the way particles look like, how they move, how fast they are or how long they live. Some
particles can even change appearance during their live. Each object can emit particles. You can add
particle effects to Effects property. Each effect then has its own PFX manager and PFX renderer.

GLCustomPFXManager

GLPolygonPFXManager

Polygon particles are made up of circular array of triangular polygons always facing camera.

Polygons use vertex colors. You can specify inner and outer color for the particle. Outer color is

usually transparent. Each polygon is opaque in the center of the particle and gradually becomes

transparent towards the edge.

GLPointLightPFXManager

http://www.ode.org/

GLCustomSpritePFXManager

GLPerlinPFXManager

Particles created with perlin PFX have randomly generated texture. Great for smoke effects.

GLFireFXManager

This is manager especially designed for fire effect. It is best to leave default settings for the most

pleasing visual quality. Adjust only the particle size as you need.

GLThorFXManager

Create lightning or laser beams with this effect. This effect stretches from one point to another. A
sparkling beam glows between.

GLScene Utils

GLAsyncTimer

This component is similar to TTimer you know from Delphi. Only it is more suitable for GLScene.

Time Interval in milliseconds triggers onTimer event. This event is independent of cadencer

progress event. Async timer is not recommended to replace the cadencer. It is used to execute

actions in fixed longer time intervals rather than take care about rendering the scene.

GLStaticImposterBuilder

Imposters are clever way how to improve performance dramatically. The basic idea behind

imposters is that before rendering a set of images looking at an object from all sides is rendered and

stored in memory. If the object is to be rendered a sprite (2D image) is drawn instead of the mesh.

The most appropriate image has to be selected according to the object’s orientation to the camera.

This technique is great for many same objects with high polygon count scattered around the scene.

On the other hand it consumes a lot of memory.
The task of imposter builder is to generate all the images. You can set the size of the image and

number of angles images are to be rendered from. This is done by adding coronas. Each corona has

minimum and maximum angles as well as number of images in this range. For example if you make

corona ranging from 0º to 15º with 24 images the imposter will cover spherical segments 15º wide and

15º high around ‘equator’ of the object. You must call RequestImposterFor function to generate the

coronas.

Following section describes five HDS components. Height Data Source components provide

data for TGLTerrainRenderer. Terrain is used for rendering large outdoor sceneries. HDS

components load terrain data from different formats and supply suitable data for terrain renderer.

GLBitmapHDS

This is the easiest format. Bitmap HDS loads grayscale image and converts the data into

height field. The grayscale image must be 16 bit. Most paint programs use 8 bit grayscale palette.

Make sure you convert the image to 16 bit otherwise the terrain will look terraced. White parts of the

image represent the highest altitude and black parts represent zero altitude.

TGLCustomHDS

GLHeightTileFileHDS

The source for height field HDS is .htf file. These files are created in . This format is most suitable
for really large terrains. Ground texture coordinates together with TileSize property are included in
.htf file. TileSize of terrain renderer must be the same as TileSize in .htf file.

GLBumpmapHDS

GLPerlinHDS

GLCollisionManager

GLAnimationControler

Animation controller is used together with TGLActor object. Animation controller stores

animations that are used by actor. Animations can be loaded from Quake md2 format or from Halflife

smd format. Animations are accessed by index or name. They can loop, play once or backwards.

GLJoystick

GLScreenSaver

If you add this component on the form the application will be compiled as Windows

GLAVIRecorder

You can stream the rendered sequence in video file.

GLTimeEventsMGR

GLVfsPAK

GLNavigator

GLUserInterface

GLFPSMovementManager

GLMaterialScripter

GLDCEManager

GLApplicationFileIO

GLScene Shaders

Shaders are material modifiers. Each material can have a shader. Shader alters the appearance

of the material creating various visual effects.

GLTexCombineShader

GLMultiMaterialShader

GLUserShader

GLOutLineShader

GLHiddenLineShader

GLCelShader

GLBumpShader

GLPhongShader

Page 17/36

Page 18/36

GLScene Objects

As described in ‘How does it work?’ chapter I refer to GLScene objects as objects not present

in components tabs. GLScene objects are created, edited and deleted in GLScene editor. Objects are

arranged into categories. Some objects don’t fall into any category and stand alone.

Let’s have a closer look at GLScene editor before we start describing objects one by one.

GLScene editor is opened by double clicking on GLScene in object editor. A tree view contains all

objects in your scene. At the beginning there will be only Scene root that contains Cameras and

Scene objects. Scene root refers to GLScene.Objects which is the top element in scene hierarchy.

Cameras have special position in the hierarchy. Right click on cameras then click on Add camera

a new camera is created. Later the camera can be moved around the hierarchy tree and become a child

of any other object. All other objects you create will be arranged under scene objects. To place an

object in the scene right click scene objects and select the object you want. If you want the new object

to become a child of already existing object right click on the parent object. A new object is always

placed on the last position within the current hierarchy tree level.

The order of objects in the tree hierarchy is important. The topmost object gets rendered first.

If it has any children they are rendered next, the one on the top first again. The rendering goes on

branch by branch until it reaches the bottom of the tree. The rendering order is important for

transparent objects. Transparent objects must always be rendered last otherwise you can get visual

artifacts in the scene. Some objects though (like HUD objects or particles) take care about rendering

order themselves and can be placed anywhere in the tree hierarchy. You can change object’s position

in the tree by dragging it over to another object or by right clicking on it and selecting Move object

up or Move object down.

Common object properties

All objects have some properties that you will use frequently. Here is an itemized list of some

properties common to all objects:

· Behaviors – If you add behavior to object, it will act according to that behavior. Usually

they alter object's movement, sound or collision detections. You can add more than one

behaviors. They work together with GLScene Utils components. List of behaviors:

• Collision

• Simple Inertia

• Simple Acceleration

• Sound Emitter

• Movement controls

• FPS Movement

• DCE Static Collider

• DCE Dynamic Collider

• ODE Dynamic

• ODE Static

• ODE HeightField Collider

Page 19/36

· Children – Not shown in object inspector. List of all children this object has. Children can

be accessed by index starting with zero.

· Count – Not shown in object inspector. Number of children plus one. The array of children

is zero based index.

· Direction – Vector pointing in ‘front’ of object. This vector is normalized. It means that it’s

length is 1. Default value is [0,0,1].

· Effects – Each object can emit particle effects. If you use one of PFX managers you can add

effects here.

List of available effects:

• PFX Source

• FireFX

• ThorFX

• ExplosionFX

· Objects Sorting – The order in which objects get rendered.

· Material – Described in TGLMaterialLibrary chapter.

· Parent – Not shown in object inspector. Object one level up in scene hierarchy tree.

· PitchAngle – Angle describing object’s rotation around Y axis in degrees. Be aware that

changing this value does not always produce the same effect. It is recommended to use

Direction and Up vectors instead.

· Position – Vector describing position of object in 3D space. Default value is [0,0,0].
· RollAngle – Angle describing object’s rotation around X axis in degrees. Be aware that

changing this value does not always produce the same effect. It is recommended to use

Direction and Up vectors instead.

· Scale – The size of object is set by this vector. You can scale the object non-uniformly, for

example only along X axis. Children do not inherit scale value. Default value is [1,1,1].

· ShowAxes – Boolean value enables displaying colored lines aligned to object direction axes.

· TagFloat – Similar to well known Tag value only it stores single.
· TurnAng le – Angle describing object’s rotation around Z axis in degrees. Be aware that

changing this value does not always produce the same effect. It is recommended to use

Direction and Up vectors instead.

· Up – This vector together with Direction is used to describe object’s rotation in space. Up

vector is always perpendicular to Direction vector and is also normalized. Default value is

[0,1,0].

· Visibility culling – Visibility culling can be used to speed up rendering. Objects that are not

in camera view are quickly discarded. But this works only in special cases. This visibility

culling is only object based, not polygon based.

· Visible – You can hide or show object. Any code in object's progress event gets executed

even if Visible is false.

Page 20/36

TGLCamera

You can think of a camera as a point in space where the scene is viewed from. Camera has

position, direction and up vectors same as other objects. You cam move and rotate camera around the

scene. Simpler and more useful method of orienting camera is to make it look at another object. Assign

the object to Target property. The camera will always point to that object wherever it moves.

FieldOfView is a value that changes camera lenses. Lower values make the angle

overlooking the scene wider and higher values zoom to more focused area. Make sure you don’t use

any crazy values as the twisted perspective can be very disturbing for the user.

You should also know something about culling planes. Polygons that are too close or too

far from the camera are not rendered at all. Planes that divide the scene in visible and invisible parts

are called near and far culling planes. You can set the position of these planes with

NearFrustrumRange and FarFrustrumRange. Normally only the far culling plane is changed. This

creates one small problem. As the camera moves forward objects suddenly spring into the view as

they get past the far culling plane. To reduce this unwanted effect fog is often used. You can enable

fog in TGLSceneViewer.Buffer together with fog options. Fog has start and end range. Any polygons

between the two borders will change transparency with full opacity at start range and full transparency

at end range. Make the end range of the fog same as far culling range and color of the fog same as

color of scene viewer background.

TGLLightSource

First we should explain what lights can do in GLScene. Without lights the scene would be

dark. Lights illuminate the scene. We can have maximum number of eight lights. Every light except

of parallel lights has a range limit how far it shines. Beyond that distance it has no effect. From the

Page 21/36

position of the light to the maximum distance the light slowly diminishes. This is called light

attenuation.

Lights do not cast shadows. If you have a sphere in front of the plane there will be no shadow

on the plane, the light rays will seem to pass through the sphere without any interference. You have

to use other techniques to obtain shadows. Lightmaps, Z-shadows or shadow volumes for instance.

There are three types of lights:

1. Omni light - this is a light located in one point radiating light rays equally to all

directions. You can thing of omni light as of an electric bulb hanging on a cable freely in

the air.

2. Spot light - spot light shines a beam or a cone of light in one direction. You can change

the width or angle of the cone. A 360º cone would become an omni light. Example of spot

light is a torch light.

3. Parallel light - uniform mass of parallel light rays with same direction shining from a

plane in infinite distance form a parallel light. You can change position of parallel light

but it has no effect whatsoever. Parallel light is usually used to simulate sunshine.

TGLDummyCube

GLScene also has helper objects. Helper object is an invisible object that is used for

organizing other objects in groups, to show distances, directions and positions in space. You should

learn how to use dummy cube as much as possible because it can simplify a lot of things. Dummy

cube can be used to store objects as its children. If you want to for example move all of the objects

just move the dummy cube. If you want to delete the objects just call DeleteChildren function of the

dummy cube. Dummy cube can simplify rotations. You can create joints with dummy cubes where

each dummy cube will have restricted rotation only in one axis.

You can make dummy cube visible run time with VisibleAtRuntime property. Dummy cube

is represented by cube outlined with dotted lines.

Basic geometry

Basic geometry objects are simple objects with hard coded geometry. The geometry can be

described with mathematical formulas. You can change individual parameters of the object but the

basic shape will always stay the same.

TGLSprite

Sprite is a 2D image mapped on a plane that always faces the camera. Unlike HUD sprite

TGLSprite is placed in 3D world and can be moved closer or further from the camera. If the sprite

gets too close to the camera it can create unwanted visual errors. A transparent texture is usually used

with sprites. The image can turn around its center by changing Rotation property.

TGLPoints

You can create array of points or just one point with this object. Points are dots in space.

They have Size parameter which determines how many pixels in diameter the point will have on

screen. If the point has size 3 it will be represented by 3 pixels on screen whether the point may be

close to the camera or far away from the camera. Perspective does not apply here. Points can be

rounded or squared and antialiased.

Page 22/36

TGLLines

Lines are basically points connected by lines. Points are called nodes here. Lines have Width with

same perspective restrictions like points. Nodes can be visible or not and can be represented by cubes, stars or

spheres with changeable size.

* TGLPlane

Plane is a single quad. Quad is a polygon composed of four vertices and two triangles. Plane

has Width and Height values. Direction of the plane is important. It points in the direction of normal

of the plane. Normal is a vector that tells us which side if front and which side is back. If we look at

the plane from the front side we can see it, if we look from the back side we can’t see it. You will be

able to see the plane only if it’s direction will point towards the camera.

Vertex shading can sometimes create problems with large planes. If edges of the plane are

stretched out too far from the reach of lights the plane will become dark as a whole.

TGLPolygon

TGLCube

Cube is composed of six planes, each plane can be disabled. Cube has CubeWidth, CubeHeight and

CubeDepth properties.

TGLFrustrum

Frustrum is a twisted cube with variable size of top and bottom sides.

TGLSphere

Radius is the size of the cube, Segments specifies how many polygons will be used to draw the cube

and how smooth the curvature will be.

TGLDisk

TGLCone

TGLCylinder

TGLDodecahedron

TGLIcosahedron

Advanced geometry

More complicated than basic geometry but the description is the same.

Page 23/36

TGLAnimatedSprite

Animated sprite is based on sprite only it displays animated sequence. The animated

sequence is stored in single bitmap. The bitmap is divided in rows and columns. The grid contains

individual frames for the animation. This technique is great for smoke or explosion effects but you

have to make the bitmap yourself.

TGLArrowLine

Arrow line is a combination of cylinder and cone. You can change the width and height of
both. It points in Direction vector.

TGLAnnulus

A hollow tube.

TGLExtrusionSolid

TGLMultiPolygon

TGLPipe

TGLRevolutionSolid

TGLTorus

Mesh objects

Mesh is a pool of polygons defined with vertices, texture coordinates and connectivity

information. Group of mesh objects in common has same feature: it’s geometry has to be loaded from

a file. Such file is usually created by 3D modeling programs like 3DS MAX, Maya or Milkshape.

Supported formats are 3ds, obj.

TGLActor

This is an object you will use if you want geometry that will change shape in time. Living

creatures are good example. Actor has same base as TGLFreeForm but it is optimized for moving.

Animations have to be loaded to Animations. Actor needs AnimationControler component. You can

use Quake md2 format. This format contains set of meshes in key frame positions. Subsequent frames

are then interpolated between the key positions. This format is fast and suitable for low poly models.

Another format is Halflife smd. It uses skeletal model animation. Actor has skeletal structure with

vertices attached to bones. The animation is described by recorded angle values between individual

bones in time. You can combine different animations at one time. Following animations can have

interpolated transitions.

Page 24/36

TGLFreeForm

This object is used very often. It is capable of loading various mesh formats. To be able to

use some format you have to add appropriate loader unit. For example if you want to use 3ds format

you have to add GLFile3DS unit to uses clause. Call LoadFromFile function to load the geometry.

Texture coordinates are usually included in the file. Some formats support using of multiple textures

for one object. You just have to set the textures to the Mesh list. To successfully load the texture the

geometry has to be loaded before texture.

Example

Q:How to copy one or more GLFreeForm Object from one GLScene to another at runtime ? And What is

the best method to copy a GLFreeForm in the same GLScene at runtime?

A:Hi you can try like this code
var

 NewCube : TGLCube;

 //NewSphere : TGLSphere;

 // NewFreeForm : TGLFreeForm;

 SelectedObj, TargetObj : TGLBaseSceneObject;

begin

 SelectedObj := GLCube1; // Object to copy in GLScene 1

 TargetObj := GLScene2.Objects; // GLDummyCube2 // Parent Target object in

GLScene 2 or 1

 if SelectedObj is TGLCube then

 begin

 NewCube := TGLCube.CreateAsChild(TargetObj);

 NewCube.Assign(TGLCube(SelectedObj));

 end;

 //else

 //if SelectedObj is TGLSphere then

 //begin

 // NewSphere := TGLSphere.CreateAsChild(TargetObj);

 // NewSphere.Assign(TGLSphere(SelectObj));

 //end

 //if SelectedObj is TGLFreeForm then

 //begin

 // NewFreeForm := TGLFreeForm.CreateAsChild(TargetObj);

 // NewFreeForm.Assign(TGLFreeForm(SelectObj));

 //end

 // etc....

TGLMesh

Settings
Sometime objects are closed to each others so when viewing form far rendering they can be
overlapping with scratches. To exclude it use the properties

The right way is to work with next properties for Viewer/Camera:
DepthOfView := 1000 - 100000;
NearPlaneBias:= 1; (* decreasing NearPlanesBias to 0.001 the issue defects increases. Using
NearPlanesBias to 10 the quality improves a lot *)
Buffer.DepthPrecision = dpDefaults (* dp32bits if not a lot of issues with OpenGL is running in Intel
embedded GPUs *)
FreeForm or Parent object.ObjectSorting --> usually setting to osRenderFarthestFirst
(* FreeForm or Parent object..VisibilityCulling --> try set to vcObjectBased or vcHierarchical and you
can try to set in Viewer.Buffer.ContextOptions this param : * roTwoSideLighting *)
Buffer.DelpthTest := True;

Buffer.FaceCulling := True;

TGLTilePlane

TGLPortal

TGLTerrainRenderer

To render outdoors landscape use terrain renderer. The advantage of terrain renderer is LOD

optimization. LOD takes care of Level Of Detail in the scene. Terrain is composed of quads. Quads

closer to the camera are denser with high detail. Quads further from camera stretch across larger areas

loosing the detail. This results in less polygons to be rendered without loosing visual quality. Data

for terrain renderer is provided by HDS components described in ‘components’ section. Default Up

vector of terrain renderer is Z axis.

Graph-plotting objects

Object in this group are often used for scientific visualizations. Their shape is described

with mathematical equations.

TGLFlatText

TGLHeightField

TGLXYZGrid

Displays space grid along X,Y and Z axis. Individual axis can be turned on and off. Size of

grid tiles can be changed.

Particle systems

Particles are small sprites in large numbers generated according to same rules. Particles

create special effects like fire, smoke, explosions, rain or snow.

TGLParticles

Page 25/36

TGLPFXRenderer

PFX renderer is a helper object which has to present in the scene so any object can have

Effects properly functioning. The system works like this: PFX manager describes settings for the

effect, scene object has the effect in Effects list and PFX renderer takes care about rendering particles.

This seems to be too complicated but it is very flexible.

Environment objects

By default background color of the scene is light gray. The color is defined by

SceneViewer.Buffer.BackGroundColor property. If you want other background than uniform color

use environment object.

TGLEarthSkyDome

TGLSkyDome

Sky dome creates gradients of color stripes along horizontal plane. You can make as many

stripes as you want. You can add small dots in Stars list. Stars can even glitter.

TGLSkyBox

Sky box is a large cube with inverted normals and six textures covering whole skyline. The

textures must align each to another and create panoramic illusion.

HUD objects

HUD is Heads Up Display. These objects are rendered as bitmaps on screen. Their position

is defined only by X and Y values. X is horizontal and Y is vertical position of HUD object. The

origin [0,0] point is upper left corner. You do not have to care about rendering order of HUD objects

(only among each other), they always get rendered last.

TGLHUDSprite

Universal HUD object. Displays bitmap on the screen. Use material library to store the
texture. Transparent textures are often used. Texture should have power of two dimensions. You can
rescale the size of the object with its Width and Height values. HUD sprite can turn around center
with Rotation property.

TGLHUDText

This HUD object displays characters in its Text property. How is the text displayed is
determined by GLScene font component.

GUI objects

GUI objects are described in TGLGUILayout section.

Page 26/36

GUI objects

TGLRootControl

TGLPopupMenu

TGLForm

TGLPanel

TGLButton

TGLCheckBox

TGLEdit

TGLLabel

TGLAdvancedLabel

TGLScrollBar

TGLStringGrid

TGLBitmapControl

Special objects

These objects don’t fall in any other category.

TGLLensFlare

Lens flare is artifact that is caused by camera lenses looking in strong light in real world. This

adds more realism in your scene. Lens flare is normally positioned in same location as light source.

Rings and streaks are created when looking straight at lens flare. Both can be changed in number,

size and quality. Lens flare naturally fades away when hidden behind other object or out of view.

TGLTextureLensFlare

TGLMirror

TGLShadowPlane

Shadow plane is a fast technique how do render dynamic shadows. Shadows are projected on

a flat plane only. You have to enable stencil buffer of scene viewer. Assign light source that will be

used to generate shadow and shadowing object. The shadowing object and all of its children will

Page 27/36

cast shadows on Z shadows plane.

TGLShadowVolume

TGLZShadows

TGLTextureEmitter

TGLProjectedTextures

TGLBlur

TGLTrail

Doodad objects

Special category, kind of more advanced geometry.

TGLSpaceText

This object displays text as three dimensional letters. Regular Widows fonts are used. Text can
have variable depth or Extrusion.

TGLTeapot

Teapot is an object well known from 3DS MAX studio.

TGLTree

Realistically looking trees can be created by this object. There is a lot of settings which can
make the tree look like any type of tree. Tree is composed of one main trunk with diverging branches
and leaves. Number of branches (and polygons) is set by Depth property. Leaves are represented by
planes covered with front and back textures.

TGLWaterPlane

This object creates good looking realistic water.

Other objects

TGLDirectOpenGL

Execute your own OpenGL commands. You have to know OpenGL syntax to use this.

TGLProxyObject

Page 28/36

In cases when you have a lot of same objects, especially TGLFreeForms, it is good practice to
use proxy objects. You will gain a lot in performance. Proxy object refers to Master object. Geometry
of master object is rendered in place of the proxy object. Proxy object has its own position, direction
and scale. The geometry is altered accordingly.

TGLMultiProxy

Multi proxy object is an advanced version of proxy object. It has more masters that are chosen

according to distance from camera. This technique is used with set of objects with different number

of polygons but resembling each other. Low detail objects are displayed in distance and high detail

objects are displayed close to the camera.

TGLRenderPoint

TGLImposterSprite

Imposters are described in TGLStaticImposterBuilder section. Imposter sprite is the object

that is rendered in the scene.

TGLOpenGLFeedback

Page 29/36

Runtime object creation

Until now we spoke only about design time functions and features of GLScene. As you will

learn more about GLScene you will find out that creating objects runtime is inevitable. Components

are created the usual Delphi way with Create directive. But scene objects are created differently.

Those objects have to be registered in the scene clearly saying where the objects position in the scene

hierarchy is.

If we want for example create a sphere named MyGLSphere as a child of GLCube1 the correct

code is like this:

var
MyGLSphere: TGLSphere

begin
MyGLSphere := TGLSphere(GLCube1.AddNewChild(TGLSphere));

end;

This way the new sphere will be placed correctly in the scene as a last child of GLCube1. If you

want to make it a first child of GLCube1 call AddNewChildFirst instead. Any object can be moved

in the scene hierarchy with MoveUp and MoveDown functions or by changing Parent property. To

destroy the object call MyGLSphere.Free function.

Creating new class

You will also find very useful to inherit your own classes from existing ones. This process has

same rules like any other Delphi object. Let’s make a new class for our spinning cube.

type
TGLSpinningCube = class(TGLCube)
private

FSpinSpeed: single;
published

property SpinSpeed read FSpinSpeed write FSpinSpeed;

public
constructor Create(AOwner : TComponent); override;
destructor Destroy; override;
procedure DoProgress(const progressTime : TProgressTimes); override;

end;

constructor TGLSpinningCube.Create(AOwner : TComponent);

begin
inherited;
FSpinSpeed := 1000;

end;

destructor TGLSpinningCube.Destroy;

begin
inherited;

end;

procedure TGLSpinningCube.DoProgress(const progressTime : TProgressTimes);

begin

Page 30/36

inherited;
TurnAngle := TurnAngle + progressTime.DeltaTime * FSpinSpeed;

end;

The on progress event is different at this level. ProgressTime is used to access DeltaTime. You

also have to call inherited directive otherwise the object would not progress at all. To create object

defined by this class you would use technique described earlier in this chapter or register the class in

GLScene and add it with help of GLScene editor.

Page 31/36

Case study: 3D Tetris

In this chapter I am going to give you my ideas about making a simple Tetris game with

GLScene. I am not going to write only some code, I will mainly focus on structure and design of the

game. I am going to keep it as simple as possible. After all this is beginner’s guide. I am sure many

people would do much better 3D Tetris so don’t take my word that this is the best way how to make

a 3D Tetris game.

I don’t have working code for the game. This is a kind of mini game design document. I would

be interested if anyone makes the game real. Please send it over to me and I will publish it with this

book.

Design

To make it ultra-simple we are going to create a clone of old Tetris. The third dimension here

is going to add only a little bit of eye candy. It is actually going to be ‘2.5D Tetris’. Camera will look

at the scene from an interesting angle and perspective. That’s all. The game will take place in two

dimensional grid just like old Tetris. Only the blocks will be made up of cubes instead of squares.

There will be no menus. The game will start right after the program is launched or it will wait

for the user to press a key. During game a label will show number of achieved points. After the game

is finished a message window will show information that the game is over and player’s score. The

program will then terminate.

In classical Tetris the number of types and shape of blocks is defined. We are going to randomly

generate shape of the block on its creation. The block will have constant descending speed. The player

can move with them left and right and rotate them clockwise and counterclockwise. Input will be

handled by keyboard.

Structure

We are going to need TGLScene, TGLSceneViewer, TGLCadencer and

TGLWindowsBitmapFont components. The playing field will be 11 units wide on X axis and 21 units

high on Z axis. We will place the camera on negative Z axis overlooking the whole scene from top

right side. One TGLPlane will form the ground at position [0,0,-0.5] and two tall TGLCubes will be

standing on sides to set borders. At positions [-6,0,10] and [6,0,10], 10 units high. All of these objects

together with nice camera position can be made design time. Don’t forget to add light to the scene.

You can place it wherever you like.

We are going to use our game logic for detecting collisions of the falling cubes. The playing

field will be represented by array of singles:

var
FloodLevels: array[-5..5] of single;

Each member of this field represents how high the stack of boxes reaches during the play. Every

time the block will be securely placed in final position corresponding field will be set to new height

level. This will happen only after the block will rest at the bottom, not during his fall. There are no

cubes at the beginning of the game so initial values are zero. Values stored in FloodLevels

Page 32/36

describe centers of cubes. Actual edges of cubes will be 0.5 units higher but it will be considered in

collision detection.

To detect user input we will use IsKeyDown function contained in Keyboard unit. This is

simple method how to capture keyboard input. We will define five possible user actions:

T3DTInput = (inpNone,inpMoveL,inpMoveR,inpRotateL,inpRotateR);

var
UserInput: T3DTInput;

Keyboard status will be captured in cadencer progress event and stored in global variable

UserInput.

UserInput:=inpNone;
if IsKeyDown(VK_LEFT) then UserInput:=inpMoveL;
...

It needs to say a few words about capturing keyboard and mouse input. Always use necessary

minimum of code to capture the controller input in global variable. Especially OnMouseMove event

can cause big slowdown if you write too much code in it. Windows consider mouse movements first

priority and try to execute its code before other procedures. If you write complicated code in this

event the system becomes flooded with this code trying to execute it with the smallest mouse

movements. Not enough computing power remains for cadencer progress. All you should write in

OnMouseMove is MouseX := X; MouseY := Y;

Information about current score is updated every cadencer step with TGLHUDText object

placed in upper left corner.

T3DTBlock class

The core of the program is going to be our new class derived from TGLDummyCube. This

class will represent individual blocks. The dummy cube will take care of movements and rotations of

the whole block. It will have TGLCube children as boxes in the block. Each cube will compare its Z

position with FloodLevels to detect collisions. We are going to use Round function to snap the cubes

position on X grid.

The block will be initially created at position [0,0,0]. One central TGLCube will be added to

every block again at position [0,0,0]. Random number of cubes will be added in four directions. The

block will form a cross, L-shape or line. Five cubes in a row maximum. Cubes should be 0.95 units

in size and positioned at [1,0,0], [2,0,0], [0,0,1], [0,0,2], [-1,0,0] and so on. All cubes will have Y

position 0 at all times. After all cubes are created the block is repositioned to starting position well

above playing field with random X position. Boolean value called Active will represent status of the

block. At beginning block will be active (descending), once it will land on ground or other blocks we

will set Active to false.

If the cube is active it is moved tiny bit down the Z axis during block’s progress event:

Position.Z := Position.Z – deltaTime * speed. Then we check for collisions. We have to process all

children and compare their absolute positions with both sides (X<-5 and X>5) and bottom (Z<0) of

the playing field. We also have to check against other blocks already in the playing field:

var
absPos: TVector;

Page 33/36

setVector(absPos, Children[i].AbsolutePosition);
if (absPos[2] – 1) < FloodLevels[Round(absPos[0])] then …

This code fragment detects if the cube iterated by Children[i] is lower then value stored in

FloodLevels field. Absolute position of the cube is stored in absPos variable. This is important

because absolute position is real position in world coordinate system while Position is position

relative to the parent. Which member of FloodLevels field is to be compared against is determined

by rounding absolute X position of the cube. If the cube rests on ground or other cube, Active property

is set to false, we add points to score and program is informed that another cube can be created.

To respond to user actions we check which T3DTInput status is active and do the task:

case Form1.UserInput of
inpMoveL: Slide(-1);

inpMoveR: Slide(1);

inpRotateL: Pitch(-90);

inpRotateR: Pitch(90);

end;

Slide and Pitch functions are GLScene functions to move and rotate objects. Now we should

check for collisions again and undo the movement or rotation if the new position of block is not valid.

The last thing is to detect if the game is over. This can be done in cadencer progress event.

We can simply check FloodLevels if any value is over 20. If it is so disable cadencer and display

massage with number of points achieved and game over information.

Homework

This is it. With some tweaking that is all you need to make Tetris game. I chose this example

to show you how powerful GLScene is. Not only that you can set up all game environment design

time. You take advantage of functions that move and rotate objects together with their children. The

code to copy this behaviour would be quite complex.

In the last paragraph I will give you more ideas to think about to make the game better.

· Make some interface. The program needs menus desperately. Use standard Delphi or GUI

components.

· Let the game be restartable with levels and increasing difficulty – game speed.
· Make real collisions with collision manager and let the blocks rotate and slide smoothly.

That would require more advanced solutions: can the block collide while rotating?

· Add sound and music. Player should hear sound feedback for his actions.

· Make it customizable – graphics, sound, keyboard options, size of playing field and blocks.

· Make score table with best results together with player’s name that is saved.

· Make it look prettier. Put different textures on blocks. Add particle effects, sky box, lens

flare. The game can take place in a canyon with bridge above. Passing cars or trains would

drop blocks. Or King-Kong on top of two skyscrapers can throw the blocks down. The limit

is only your imagination.

· Add the third dimension to the game play. But be careful! Many 3D remakes of old 2D

games were not successful because they became too complicated and difficult to play. You

should thing carefully about camera controls. The game can pause during camera

Page 34/36

repositioning. Make some blocks transparent. Add TGLXYZGrid for easier orientation.

· Write narrative story for Tetris – now that is a challenge!

Let me give you one last advice. There is more to programming than just clean code. Don’t look

only for technical documentation like this one to make your programs better. There is a lot of articles

about programming theory other than technical on Internet. Users now are choosier. Your application

has to be more user friendly than other applications of same kind. Even if you are making freeware

you still want users to be happy about it. You should give same time to designing and debugging as

to programming itself. It pays of!

Appendix 1

Image Lists

Image Collections

Supporting high-DPI images with the Image Collection and

Virtual ImageList components

 1 Overview

 2 Using the Image Collection Component

▪ 2.1 The Image Collection Component Editor

▪ 2.2 Load existing TImageList into TImageCollection

 3 Using the Virtual ImageList Component

▪ 3.1 The Virtual ImageList Component Editor

 4 Using the Image Component with Multi-Resolutions

 5 Best Practices

▪ 5.1 Multiple sizes

▪ 5.2 Supporting high DPI in your applications: Converting old

TImageLists

▪ 5.3 Smooth scaling when drawing on a TCanvas

 6 See Also

Overview

RAD Studio allows you to include scaling, high-DPI, multiple-resolution images in your
Windows VCL applications by using the TImageCollection component in combination
with the TVirtualImageList component.

Attention: If you are using FireMonkey for cross-platform applications, please see the

ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Supporting_high-DPI_images_with_the_Image_Collection_and_Virtual_ImageList_components.htm#Overview
ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Supporting_high-DPI_images_with_the_Image_Collection_and_Virtual_ImageList_components.htm#Using_the_Image_Collection_Component
ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Supporting_high-DPI_images_with_the_Image_Collection_and_Virtual_ImageList_components.htm#The_Image_Collection_Component_Editor
ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Supporting_high-DPI_images_with_the_Image_Collection_and_Virtual_ImageList_components.htm#Load_existing_TImageList_into_TImageCollection
ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Supporting_high-DPI_images_with_the_Image_Collection_and_Virtual_ImageList_components.htm#Using_the_Virtual_ImageList_Component
ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Supporting_high-DPI_images_with_the_Image_Collection_and_Virtual_ImageList_components.htm#The_Virtual_ImageList_Component_Editor
ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Supporting_high-DPI_images_with_the_Image_Collection_and_Virtual_ImageList_components.htm#Using_the_Image_Component_with_Multi-Resolutions
ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Supporting_high-DPI_images_with_the_Image_Collection_and_Virtual_ImageList_components.htm#Best_Practices
ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Supporting_high-DPI_images_with_the_Image_Collection_and_Virtual_ImageList_components.htm#Multiple_sizes
ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Supporting_high-DPI_images_with_the_Image_Collection_and_Virtual_ImageList_components.htm#Supporting_high_DPI_in_your_applications:_Converting_old_TImageLists
ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Supporting_high-DPI_images_with_the_Image_Collection_and_Virtual_ImageList_components.htm#Supporting_high_DPI_in_your_applications:_Converting_old_TImageLists
ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Supporting_high-DPI_images_with_the_Image_Collection_and_Virtual_ImageList_components.htm#Smooth_scaling_when_drawing_on_a_TCanvas
ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Supporting_high-DPI_images_with_the_Image_Collection_and_Virtual_ImageList_components.htm#See_Also
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm

TImageList component and the FireMonkey guide to using TImageLists as central

image repositories.

These paired components separate the concept of a collection of images (where each
logical image can have multiple resolutions) from a list of images at a single specific
size used for a control. Briefly, load multiple resolutions of images into an image
collection. The image list holds a set of images sourced from an image collection and
presents them at a specific size (say, 16x16.) Images are smoothly resized and scaled,
and the image list’s actual presentation resolution can change based on DPI. It is fully
compatible with and is a drop-in replacement for traditional image lists, including
providing a HIMAGELIST handle, and can be used by both VCL controls and any code
using Windows API image list calls.

Images support alpha channels, and you can load PNGs into the image collection. You
can also load old-style color-keyed transparency bitmaps.

Using the Image Collection Component

TImageCollection allows you to store, scale, and draw images with native formats
using the TWICImage class.

Each image in the collection can have a number of versions with different sizes. The
component chooses the optimal size for scaling or uses an image if the available size
is equal to the required size. It can also create a scaled 32-bit TBitmap version with an
alpha channel, which can be directly added in TCustomImageList.

TImageCollection is inherited from TCustomImageCollection class
(Vcl.BaseImageCollection unit), which defines the base methods for a collection.

The Image Collection Component Editor

To open the Image Collection Editor, place a TImageCollection on your form or data
module and either double-click the component in the form or right-click it and select the
Show collection editor… option from the context menu. You can also double-click the
TImageCollection.Images property in the Object Inspector.

The Image Collection Editor window allows you to add images to the component and
organize them into categories.

Click Add to display the Open dialog box and browse to the folder where your images
are stored. You can add one image at a time or you can select multiple images from a
folder and add them simultaneously. The Image Collection Editor displays the images
in alphabetical order.

ms-its:fmx.chm::/FMX.ImgList.TImageList.htm
ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Using_TImageList_Image_Lists_as_Centralized_Collections_of_Images.htm
ms-its:c:/program%20files%20(x86)/embarcadero/studio/23.0/help/Doc/topics.chm::/Using_TImageList_Image_Lists_as_Centralized_Collections_of_Images.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
ms-its:vcl.chm::/Vcl.Graphics.TWICImage.htm
ms-its:vcl.chm::/Vcl.ImgList.TCustomImageList.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.Images.htm

When adding images, you may want to add multiple sizes of the same image. For
example, you may have a pixel-tweaked 16x16 version of an image, and then a larger
one that should be drawn ans scaled for other sizes. To do this, give the multiple
version of a single image the same filename plus a separator character (such as a
hyphen) and then a number indicating the size in pixels: for example, foo-16.png and
foo-64.png. Then check the Check size in file name checkbox and change the image
size separator from the drop-down options to the character your images use to
separate the common name and the image size (in the previous example, a hyphen "-
"). This automatically recognizes multiple resolutions of the same image with similar file
names but for the pixel size, and add them as multiple resolutions of a single image in
the collection.

The Image size separator setting controls how it parses to separate the common
name and the image size, and contains options for common icon and image size
filename conventions.

Note: The Image Collection Editor requires the use of a separator in the number of

the filename to be able to recognize the different sizes of the same image.

Tip: Use the Add… button on the top right to add multiple sources for one image or

the collection. When adding various sources for the collection, make sure that the

source files have the same names as the first set of images you added to the

collection.

To add sources to a specific image, select the image from the collection and click

Add… at the bottom of the window to display the Open dialog box and locate the

image file.

Categories are currently only used for organization. (In VCL controls, images are still
referred to only by index.)

To organize images in a category, select the images and click Set Category.

Use the Delete button on the top section to remove specific images from the collection
and the Clear button to remove all the images in the collection.

Attention: When you delete an image from the collection, the VirtualImageList finds

images by Index.

After you add images to the collection, you can select any of the available images and
perform the following actions:

 Modify the image Name.

 Assign a custom Description for the image.

 Assign an index value to modify the order of the images inside the collection.

 Add alternative sources for the same image.

 Delete a source of the image.

 Replace an existing source of an image.

Attention: When you rename and replace an image, follow these steps:

 Change index[name] and Apply changes (VirtualImageList update images

by index[name] using name[index] from collection).

 Change name[index] and Apply changes (VirtualImageList update images

by name[index] using index[name] from collection).

 Save an image with a different name (Save as…).

Tip: You can also click-and-drag an image to a different position to modify its index

value.

Load existing TImageList into TImageCollection

To assist in converting old-style image lists to the new system, you can load images
from old TImageList-s into a TImageCollection. When you have multiple sizes of the
same image in different TImageList-s, you can load both at once; the images are
merged so that the image collection contains multiple resolutions of the same image.

To be able to load images from TImageList into TImageCollection, you need to have
both components in the same form.

Follow the steps below to load images from an existing TImageList on the form into
TImageCollection:

1. Right-click the TImageCollection component in the form and select the

Load from existing TImageList… option from the contextual menu.

2. Select the TImageList you want to load and assign a category for the

images. You can select more than one TImageList. This is especially

ms-its:vcl.chm::/Vcl.VirtualImageList.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.htm
ms-its:fmx.chm::/FMX.ImgList.TImageList.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
ms-its:fmx.chm::/FMX.ImgList.TImageList.htm
ms-its:fmx.chm::/FMX.ImgList.TImageList.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
ms-its:fmx.chm::/FMX.ImgList.TImageList.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm

useful to load multiple resolutions of the same image, previously stored in

multiple image lists.

3. Click Load in order to load the images in the same order of the Image

Lists.

4. Click Load with merging to merge different image sources from different

Image Lists. When loading with merging, the Image Lists must have the

same count of image files and different image sizes.

5. Click View Collection… to verify how the images are imported in the

TImageCollection without closing the dialog box.

6. Click OK to apply the settings and close the dialog box.

7. Click Apply to apply a specific set of changes and continue configuring

settings.

8. Click Cancel to close the dialog discarding all changes to the Image

Collection.

Attention: If you see images that do not render correctly after importing from a

traditional TImageList to a TImageCollection or TVirtualImageList, such as having

white edges or other artifacts, please check the TImageList’s ColorDepth property.

Sometimes, a FMX TImageList can have it set to cd32Bit while the images it holds

are in fact 24-bit or 16-bit. Make sure the ImageList’s color depth is set to cd32Bit if

the bitmaps it holds are truly 32-bit, including an alpha channel.

Using the Virtual ImageList Component

TVirtualImageList allows you to generate a list of images and apply changes to all the
images simultaneously.

TVirtualImageList uses TCustomImageCollection (TImageCollection) to generate
a dynamic list of internal images.

With TVirtualImageList you can set custom width and height properties and the
component automatically scales all images. When DPI changes, it scales the images
for proper display on high DPI displays.

Note: TVirtualImageList automatically inherits the DPI of its owner (TCustomForm or

TCustomFrame) when they are scaled.

VCL controls can use TVirtualImageList without modifications because it is inherited

from TCustomImageList.

Note: To add, insert, and/or replace bitmaps in TVirtualImageList you must use

methods to add, insert, and/or replace items from the ImageCollection.

The Virtual ImageList Component Editor

To be able to use the Virtual ImageList component and the Component Editor, you
need to set the ImageCollection property in the Object Inspector first.

ms-its:fmx.chm::/FMX.ImgList.TImageList.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:fmx.chm::/FMX.ImgList.TImageList.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:vcl.chm::/Vcl.ImgList.TCustomImageList.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm

To open the Virtual Image List Editor, you can double-click the component in the
form or right-click it and select the Show image list editor… option from the context
menu.

If you set the AutoFill property to True, the virtual Image List will be auto-populated
with all the images in the collection. Otherwise, you can manually add images from the
collection to the list, by using the image list editor.

The Virtual Image List Editor window allows you to add images to the component,
include disabled versions of the images, and organize them into categories.

Click Add to open the associated Image Collection and select the images you want to
include in the Virtual Image List. You can select specific images from the Image
Collection or select all images from the collection or an existing category.

Additionally, the Virtual Image List Editor window has the following options:

 Add Disabled: Allows you to create and add lower opacity or grayscale

versions of the images you select. The appearance of disabled images is

controlled by the DisabledGrayscale and DisabledOpacity properties of

the image list.

ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.AutoFill.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.DisabledGrayscale.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.DisabledOpacity.htm

 Add with Disabled Copy: Allows you to add images from the associated

Image Collection and simultaneously create and add disabled versions of the

images you select.

 Replace: Allows you to replace a selected image.

Attention: You can only replace an image in the Virtual Image List component with an

image from the Image Collection component that is not in the list of images you

previously added.

 Set Category: Allows you to group images into categories. To create a

category, select the images you want to include in a category and click Set

Category…, enter the name for the Category, and click OK to display it in

the Categories list. The Component Editor adds the category name to the

image name.

 Make All Disabled: Converts the images you added previously into disabled

images.

After you add images to the Virtual Image List Component, you can perform the
following actions:

 Reload: Reloads image names and descriptions from the ImageCollection.

ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm

 Delete: Removes the selected image or images from the Virtual Image List

component.

 Clear: Removes all the images in the collection.

 Name: Modify the image name.

 Description: Assign a custom description for the image.

Using the Image Component with Multi-Resolutions

The TVirtualImage component supports multiple resolutions for a TImage-like
component. The source of images come from an ImageCollection, and can have
multiple resolutions depending on the screen DPI. The component uses the proper
version depending on the monitor that is displayed.

Some configuration settings and key properties of the VirtualImage component are:
ImageCollection, ImageHeight, ImageIndex, ImageName, and ImageWidth.

When you use the bitmap scaling logic for smooth drawing of any VCL TGraphic when
scaled (eg StretchDraw), there is a TScaledGraphicDrawer class to enable HQ scaling
drawing on the fly for different TGraphic classes, with calls like:

MyBitmap.EnableScaler(TD2DGraphicScaler);

Image1.Picture.Graphic.EnableScaler(TWICGraphicScaler);

Different solutions offer combinations of better or worse rendering and slower or faster
performance. You can write custom TScaledGraphicDrawer derived classes defining
additional scaling algorithms.

Best Practices

TVirtualImageList components scale with the DPI of the form on which they are
placed. This allows controls on that form painting with the image list to always paint at
the right scaled resolution. However, this means two things:

ms-its:vcl.chm::/Vcl.VirtualImage.TVirtualImage.htm
ms-its:vcl.chm::/Vcl.VirtualImage.TVirtualImage.htm
ms-its:vcl.chm::/Vcl.VirtualImage.TCustomVirtualImage.ImageCollection.htm
ms-its:vcl.chm::/Vcl.VirtualImage.TCustomVirtualImage.ImageHeight.htm
ms-its:vcl.chm::/Vcl.VirtualImage.TCustomVirtualImage.ImageIndex.htm
ms-its:vcl.chm::/Vcl.VirtualImage.TCustomVirtualImage.ImageName.htm
ms-its:vcl.chm::/Vcl.VirtualImage.TCustomVirtualImage.ImageWidth.htm
ms-its:vcl.chm::/Vcl.Graphics.TGraphic.htm
ms-its:vcl.chm::/Vcl.Graphics.TScaledGraphicDrawer.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm

 Controls should always refer to an image list on the same form. If a control

refers to an image list on a different form, then when the two forms have a

different DPI, such as being on different screens, the images may draw

incorrectly.

 A TVirtualImageList should always be placed on a form, not a data module.

Forms have an associated monitor and DPI; data modules do not. A

TImageCollection can be placed anywhere, since they are simply the

source, and are unaffected by DPI changes: they are the source, while the

virtual image list is the presentation.

Thus, if controls on a form use an image list, always place one or more
TVirtualImageLists on that form and have controls refer to those local, same-form
image lists only. Those TVirtualImageLists can all refer to the same
TImageCollection.

The virtual image collection is a very useful control, separating the concept of a
collection of images (TImageCollection) from a set of images at a specific, although
scaling with DPI, size (TVirtualImageList). An image collection is not affected by DPI
changes since it is simply a container. Virtual image lists can refer to images from a
collection on another form or data module. Good design is to have a single image
collection for related images - say, all toolbar and menu images - on your application’s
main form or even better a shared data module. Other forms will each have their own
virtual image list specific to each form, where those image lists use the central image
collection.

Multiple sizes

If you need multiple sizes of the same image, such as for a TListView with
SmallImages and LargeImages properties, use two TVirtualImageLists as you would
with traditional TImageLists. Both virtual image lists refer to the same image collection.

Supporting high DPI in your applications: Converting old
TImageLists

It is common to convert VCL applications from using TImageLists to
TVirtualImageLists, allowing an upgrade in visual quality as well as assisting high DPI
support.

TVirtualImageList is a descendant of TCustomImageList, so is a drop-in replacement
at the code level, as well as providing a HIMAGELIST Handle property for directly
calling Windows API methods.

There are two suggested approaches to convert your app to use the new high DPI
image lists.

First, you may also be upgrading your icons at the same time, from an older style to a
more modern style, or colorkeyed transparency to 32bit images with an alpha channel.
If you do this, you may find it easiest to simply add these to a new image collection,
create new image lists, and change your components to point at the new image lists.

Second, you may instead want to upgrade step by step, replacing old images
incrementally or even not at all (although we do recommend taking advantage of the
32bpp alpha channel support in the new system.) To do so, place a TImageCollection

ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:fmx.chm::/FMX.ListView.TListView.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:fmx.chm::/FMX.ImgList.TImageList.htm
ms-its:fmx.chm::/FMX.ImgList.TImageList.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:fmx.chm::/FMX.ImgList.TCustomImageList.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm

and right-click and select Load from Existing TImageList(s). Select the image lists,
and choose to either add image, or to merge images if they contain the same images
at multiple resolutions. See TImageList into TImageCollection, load existing TImageList
into TImageCollection above for full information.

This will result in your image collection containing your old images. Although using old
images you will not see an increase in graphic quality or transparency as you would if
you use newly designed images, this does allow you to have images scale with each
form’s DPI. Create new TVirtualImageList components on each form and add the
images from the collection: they will keep the same relative order, so same indexes
unless there were images already in the collection. Then, change your components to
use the new TVirtualImageLists.

Smooth scaling when drawing on a TCanvas

TCanvas.StretchDraw allows drawing a TGraphic to an arbitrary rectangle. While the
TGraphic subclass implementation determines how to do this, in practice VCL drawing
(such as for TBitmap) usually uses nearest neighbour resampling through GDI, often
not resulting in ideal scaled or stretched image quality.

You can use a TImageCollection to hold an image (internally stored as and drawn with
WIC), and draw it to an arbitrary rectangle. Doing so will use high quality resampling.

Links

GLScene home page www.glscene.org

Sourceforge site https://sourceforge.net/projects/glscene/

Github mirror https://github.com/glscene

Gitflic mirror https://gitflic.ru/user/glscene

If you have any reasonable question, go ahead and ask at GLScene forum. If the question is not stupid

you will get qualified answer in short time:

GLScene forum https://sourceforge.net/p/glscene/discussion/

ms-its:fmx.chm::/FMX.ImgList.TImageList.htm
ms-its:fmx.chm::/FMX.ImgList.TImageList.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
ms-its:fmx.chm::/FMX.ImgList.TImageList.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:vcl.chm::/Vcl.VirtualImageList.TVirtualImageList.htm
ms-its:vcl.chm::/Vcl.ImageCollection.TImageCollection.htm
http://www.glscene.org/
https://sourceforge.net/projects/glscene/
https://github.com/glscene
https://gitflic.ru/user/glscene
https://sourceforge.net/p/glscene/discussion/

Page 36/36

Conclusion

If you’ve read this far you should have basic understanding how is GLScene organized, what

it can be used for, what are its parts and some programming techniques specific for GLScene. Now I

suggest you go back to GLScene demos. If you failed to understand what is going on before, you

should have the idea now. It is sometimes difficult to find the function or procedure that you are

looking for among the myriad of GLScene features. But all functions have reasonable names and

soon you will find those you need for your purpose. After you are sure you can follow the demos you

can start to create your own applications.

Index

References

1. OpenGL Programming Guide. Eighth Edition. The Official Guide to Learning OpenGL version 4.3.

2. Randi J. Rost (2004). OpenGL Shading Language. ISBN 0-321-19789-5.

