123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669 |
- unit GR32.Noise.Simplex;
- (* ***** BEGIN LICENSE BLOCK *****
- * Version: MPL 1.1 or LGPL 2.1 with linking exception
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * Alternatively, the contents of this file may be used under the terms of the
- * Free Pascal modified version of the GNU Lesser General Public License
- * Version 2.1 (the "FPC modified LGPL License"), in which case the provisions
- * of this license are applicable instead of those above.
- * Please see the file LICENSE.txt for additional information concerning this
- * license.
- *
- * The Original Code is Simplex Noise for Graphics32
- *
- * The Initial Developer of the Original Code is
- * Anders Melander <[email protected]>
- *
- *
- * Portions created by the Initial Developer are Copyright (C) 2024
- * the Initial Developer. All Rights Reserved.
- *
- * ***** END LICENSE BLOCK ***** *)
- interface
- {$include GR32.inc}
- //------------------------------------------------------------------------------
- //
- // Simplex Noise
- //
- //------------------------------------------------------------------------------
- // References:
- //
- // - "Noise hardware"
- // Ken Perlin
- // Real-Time Shading SIGGRAPH Course Notes (2001),
- // http://www.csee.umbc.edu/~olano/s2002c36/ch02.pdf
- //
- // - "Simplex noise demystified"
- // Stefan Gustavson
- // Linköping University, Sweden ([email protected])
- // 2005-03-22 (with 2012 errata)
- // https://github.com/stegu/perlin-noise/blob/master/simplexnoise.pdf
- //
- //------------------------------------------------------------------------------
- //
- // Adapted from code by Stefan Gustavson
- //
- // https://github.com/stegu/perlin-noise/blob/master/src/simplexnoise1234.c
- // https://github.com/stegu/perlin-noise/blob/master/src/sdnoise1234.c
- //
- // Original Pascal port by Teemu Valo for nxPascal.
- //
- // This is Stefan Gustavson's original copyright notice:
- //
- // /* sdnoise1234, Simplex noise with true analytic
- // * derivative in 1D to 4D.
- // *
- // * Copyright © 2003-2011, Stefan Gustavson
- // *
- // * Contact: [email protected]
- // *
- // * This library is public domain software, released by the author
- // * into the public domain in February 2011. You may do anything
- // * you like with it. You may even remove all attributions,
- // * but of course I'd appreciate it if you kept my name somewhere.
- // *
- // * This library is distributed in the hope that it will be useful,
- // * but WITHOUT ANY WARRANTY; without even the implied warranty of
- // * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- // * General Public License for more details.
- // */
- //
- //------------------------------------------------------------------------------
- //------------------------------------------------------------------------------
- //
- // TSimplexNoise
- //
- //------------------------------------------------------------------------------
- type
- TSimplexNoise = class
- private
- class var
- FSeedMultiplier: Int64;
- private
- const
- // Literal values since Delphi can't compute Sqrt at compile time :-(
- F2 = 0.36602540378443864676372317075294; // 0.5 * (Sqrt(3.0) - 1.0)
- G2 = 0.21132486540518711774542560974902; // (3.0 - Sqrt(3.0)) / 6.0
- F3 = 1.0 / 3.0;
- G3 = 1.0 / 6.0;
- F4 = 0.30901699437494742410229341718282; // (Sqrt(5.0) - 1.0) / 4.0
- G4 = 0.13819660112501051517954131656344; // (5.0 - Sqrt(5.0)) / 20.0
- private
- // To remove the need for index wrapping, we double the permutation table length
- FPerm: array[0..511] of byte;
- FPermMod12: array[0..511] of byte;
- FSeed: Int64;
- procedure InitWithSeed(const ASeed: Int64);
- class constructor Create;
- public
- constructor Create; overload;
- constructor Create(const ASeed: Int64); overload;
- function Noise(const x, y: Double): Double; overload;
- function Noise(const x, y, z: Double): Double; overload;
- function Noise(const x, y, z, w: Double): Double; overload;
- property Seed: Int64 read FSeed;
- class property SeedMult: Int64 read FSeedMultiplier write FSeedMultiplier;
- end;
- implementation
- uses
- Math,
- GR32_LowLevel;
- type
- T8Bytes = array[0..7] of byte;
- type
- TVector3 = record
- case Integer of
- 0: (V: array[0..2] of Double;);
- 1: (X: Double;
- Y: Double;
- Z: Double;);
- end;
- TVector4 = record
- case Integer of
- 0: (V: array[0..3] of Double;);
- 1: (X: Double;
- Y: Double;
- Z: Double;
- W: Double;);
- end;
- var
- Gradient3D: array[0..11] of TVector3 = (
- (x: 1; y: 1; z: 0), (x:-1; y: 1; z: 0), (x: 1; y:-1; z: 0), (x:-1; y:-1; z: 0),
- (x: 1; y: 0; z: 1), (x:-1; y: 0; z: 1), (x: 1; y: 0; z:-1), (x:-1; y: 0; z:-1),
- (x: 0; y: 1; z: 1), (x: 0; y:-1; z: 1), (x: 0; y: 1; z:-1), (x: 0; y:-1; z:-1));
- Gradient4D: array[0..31] of TVector4 = (
- (x: 0; y: 1; z: 1; w: 1), (x: 0; y: 1; z: 1; w:-1), (x: 0; y: 1; z:-1; w: 1), (x: 0; y: 1; z:-1; w:-1),
- (x: 0; y:-1; z: 1; w: 1), (x: 0; y:-1; z: 1; w:-1), (x: 0; y:-1; z:-1; w: 1), (x: 0; y:-1; z:-1; w:-1),
- (x: 1; y: 0; z: 1; w: 1), (x: 0; y:-1; z: 1; w:-1), (x: 0; y:-1; z:-1; w: 1), (x: 0; y:-1; z:-1; w:-1),
- (x:-1; y: 0; z: 1; w: 1), (x:-1; y: 0; z: 1; w:-1), (x:-1; y: 0; z:-1; w: 1), (x:-1; y: 0; z:-1; w:-1),
- (x: 1; y: 1; z: 0; w: 1), (x: 1; y: 1; z: 0; w:-1), (x: 1; y:-1; z: 0; w: 1), (x: 1; y:-1; z: 0; w:-1),
- (x:-1; y: 1; z: 0; w: 1), (x:-1; y: 1; z: 0; w:-1), (x:-1; y:-1; z: 0; w: 1), (x:-1; y:-1; z: 0; w:-1),
- (x: 1; y: 1; z: 1; w: 0), (x: 1; y: 1; z:-1; w: 0), (x: 1; y:-1; z: 1; w: 0), (x: 1; y:-1; z:-1; w: 0),
- (x:-1; y: 1; z: 1; w: 0), (x:-1; y: 1; z:-1; w: 0), (x:-1; y:-1; z: 1; w: 0), (x:-1; y:-1; z:-1; w: 0));
- p: array[byte] of byte = (151,160,137,91,90,15,
- 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
- 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
- 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
- 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
- 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
- 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
- 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
- 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
- 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
- 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
- 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
- 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180);
- function Dot(const v: TVector3; const x, y: Double): Double; overload; {$IFDEF USEINLINING} inline; {$ENDIF}
- begin
- Result := (v.x * x) + (v.y * y);
- end;
- function Dot(const v: TVector3; const x, y, z: Double): Double; overload; {$IFDEF USEINLINING} inline; {$ENDIF}
- begin
- Result:= (v.x * x) + (v.y * y) + (v.z * z);
- end;
- function Dot(const v: TVector4; const x, y, z, w: Double): Double; overload; {$IFDEF USEINLINING} inline; {$ENDIF}
- begin
- Result := (v.x * x) + (v.y * y) + (v.z * z) + (v.w * w);
- end;
- //------------------------------------------------------------------------------
- //
- // TSimplexNoise
- //
- //------------------------------------------------------------------------------
- class constructor TSimplexNoise.Create;
- begin
- FSeedMultiplier := 85123154182917;
- end;
- //------------------------------------------------------------------------------
- // Seed overflowing is expected and ok
- {$IFOPT Q+}{$DEFINE Q_PLUS}{$OVERFLOWCHECKS OFF}{$ENDIF}
- constructor TSimplexNoise.Create;
- begin
- InitWithSeed(Random(High(Integer)));
- end;
- constructor TSimplexNoise.Create(const ASeed: Int64);
- begin
- InitWithSeed(ASeed * FSeedMultiplier);
- end;
- {$IFDEF Q_PLUS}{$OVERFLOWCHECKS ON}{$UNDEF Q_PLUS}{$ENDIF}
- //------------------------------------------------------------------------------
- procedure TSimplexNoise.InitWithSeed(const ASeed: Int64);
- var
- i: integer;
- begin
- FSeed := ASeed;
- // Pretty crappy seed hash but most likely "good enough"
- for i := 0 to High(FPerm) do
- begin
- FPerm[i] := p[i and 255] xor T8Bytes(ASeed)[i and 7];
- FPermMod12[i] := Byte(FPerm[i] mod 12);
- end;
- end;
- //------------------------------------------------------------------------------
- // 2D simplex
- //------------------------------------------------------------------------------
- function TSimplexNoise.Noise(const x, y: Double): Double;
- var
- i1, j1: integer; // Offsets for second (middle) corner of simplex in (i,j) coords
- i, j, ii, jj: integer;
- gi0, gi1, gi2: integer;
- n0, n1, n2: Double; // Noise contributions from the three corners
- s, t: Double;
- X0, Y0: Double;
- xx, yy: Double;
- x1, y1: Double;
- x2, y2: Double;
- t0, t1, t2: Double;
- begin
- // Skew the input space to determine which simplex cell we're in
- s := (x + y) * F2; // Hairy factor for 2D
- i := FastFloor(x + s);
- j := FastFloor(y + s);
- t := (i + j) * G2;
- X0 := i - t; // Unskew the cell origin back to (x,y) space
- Y0 := j - t;
- xx := x - X0; // The x,y distances from the cell origin
- yy := y - Y0;
- // For the 2D case, the simplex shape is an equilateral triangle.
- // Determine which simplex we are in.
- if (xx > yy) then
- begin // lower triangle, XY order: (0,0)->(1,0)->(1,1)
- i1:=1;
- j1:=0;
- end else
- begin // upper triangle, YX order: (0,0)->(0,1)->(1,1)
- i1:=0;
- j1:=1;
- end;
- // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
- // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
- // c = (3-sqrt(3))/6
- x1 := xx - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
- y1 := yy - j1 + G2;
- x2 := xx - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
- y2 := yy - 1.0 + 2.0 * G2;
- // Work out the hashed gradient indices of the three simplex corners
- ii := i and 255;
- jj := j and 255;
- gi0 := FPermMod12[ii + FPerm[jj ]];
- gi1 := FPermMod12[ii + i1 + FPerm[jj + j1]];
- gi2 := FPermMod12[ii + 1 + FPerm[jj + 1 ]];
- // Calculate the contribution from the three corners
- t0 := 0.5 - (xx * xx) - (yy * yy);
- if (t0 < 0) then
- n0 := 0.0
- else
- begin
- t0 := t0 * t0;
- n0 := t0 * t0 * Dot(Gradient3D[gi0], xx, yy); // (x,y) of Gradient3D used for 2D gradient
- end;
- t1 := 0.5 - (x1 * x1) - (y1 * y1);
- if (t1 < 0) then
- n1 := 0.0
- else
- begin
- t1 := t1 * t1;
- n1 := t1 * t1 * Dot(Gradient3D[gi1], x1, y1);
- end;
- t2 := 0.5 - (x2 * x2) - (y2 * y2);
- if (t2 < 0) then
- n2 := 0.0
- else
- begin
- t2 := t2 * t2;
- n2 := t2 * t2 * Dot(Gradient3D[gi2], x2, y2);
- end;
- // Add contributions from each corner to get the final noise value.
- // The result is scaled to return values in the interval [-1,1].
- Result := 70.14805770653952 * (n0 + n1 + n2);
- end;
- //------------------------------------------------------------------------------
- // 3D simplex
- //------------------------------------------------------------------------------
- function TSimplexNoise.Noise(const x, y, z: Double): Double;
- var
- i1, j1, k1: integer; // Offsets for second corner of simplex in (i,j,k) coords
- i2, j2, k2: integer; // Offsets for third corner of simplex in (i,j,k) coords
- i, j, k, ii, jj, kk: integer;
- gi0, gi1, gi2, gi3: integer;
- n0, n1, n2, n3: Double; // Noise contributions from the four corners
- s, t: Double;
- X0, Y0, Z0: Double;
- xx, yy, zz: Double;
- x1, y1, z1: Double;
- x2, y2, z2: Double;
- x3, y3, z3: Double;
- t0, t1, t2, t3: Double;
- begin
- // Skew the input space to determine which simplex cell we're in
- s := (x + y + z) * F3; // Very nice and simple skew factor for 3D
- i := FastFloor(x + s);
- j := FastFloor(y + s);
- k := FastFloor(z + s);
- t := (i + j + k) * G3;
- X0 := i - t; // Unskew the cell origin back to (x,y,z) space
- Y0 := j - t;
- Z0 := k - t;
- xx := x - X0; // The x,y,z distances from the cell origin
- yy := y - Y0;
- zz := z - Z0;
- // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
- // Determine which simplex we are in.
- if (xx >= yy) then
- begin
- if (yy >= zz) then
- begin
- i1 := 1; j1 := 0; k1 := 0; i2 := 1; j2 := 1; k2 := 0; // X Y Z order
- end else
- if (xx >= zz) then
- begin
- i1 := 1; j1 := 0; k1 := 0; i2 := 1; j2 := 0; k2 := 1; // X Z Y order
- end else
- begin
- i1 := 0; j1 := 0; k1 := 1; i2 := 1; j2 := 0; k2 := 1; // Z X Y order
- end;
- end else
- begin // xx < yy
- if (yy < zz) then
- begin
- i1 := 0; j1 := 0; k1 := 1; i2 := 0; j2 := 1; k2 := 1; // Z Y X order
- end else
- if(xx < zz) then
- begin
- i1 := 0; j1 := 1; k1 := 0; i2 := 0; j2 := 1; k2 := 1; // Y Z X order
- end else
- begin
- i1 := 0; j1 := 1; k1 := 0; i2 := 1; j2 := 1; k2 := 0; // Y X Z order
- end;
- end;
- // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
- // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
- // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
- // c = 1/6.
- x1 := xx - i1 + G3; // Offsets for second corner in (x,y,z) coords
- y1 := yy - j1 + G3;
- z1 := zz - k1 + G3;
- x2 := xx - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
- y2 := yy - j2 + 2.0 * G3;
- z2 := zz - k2 + 2.0 * G3;
- x3 := xx - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
- y3 := yy - 1.0 + 3.0 * G3;
- z3 := zz - 1.0 + 3.0 * G3;
- // Work out the hashed gradient indices of the four simplex corners
- ii := i and 255;
- jj := j and 255;
- kk := k and 255;
- gi0 := FPermMod12[ii + FPerm[jj + FPerm[kk ]]];
- gi1 := FPermMod12[ii + i1 + FPerm[jj + j1 + FPerm[kk + k1]]];
- gi2 := FPermMod12[ii + i2 + FPerm[jj + j2 + FPerm[kk + k2]]];
- gi3 := FPermMod12[ii + 1 + FPerm[jj + 1 + FPerm[kk + 1 ]]];
- // Calculate the contribution from the four corners
- t0 := 0.6 - (xx * xx) - (yy * yy) - (zz * zz);
- if (t0 < 0) then
- n0 := 0.0
- else
- begin
- t0 := t0 * t0;
- n0 := t0 * t0 * Dot(Gradient3D[gi0], xx, yy, zz);
- end;
- t1 := 0.6 - (x1 * x1) - (y1 * y1) - (z1 * z1);
- if (t1 < 0) then
- n1 := 0.0
- else
- begin
- t1 := t1 * t1;
- n1 := t1 * t1 * Dot(Gradient3D[gi1], x1, y1, z1);
- end;
- t2 := 0.6 - (x2 * x2) - (y2 * y2) - (z2 * z2);
- if (t2 < 0) then
- n2 := 0.0
- else
- begin
- t2 := t2 * t2;
- n2 := t2 * t2 * Dot(Gradient3D[gi2], x2, y2, z2);
- end;
- t3 := 0.6 - (x3 * x3) - (y3 * y3) - (z3 * z3);
- if (t3 < 0) then
- n3 := 0.0
- else
- begin
- t3 := t3 * t3;
- n3 := t3 * t3 * Dot(Gradient3D[gi3], x3, y3, z3);
- end;
- // Add contributions from each corner to get the final noise value.
- // The result is scaled to stay just inside [-1,1]
- Result := 32.0 * (n0 + n1 + n2 + n3);
- Assert(Result >= -1);
- Assert(Result <= 1);
- end;
- //------------------------------------------------------------------------------
- // 4D simplex
- //------------------------------------------------------------------------------
- function TSimplexNoise.Noise(const x, y, z, w: Double): Double;
- var
- i, j, k, l: integer;
- ii, jj, kk, ll: integer;
- rankx, ranky, rankz, rankw: integer;
- gi0, gi1, gi2, gi3, gi4: integer;
- i1, j1, k1, l1: integer;
- i2, j2, k2, l2: integer;
- i3, j3, k3, l3: integer;
- n0, n1, n2, n3, n4: Double;
- X0, Y0, Z0, W0: Double;
- xx, yy, zz, ww: Double;
- s, t, t0, t1, t2, t3, t4: Double;
- x1, y1, z1, w1: Double;
- x2, y2, z2, w2: Double;
- x3, y3, z3, w3: Double;
- x4, y4, z4, w4: Double;
- begin
- // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
- s := (x + y + z + w) * F4; // Factor for 4D skewing
- i := FastFloor(x + s);
- j := FastFloor(y + s);
- k := FastFloor(z + s);
- l := FastFloor(w + s);
- t := (i + j + k + l) * G4; // Factor for 4D unskewing
- X0 := i - t; // Unskew the cell origin back to (x,y,z,w) space
- Y0 := j - t;
- Z0 := k - t;
- W0 := l - t;
- xx := x - X0; // The x,y,z,w distances from the cell origin
- yy := y - Y0;
- zz := z - Z0;
- ww := w - W0;
- // For the 4D case, the simplex is a 4D shape I won't even try to describe.
- // To find out which of the 24 possible simplices we're in, we need to
- // determine the magnitude ordering of x0, y0, z0 and w0.
- // Six pair-wise comparisons are performed between each possible pair
- // of the four coordinates, and the results are used to rank the numbers.
- rankx := 0;
- ranky := 0;
- rankz := 0;
- rankw := 0;
- if (xx > yy) then
- inc(rankx)
- else
- inc(ranky);
- if (xx > zz) then
- inc(rankx)
- else
- inc(rankz);
- if (xx > ww) then
- inc(rankx)
- else
- inc(rankw);
- if (yy > zz) then
- inc(ranky)
- else
- inc(rankz);
- if (yy > ww) then
- inc(ranky)
- else
- inc(rankw);
- if (zz > ww) then
- inc(rankz)
- else
- inc(rankw);
- // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
- // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
- // impossible. Only the 24 indices which have non-zero entries make any sense.
- // We use a thresholding to set the coordinates in turn from the largest magnitude.
- // Rank 3 denotes the largest coordinate.
- if (rankx >= 3) then
- i1:=1
- else
- i1:=0;
- if (ranky >= 3) then
- j1:=1
- else
- j1:=0;
- if (rankz >= 3) then
- k1:=1
- else
- k1:=0;
- if (rankw >= 3) then
- l1:=1
- else
- l1:=0;
- // Rank 2 denotes the second largest coordinate.
- if (rankx >= 2) then
- i2:=1
- else
- i2:=0;
- if (ranky >= 2) then
- j2:=1
- else
- j2:=0;
- if (rankz >= 2) then
- k2:=1
- else
- k2:=0;
- if (rankw >= 2) then
- l2:=1
- else
- l2:=0;
- // Rank 1 denotes the second smallest coordinate.
- if (rankx >= 1) then
- i3:=1
- else
- i3:=0;
- if (ranky >= 1) then
- j3:=1
- else
- j3:=0;
- if (rankz >= 1) then
- k3:=1
- else
- k3:=0;
- if (rankw >= 1) then
- l3:=1
- else
- l3:=0;
- // The fifth corner has all coordinate offsets = 1, so no need to compute that.
- x1 := xx - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
- y1 := yy - j1 + G4;
- z1 := zz - k1 + G4;
- w1 := ww - l1 + G4;
- x2 := xx - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords
- y2 := yy - j2 + 2.0*G4;
- z2 := zz - k2 + 2.0*G4;
- w2 := ww - l2 + 2.0*G4;
- x3 := xx - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords
- y3 := yy - j3 + 3.0*G4;
- z3 := zz - k3 + 3.0*G4;
- w3 := ww - l3 + 3.0*G4;
- x4 := xx - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords
- y4 := yy - 1.0 + 4.0*G4;
- z4 := zz - 1.0 + 4.0*G4;
- w4 := ww - 1.0 + 4.0*G4;
- // Work out the hashed gradient indices of the five simplex corners
- ii := i and 255;
- jj := j and 255;
- kk := k and 255;
- ll := l and 255;
- gi0 := FPerm[ii + FPerm[jj + FPerm[kk + FPerm[ll ]]]] mod 32; // TODO : Replace "mod" with bit mask ?
- gi1 := FPerm[ii + i1+FPerm[jj + j1 + FPerm[kk + k1+FPerm[ll+l1]]]] mod 32;
- gi2 := FPerm[ii + i2+FPerm[jj + j2 + FPerm[kk + k2+FPerm[ll+l2]]]] mod 32;
- gi3 := FPerm[ii + i3+FPerm[jj + j3 + FPerm[kk + k3+FPerm[ll+l3]]]] mod 32;
- gi4 := FPerm[ii + 1+ FPerm[jj + 1 + FPerm[kk + 1+FPerm[ll+1 ]]]] mod 32;
- // Calculate the contribution from the five corners
- t0 := 0.6 - (xx * xx) - (yy * yy) - (zz * zz) - (ww * ww);
- if (t0 < 0) then
- n0 := 0.0
- else
- begin
- t0 := t0 * t0;
- n0 := t0 * t0 * Dot(Gradient4D[gi0], xx, yy, zz, ww);
- end;
- t1 := 0.6 - (x1 * x1) - (y1 * y1) - (z1 * z1) - (w1 * w1);
- if (t1 < 0) then
- n1 := 0.0
- else
- begin
- t1 := t1 * t1;
- n1 := t1 * t1 * Dot(Gradient4D[gi1], x1, y1, z1, w1);
- end;
- t2 := 0.6 - (x2 * x2) - (y2 * y2) - (z2 * z2) - (w2 * w2);
- if (t2 < 0) then
- n2 := 0.0
- else
- begin
- t2 := t2 * t2;
- n2 := t2 * t2 * Dot(Gradient4D[gi2], x2, y2, z2, w2);
- end;
- t3 := 0.6 - (x3 * x3) - (y3 * y3) - (z3 * z3) - (w3 * w3);
- if (t3 < 0) then
- n3 := 0.0
- else
- begin
- t3 := t3 * t3;
- n3 := t3 * t3 * Dot(Gradient4D[gi3], x3, y3, z3, w3);
- end;
- t4 := 0.6 - (x4 * x4) - (y4 * y4) - (z4 * z4) - (w4 * w4);
- if (t4 < 0) then
- n4 := 0.0
- else
- begin
- t4 := t4 * t4;
- n4 := t4 * t4 * Dot(Gradient4D[gi4], x4, y4, z4, w4);
- end;
- // Sum up and scale the result to cover the range [-1,1]
- Result:= 27.0 * (n0 + n1 + n2 + n3 + n4);
- end;
- //------------------------------------------------------------------------------
- end.
|