1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579 |
- //
- // The graphics engine GLXEngine. The unit of GXScene for Delphi
- //
- unit GXS.Isosurface;
- (*
- Polygonising a scalar field by construction of isosurfaces
- Algorithms
- ----------
- Marching Cubes
- - Exploits a coarser Mesh then Marching Tetrahedra but produces less triangles
- - based on "Marching Cubes: A High Resolution 3D Surface
- Construction Algorithm" by W.E.Lorensen and H.E.Cline
- - patent free since 2005
- Marching Tetrahedra
- - Finer Mesh, better feature preservation
- - based on "A new tetrahedral tesselation scheme for isosurface generation"
- by S.L.Chan and E.O.Purisima
- - patent free
- Lookuptables
- - by Paul Bourke (http://paulbourke.net/geometry/polygonise/)
- Overall
- - Simple Data Structures to store Mesh. Vertices are calculated and stored twice
- or even more often.
- *)
- interface
- // uncomment next line to memorize vertex Density value to further use
- // (i.e. mesh color generation)
- {.$Define UseDensity}
- uses
- Stage.VectorGeometry,
- GXS.VectorLists,
- Stage.VectorTypes,
- Stage.VectorTypesExt,
- GXS.Mesh,
- GXS.VectorFileObjects;
- const
- ALLOC_SIZE = 65536;
- type
- TgxMarchingCube = class(TObject)
- private
- FIsoValue: TScalarValue;
- // sliceSize:Longword;
- PVertsX: PIntegerArray;
- PVertsY: PIntegerArray;
- PVertsZ: PIntegerArray;
- _Nverts: Integer;
- _Ntrigs: Integer;
- _Sverts: Integer;
- _Strigs: Integer;
- PVertices: PVertArray;
- PTriangles: PTriangleRecArray;
- _i, _j, _k: Longword;
- _Cube: array [0 .. 7] of TVoxelRec;
- _lut_entry: Byte;
- // _case:Byte;
- // _config:Byte;
- // _subconfig:Byte;
- procedure Init_temps;
- procedure Init_all;
- procedure Init_space;
- procedure Clean_temps;
- procedure Clean_all(keepFacets: Boolean = False);
- procedure Clean_space;
- procedure Test_vertex_addiction;
- protected
- FOriginalMC: Boolean; // now only original MC is implemented
- FSizeX: Integer;
- FSizeY: Integer;
- FSizeZ: Integer;
- FxMin: Single;
- FxMax: Single;
- FyMin: Single;
- FyMax: Single;
- FzMin: Single;
- FzMax: Single;
- FStepX: Single;
- FStepY: Single;
- FStepZ: Single;
- VoxelData: PVoxelData;
- procedure Process_cube;
- (* function test_face(face:byte):Boolean;
- function test_interior(s:Byte):boolean *)
- procedure Compute_Intersection_Points;
- procedure Add_Triangle(trig: array of Integer; N: Byte; v12: Integer = -1);
- function Add_x_vertex: Integer;
- function Add_y_vertex: Integer;
- function Add_z_vertex: Integer;
- function Add_c_vertex: Integer;
- function Get_x_grad(i, j, k: Integer): Single;
- function Get_y_grad(i, j, k: Integer): Single;
- function Get_z_grad(i, j, k: Integer): Single;
- function Get_x_vert(i, j, k: Integer): Integer;
- function Get_y_vert(i, j, k: Integer): Integer;
- function Get_z_vert(i, j, k: Integer): Integer;
- procedure Set_x_vert(a_val, i, j, k: Integer);
- procedure Set_y_vert(a_val, i, j, k: Integer);
- procedure Set_z_vert(a_val, i, j, k: Integer);
- function GetVoxelValue(i, j, k: Integer): TScalarValue;
- procedure SetVoxelValue(i, j, k: Integer; HfValue: TScalarValue);
- function GetVoxelData(i, j, k: Integer): TVoxelRec;
- function Voxel(i, j, k: Integer): PVoxelRec;
- function calc_u(v1, v2: Single): Extended; virtual;
- public
- ScalarField: TScalarField;
- constructor Create; overload; virtual;
- constructor Create(SizeX, SizeY, SizeZ: Integer;
- AIsoValue: TScalarValue = 0.0; xMin: Single = -0.5; xMax: Single = 0.5;
- yMin: Single = -0.5; yMax: Single = 0.5; zMin: Single = -0.5;
- zMax: Single = 0.5); overload; virtual;
- procedure ReDim(ASizeX, ASizeY, ASizeZ: Integer;
- xMin, xMax, yMin, yMax, zMin, zMax: Single); virtual;
- destructor Destroy; override;
- procedure Run; overload;
- procedure Run(IsoValue: TScalarValue); overload;
- function Internal(AValue: TScalarValue): Boolean; virtual;
- procedure FillVoxelData; overload; virtual;
- procedure FillVoxelData(AIsoValue: TScalarValue;
- AScalarField: TScalarField = nil); overload; virtual;
- procedure FillVoxelData(AIsoValue: TScalarValue;
- AScalarField: TScalarFieldInt); overload; virtual;
- procedure CalcVertices(Vertices: TgxVertexList; Alpha: Single = 1);
- procedure CalcMeshObject(AMeshObject: TgxMeshObject; Alpha: Single = 1);
- property IsoValue: TScalarValue read FIsoValue write FIsoValue; // TODO
- end;
- (* 3D isosurface extractor class. This class allows to calculate and exctract
- isosurfaces from scalar field voxel models using a given isovalue *)
- TIsoSurfaceExtractor = class(TObject)
- private
- Data: TArray3DExt;
- Dimensions: array ['x' .. 'z'] of Integer;
- { Build Index depending on whether the edges are outside or inside the surface }
- function BuildIndex(var ADatavals: array of Single; Isovalue: Single): word;
- function Interpolate(const V0, V1: TAffineVector;
- var Val0, Val1, Isovalue: Single; isPolished: boolean): TVertex;
- public
- constructor Create(); overload;
- constructor Create(Xdim, Ydim, Zdim: Integer;
- var AData: TArray3DExt); overload;
- destructor Destroy(); override;
- procedure AssignData(Xdim, Ydim, Zdim: Integer; var AData: TArray3DExt);
- // Launch Marching Cubes
- procedure MarchingCubes(Isovalue: Single; out Vertices: TVertexArray;
- out Triangles: TIntegerArray; isPolished: boolean);
- { Launch Marching Tetrahedra }
- procedure MarchingTetrahedra(Isovalue: Single; out Vertices: TVertexArray;
- out Triangles: TIntegerArray; isPolished: boolean);
- end;
- // Sphere surface
- function SFSphere(X, Y, Z: Extended): TScalarValue;
- // Minkowski space (http://mathworld.wolfram.com)
- function SFMinkowski(X, Y, Z: Extended): TScalarValue;
- // Klein Bottle (http://mathworld.wolfram.com)
- function SFKleinBottle(X, Y, Z: Extended): TScalarValue;
- // Chmutov-surface-1 (http://mathworld.wolfram.com)
- function SFChmutov1(X, Y, Z: Extended): TScalarValue;
- // Chmutov-surface-2 (http://mathworld.wolfram.com)
- function SFChmutov2(X, Y, Z: Extended): TScalarValue;
- // Toroidal surface (phantasy!)
- function SFToroidal(X, Y, Z: Extended): TScalarValue;
- // Double torus Surface (phantasy!)
- function SFDoubleTorus(X, Y, Z: Extended): TScalarValue;
- // -------------------------------------------------------------------------
- implementation
- // -------------------------------------------------------------------------
- const
- // Classic Cases for Marching Cube TriTable
- //
- (*
- 4----4------5
- /| /|
- 7 | 5 |
- / | / |
- 7-----6----6 |
- | 8 | 9
- | | | |
- | 0----0--|---1
- 11 / 10 /
- | 3 | 1
- |/ |/
- 3-----2-----2
- *)
- MC_TRITABLE: array [0 .. 255, 0 .. 15] of Integer = (
- (* 0: *) ( -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 1: 0, *) ( 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 2: 1, *) ( 0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 3: 0, 1, *) ( 1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 4: 2, *) ( 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 5: 0, 2, *) ( 0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 6: 1, 2, *) ( 9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 7: 0, 1, 2, *) ( 2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1 ),
- (* 8: 3, *) ( 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 9: 0, 3, *) ( 0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 10: 1, 3, *) ( 1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 11: 0, 1, 3, *) ( 1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1 ),
- (* 12: 2, 3, *) ( 3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 13: 0, 2, 3, *) ( 0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1 ),
- (* 14: 1, 2, 3, *) ( 3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1 ),
- (* 15: 0, 1, 2, 3, *) ( 9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 16: 4, *) ( 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 17: 0, 4, *) ( 4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 18: 1, 4, *) ( 0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 19: 0, 1, 4, *) ( 4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 20: 2, 4, *) ( 1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 21: 0, 2, 4, *) ( 3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1 ),
- (* 22: 1, 2, 4, *) ( 9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1 ),
- (* 23: 0, 1, 2, 4, *) ( 2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1 ),
- (* 24: 3, 4, *) ( 8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 25: 0, 3, 4, *) ( 11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1 ),
- (* 26: 1, 3, 4, *) ( 9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1 ),
- (* 27: 0, 1, 3, 4, *) ( 4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1 ),
- (* 28: 2, 3, 4, *) ( 3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1 ),
- (* 29: 0, 2, 3, 4, *) ( 1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1 ),
- (* 30: 1, 2, 3, 4, *) ( 4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1 ),
- (* 31: 0, 1, 2, 3, 4, *) ( 4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1 ),
- (* 32: 5, *) ( 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 33: 0, 5, *) ( 9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 34: 1, 5, *) ( 0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 35: 0, 1, 5, *) ( 8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1 ),
- (* 36: 2, 5, *) ( 1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 37: 0, 2, 5, *) ( 3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1 ),
- (* 38: 1, 2, 5, *) ( 5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1 ),
- (* 39: 0, 1, 2, 5, *) ( 2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1 ),
- (* 40: 3, 5, *) ( 9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 41: 0, 3, 5, *) ( 0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1 ),
- (* 42: 1, 3, 5, *) ( 0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1 ),
- (* 43: 0, 1, 3, 5, *) ( 2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1 ),
- (* 44: 2, 3, 5, *) ( 10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1 ),
- (* 45: 0, 2, 3, 5, *) ( 4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1 ),
- (* 46: 1, 2, 3, 5, *) ( 5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1 ),
- (* 47: 0, 1, 2, 3, 5, *) ( 5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1 ),
- (* 48: 4, 5, *) ( 9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 49: 0, 4, 5, *) ( 9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1 ),
- (* 50: 1, 4, 5, *) ( 0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1 ),
- (* 51: 0, 1, 4, 5, *) ( 1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 52: 2, 4, 5, *) ( 9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1 ),
- (* 53: 0, 2, 4, 5, *) ( 10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1 ),
- (* 54: 1, 2, 4, 5, *) ( 8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1 ),
- (* 55: 0, 1, 2, 4, 5, *) ( 2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1 ),
- (* 56: 3, 4, 5, *) ( 7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1 ),
- (* 57: 0, 3, 4, 5, *) ( 9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1 ),
- (* 58: 1, 3, 4, 5, *) ( 2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1 ),
- (* 59: 0, 1, 3, 4, 5, *) ( 11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1 ),
- (* 60: 2, 3, 4, 5, *) ( 9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1 ),
- (* 61: 0, 2, 3, 4, 5, *) ( 5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1 ),
- (* 62: 1, 2, 3, 4, 5, *) ( 11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1 ),
- (* 63: 0, 1, 2, 3, 4, 5, *) ( 11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 64: 6, *) ( 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 65: 0, 6, *) ( 0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 66: 1, 6, *) ( 9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 67: 0, 1, 6, *) ( 1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1 ),
- (* 68: 2, 6, *) ( 1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 69: 0, 2, 6, *) ( 1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1 ),
- (* 70: 1, 2, 6, *) ( 9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1 ),
- (* 71: 0, 1, 2, 6, *) ( 5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1 ),
- (* 72: 3, 6, *) ( 2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 73: 0, 3, 6, *) ( 11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1 ),
- (* 74: 1, 3, 6, *) ( 0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1 ),
- (* 75: 0, 1, 3, 6, *) ( 5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1 ),
- (* 76: 2, 3, 6, *) ( 6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1 ),
- (* 77: 0, 2, 3, 6, *) ( 0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1 ),
- (* 78: 1, 2, 3, 6, *) ( 3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1 ),
- (* 79: 0, 1, 2, 3, 6, *) ( 6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1 ),
- (* 80: 4, 6, *) ( 5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 81: 0, 4, 6, *) ( 4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1 ),
- (* 82: 1, 4, 6, *) ( 1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1 ),
- (* 83: 0, 1, 4, 6, *) ( 10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1 ),
- (* 84: 2, 4, 6, *) ( 6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1 ),
- (* 85: 0, 2, 4, 6, *) ( 1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1 ),
- (* 86: 1, 2, 4, 6, *) ( 8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1 ),
- (* 87: 0, 1, 2, 4, 6, *) ( 7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1 ),
- (* 88: 3, 4, 6, *) ( 3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1 ),
- (* 89: 0, 3, 4, 6, *) ( 5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1 ),
- (* 90: 1, 3, 4, 6, *) ( 0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1 ),
- (* 91: 0, 1, 3, 4, 6, *) ( 9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1 ),
- (* 92: 2, 3, 4, 6, *) ( 8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1 ),
- (* 93: 0, 2, 3, 4, 6, *) ( 5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1 ),
- (* 94: 1, 2, 3, 4, 6, *) ( 0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1 ),
- (* 95: 0, 1, 2, 3, 4, 6, *) ( 6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1 ),
- (* 96: 5, 6, *) ( 10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 97: 0, 5, 6, *) ( 4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1 ),
- (* 98: 1, 5, 6, *) ( 10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1 ),
- (* 99: 0, 1, 5, 6, *) ( 8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1 ),
- (* 100: 2, 5, 6, *) ( 1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1 ),
- (* 101: 0, 2, 5, 6, *) ( 3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1 ),
- (* 102: 1, 2, 5, 6, *) ( 0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 103: 0, 1, 2, 5, 6, *) ( 8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1 ),
- (* 104: 3, 5, 6, *) ( 10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1 ),
- (* 105: 0, 3, 5, 6, *) ( 0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1 ),
- (* 106: 1, 3, 5, 6, *) ( 3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1 ),
- (* 107: 0, 1, 3, 5, 6, *) ( 6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1 ),
- (* 108: 2, 3, 5, 6, *) ( 9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1 ),
- (* 109: 0, 2, 3, 5, 6, *) ( 8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1 ),
- (* 110: 1, 2, 3, 5, 6, *) ( 3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1 ),
- (* 111: 0, 1, 2, 3, 5, 6, *) ( 6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 112: 4, 5, 6, *) ( 7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1 ),
- (* 113: 0, 4, 5, 6, *) ( 0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1 ),
- (* 114: 1, 4, 5, 6, *) ( 10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1 ),
- (* 115: 0, 1, 4, 5, 6, *) ( 10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1 ),
- (* 116: 2, 4, 5, 6, *) ( 1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1 ),
- (* 117: 0, 2, 4, 5, 6, *) ( 2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1 ),
- (* 118: 1, 2, 4, 5, 6, *) ( 7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1 ),
- (* 119: 0, 1, 2, 4, 5, 6, *) ( 7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 120: 3, 4, 5, 6, *) ( 2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1 ),
- (* 121: 0, 3, 4, 5, 6, *) ( 2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1 ),
- (* 122: 1, 3, 4, 5, 6, *) ( 1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1 ),
- (* 123: 0, 1, 3, 4, 5, 6, *) ( 11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1 ),
- (* 124: 2, 3, 4, 5, 6, *) ( 8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1 ),
- (* 125: 0, 2, 3, 4, 5, 6, *) ( 0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 126: 1, 2, 3, 4, 5, 6, *) ( 7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1 ),
- (* 127: 0, 1, 2, 3, 4, 5, 6, *) ( 7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 128: 7, *) ( 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 129: 0, 7, *) ( 3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 130: 1, 7, *) ( 0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 131: 0, 1, 7, *) ( 8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1 ),
- (* 132: 2, 7, *) ( 10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 133: 0, 2, 7, *) ( 1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1 ),
- (* 134: 1, 2, 7, *) ( 2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1 ),
- (* 135: 0, 1, 2, 7, *) ( 6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1 ),
- (* 136: 3, 7, *) ( 7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 137: 0, 3, 7, *) ( 7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1 ),
- (* 138: 1, 3, 7, *) ( 2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1 ),
- (* 139: 0, 1, 3, 7, *) ( 1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1 ),
- (* 140: 2, 3, 7, *) ( 10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1 ),
- (* 141: 0, 2, 3, 7, *) ( 10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1 ),
- (* 142: 1, 2, 3, 7, *) ( 0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1 ),
- (* 143: 0, 1, 2, 3, 7, *) ( 7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1 ),
- (* 144: 4, 7, *) ( 6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 145: 0, 4, 7, *) ( 3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1 ),
- (* 146: 1, 4, 7, *) ( 8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 147: 0, 1, 4, 7, *) ( 9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1 ),
- (* 148: 2, 4, 7, *) ( 6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 149: 0, 2, 4, 7, *) ( 1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1 ),
- (* 150: 1, 2, 4, 7, *) ( 4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1 ),
- (* 151: 0, 1, 2, 4, 7, *) ( 10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1 ),
- (* 152: 3, 4, 7, *) ( 8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1 ),
- (* 153: 0, 3, 4, 7, *) ( 0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 154: 1, 3, 4, 7, *) ( 1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1 ),
- (* 155: 0, 1, 3, 4, 7, *) ( 1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1 ),
- (* 156: 2, 3, 4, 7, *) ( 8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1 ),
- (* 157: 0, 2, 3, 4, 7, *) ( 10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1 ),
- (* 158: 1, 2, 3, 4, 7, *) ( 4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1 ),
- (* 159: 0, 1, 2, 3, 4, 7, *) ( 10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 160: 5, 7, *) ( 4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 161: 0, 5, 7, *) ( 0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1 ),
- (* 162: 1, 5, 7, *) ( 5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1 ),
- (* 163: 0, 1, 5, 7, *) ( 11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1 ),
- (* 164: 2, 5, 7, *) ( 9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1 ),
- (* 165: 0, 2, 5, 7, *) ( 6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1 ),
- (* 166: 1, 2, 5, 7, *) ( 7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1 ),
- (* 167: 0, 1, 2, 5, 7, *) ( 3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1 ),
- (* 168: 3, 5, 7, *) ( 7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1 ),
- (* 169: 0, 3, 5, 7, *) ( 9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1 ),
- (* 170: 1, 3, 5, 7, *) ( 3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1 ),
- (* 171: 0, 1, 3, 5, 7, *) ( 6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1 ),
- (* 172: 2, 3, 5, 7, *) ( 9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1 ),
- (* 173: 0, 2, 3, 5, 7, *) ( 1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1 ),
- (* 174: 1, 2, 3, 5, 7, *) ( 4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1 ),
- (* 175: 0, 1, 2, 3, 5, 7, *) ( 7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1 ),
- (* 176: 4, 5, 7, *) ( 6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1 ),
- (* 177: 0, 4, 5, 7, *) ( 3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1 ),
- (* 178: 1, 4, 5, 7, *) ( 0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1 ),
- (* 179: 0, 1, 4, 5, 7, *) ( 6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 180: 2, 4, 5, 7, *) ( 1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1 ),
- (* 181: 0, 2, 4, 5, 7, *) ( 0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1 ),
- (* 182: 1, 2, 4, 5, 7, *) ( 11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1 ),
- (* 183: 0, 1, 2, 4, 5, 7, *) ( 6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1 ),
- (* 184: 3, 4, 5, 7, *) ( 5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1 ),
- (* 185: 0, 3, 4, 5, 7, *) ( 9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1 ),
- (* 186: 1, 3, 4, 5, 7, *) ( 1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1 ),
- (* 187: 0, 1, 3, 4, 5, 7, *) ( 1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 188: 2, 3, 4, 5, 7, *) ( 1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1 ),
- (* 189: 0, 2, 3, 4, 5, 7, *) ( 10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1 ),
- (* 190: 1, 2, 3, 4, 5, 7, *) ( 0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 191: 0, 1, 2, 3, 4, 5, 7, *) ( 10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 192: 6, 7, *) ( 11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 193: 0, 6, 7, *) ( 11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1 ),
- (* 194: 1, 6, 7, *) ( 5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1 ),
- (* 195: 0, 1, 6, 7, *) ( 10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1 ),
- (* 196: 2, 6, 7, *) ( 11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 197: 0, 2, 6, 7, *) ( 0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1 ),
- (* 198: 1, 2, 6, 7, *) ( 9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1 ),
- (* 199: 0, 1, 2, 6, 7, *) ( 7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1 ),
- (* 200: 3, 6, 7, *) ( 2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1 ),
- (* 201: 0, 3, 6, 7, *) ( 8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1 ),
- (* 202: 1, 3, 6, 7, *) ( 9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1 ),
- (* 203: 0, 1, 3, 6, 7, *) ( 9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1 ),
- (* 204: 2, 3, 6, 7, *) ( 1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 205: 0, 2, 3, 6, 7, *) ( 0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1 ),
- (* 206: 1, 2, 3, 6, 7, *) ( 9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1 ),
- (* 207: 0, 1, 2, 3, 6, 7, *) ( 9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 208: 4, 6, 7, *) ( 5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1 ),
- (* 209: 0, 4, 6, 7, *) ( 5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1 ),
- (* 210: 1, 4, 6, 7, *) ( 0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1 ),
- (* 211: 0, 1, 4, 6, 7, *) ( 10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1 ),
- (* 212: 2, 4, 6, 7, *) ( 2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1 ),
- (* 213: 0, 2, 4, 6, 7, *) ( 0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1 ),
- (* 214: 1, 2, 4, 6, 7, *) ( 0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1 ),
- (* 215: 0, 1, 2, 4, 6, 7, *) ( 9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 216: 3, 4, 6, 7, *) ( 2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1 ),
- (* 217: 0, 3, 4, 6, 7, *) ( 5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1 ),
- (* 218: 1, 3, 4, 6, 7, *) ( 3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1 ),
- (* 219: 0, 1, 3, 4, 6, 7, *) ( 5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1 ),
- (* 220: 2, 3, 4, 6, 7, *) ( 8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 221: 0, 2, 3, 4, 6, 7, *) ( 0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 222: 1, 2, 3, 4, 6, 7, *) ( 8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1 ),
- (* 223: 0, 1, 2, 3, 4, 6, 7, *) ( 9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 224: 5, 6, 7, *) ( 4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1 ),
- (* 225: 0, 5, 6, 7, *) ( 0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1 ),
- (* 226: 1, 5, 6, 7, *) ( 1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1 ),
- (* 227: 0, 1, 5, 6, 7, *) ( 3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1 ),
- (* 228: 2, 5, 6, 7, *) ( 4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1 ),
- (* 229: 0, 2, 5, 6, 7, *) ( 9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1 ),
- (* 230: 1, 2, 5, 6, 7, *) ( 11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1 ),
- (* 231: 0, 1, 2, 5, 6, 7, *) ( 11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1 ),
- (* 232: 3, 5, 6, 7, *) ( 2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1 ),
- (* 233: 0, 3, 5, 6, 7, *) ( 9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1 ),
- (* 234: 1, 3, 5, 6, 7, *) ( 3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1 ),
- (* 235: 0, 1, 3, 5, 6, 7, *) ( 1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 236: 2, 3, 5, 6, 7, *) ( 4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1 ),
- (* 237: 0, 2, 3, 5, 6, 7, *) ( 4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1 ),
- (* 238: 1, 2, 3, 5, 6, 7, *) ( 4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 239: 0, 1, 2, 3, 5, 6, 7, *) ( 4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 240: 4, 5, 6, 7, *) ( 9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 241: 0, 4, 5, 6, 7, *) ( 3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1 ),
- (* 242: 1, 4, 5, 6, 7, *) ( 0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1 ),
- (* 243: 0, 1, 4, 5, 6, 7, *) ( 3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 244: 2, 4, 5, 6, 7, *) ( 1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1 ),
- (* 245: 0, 2, 4, 5, 6, 7, *) ( 3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1 ),
- (* 246: 1, 2, 4, 5, 6, 7, *) ( 0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 247: 0, 1, 2, 4, 5, 6, 7, *) ( 3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 248: 3, 4, 5, 6, 7, *) ( 2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1 ),
- (* 249: 0, 3, 4, 5, 6, 7, *) ( 9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 250: 1, 3, 4, 5, 6, 7, *) ( 2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1 ),
- (* 251: 0, 1, 3, 4, 5, 6, 7, *) ( 1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 252: 2, 3, 4, 5, 6, 7, *) ( 1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 253: 0, 2, 3, 4, 5, 6, 7, *) ( 0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 254: 1, 2, 3, 4, 5, 6, 7, *) ( 0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
- (* 255: 0, 1, 2, 3, 4, 5, 6, 7, *) ( -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 )
- );
- // Marching Cube EdgeTable
- const
- MC_EDGETABLE: array [0 .. 11, 0 .. 1] of Integer = ((0, 1), (1, 2), (2, 3),
- (3, 0), (4, 5), (5, 6), (6, 7), (7, 4), (0, 4), (1, 5), (2, 6), (3, 7));
- // Marching Tetrahedra TriTable
- (*
- + 0
- /|\
- / | \
- / | 0
- 3 | \
- / 2 \
- / | \
- +----4--------+ 1
- 3 \ | /
- \ | /
- 5 | 1
- \ | /
- \ | /
- \|/
- + 2
- *)
- MT_TRITABLE: array [0 .. 15, 0 .. 6] of Integer =
- ((-1, -1, -1, -1, -1, -1, -1), (2, 3, 0, -1, -1, -1, -1),
- (4, 1, 0, -1, -1, -1, -1), (2, 4, 1, 3, 4, 2, -1),
- (5, 2, 1, -1, -1, -1, -1), (5, 3, 0, 1, 5, 0, -1), (5, 2, 0, 4, 5, 0, -1),
- (3, 4, 5, -1, -1, -1, -1), (5, 4, 3, -1, -1, -1, -1),
- (0, 5, 4, 0, 2, 5, -1), (0, 5, 1, 0, 3, 5, -1), (1, 2, 5, -1, -1, -1, -1),
- (2, 4, 3, 1, 4, 2, -1), (0, 1, 4, -1, -1, -1, -1),
- (0, 3, 2, -1, -1, -1, -1), (-1, -1, -1, -1, -1, -1, -1));
- // Marching Tetrahedra EdgeTable
- MT_EDGETABLE: array [0 .. 5, 0 .. 1] of Integer = ((0, 1), (1, 2), (2, 0),
- (0, 3), (1, 3), (2, 3));
- // Marching Tetrahedra CubeSplit
- MT_CUBESPLIT: array [0 .. 5, 0 .. 3] of Integer = ((0, 5, 1, 6), (0, 1, 2, 6),
- (0, 2, 3, 6), (0, 3, 7, 6), (0, 7, 4, 6), (0, 4, 5, 6));
- // Test surface functions
- function SFSphere(X, Y, Z: Extended): TScalarValue;
- begin
- Result := sqr(X) + sqr(Y) + sqr(Z)
- end;
- function SFToroidal(X, Y, Z: Extended): TScalarValue;
- const
- FScale = 7;
- a = 2.5;
- begin
- X := FScale * X;
- Y := FScale * Y;
- Z := FScale * Z;
- Result := (sqr(sqrt(sqr(X) + sqr(Y)) - a) + sqr(Z)) *
- (sqr(sqrt(sqr(Y) + sqr(Z)) - a) + sqr(X)) *
- (sqr(sqrt(sqr(Z) + sqr(X)) - a) + sqr(Y));
- end;
- function SFDoubleTorus(X, Y, Z: Extended): TScalarValue;
- const
- FScale = 2.25;
- begin
- X := FScale * X;
- Y := FScale * Y;
- Z := FScale * Z;
- Result := PowerInteger(X, 8) + PowerInteger(X, 4) - 2 * PowerInteger(X, 6) - 2
- * sqr(X) * sqr(Y) + 2 * PowerInteger(X, 4) * sqr(Y) +
- PowerInteger(Y, 4) + sqr(Z)
- end;
- function SFChmutov1(X, Y, Z: Extended): TScalarValue;
- const
- FScale = 2.5;
- begin
- X := FScale * X;
- Y := FScale * Y;
- Z := FScale * Z;
- Result := 8 * (sqr(X) + sqr(Y) + sqr(Z)) - 8 *
- (PowerInteger(X, 4) + PowerInteger(Y, 4) + PowerInteger(Z, 4));
- end;
- function SFChmutov2(X, Y, Z: Extended): TScalarValue;
- const
- FScale = 2.5;
- begin
- X := FScale * X;
- Y := FScale * Y;
- Z := FScale * Z;
- Result := 2 * (sqr(X) * sqr(3 - 4 * sqr(X)) + sqr(Y) * sqr(3 - 4 * sqr(Y)) +
- sqr(Z) * sqr(3 - 4 * sqr(Z)));
- end;
- function SFKleinBottle(X, Y, Z: Extended): TScalarValue;
- const
- FScale = 7.5;
- begin
- X := FScale * X;
- Y := FScale * Y;
- Z := FScale * Z;
- Result := (sqr(X) + sqr(Y) + sqr(Z) + 2 * Y - 1) *
- (sqr(sqr(X) + sqr(Y) + sqr(Z) - 2 * Y - 1) - 8 * sqr(Z)) + 16 * X * Z *
- (sqr(X) + sqr(Y) + sqr(Z) - 2 * Y - 1);
- end;
- function SFMinkowski(X, Y, Z: Extended): TScalarValue;
- const
- FScale = 7;
- begin
- X := FScale * X;
- Y := FScale * Y;
- Z := FScale * Z;
- Result := (sqr(X) - sqr(Y) - sqr(Z) - 2) * (sqr(X) - sqr(Y) - sqr(Z) + 2) *
- (sqr(X) - sqr(Y) - sqr(Z) - 4) * (sqr(X) - sqr(Y) - sqr(Z) + 4) *
- (sqr(X) - sqr(Y) - sqr(Z));
- end;
- (* -------------------------------------------------------------------------
- Class IsoSurfaceExtractor
- Purpose: Extract an Isosurface from volume dataset for given Isovalue
- ------------------------------------------------------------------------- *)
- function TIsoSurfaceExtractor.BuildIndex(var ADatavals: array of Single;
- Isovalue: Single): word;
- var
- i: Integer;
- val: word;
- begin
- val := 1;
- Result := 0;
- for i := 1 to Length(ADatavals) do
- begin
- if ADatavals[i - 1] <= Isovalue then // Edge inside surface
- Result := Result + val;
- val := val * 2;
- end;
- end;
- // Compute intersection point of edge and surface by linear interpolation
- function InterpolateRugged(V0, V1: TAffineVector;
- var Val0, Val1, Isovalue: Single): TVertex;
- var
- Diff: Single;
- i: Integer;
- begin
- if Val0 <= Isovalue then
- begin
- Diff := Val0 / (Val0 + Val1);
- for i := 0 to 2 do
- Result.V[i] := V0.V[i] + Diff * (V1.V[i] - V0.V[i]);
- end
- else
- begin
- Diff := Val1 / (Val0 + Val1);
- for i := 0 to 2 do
- Result.V[i] := V1.V[i] + Diff * (V0.V[i] - V1.V[i]);
- end;
- end;
- function InterpolatePolished(V0, V1: TAffineVector;
- var Val0, Val1, Isovalue: Single): TVertex;
- var
- w0, w1: Single;
- begin
- if (Val0 = Val1) then
- w1 := 0.5
- else
- w1 := (Isovalue - Val0) / (Val1 - Val0);
- w0 := 1.0 - w1;
- Result.X := w0 * V0.X + w1 * V1.X;
- Result.Y := w0 * V0.Y + w1 * V1.Y;
- Result.Z := w0 * V0.Z + w1 * V1.Z;
- end;
- function TIsoSurfaceExtractor.Interpolate(const V0, V1: TAffineVector;
- var Val0, Val1, Isovalue: Single; isPolished: boolean): TVertex;
- begin
- if isPolished then
- Result := InterpolatePolished(V0, V1, Val0, Val1, Isovalue)
- else
- Result := InterpolateRugged(V0, V1, Val0, Val1, Isovalue)
- end;
- procedure TIsoSurfaceExtractor.MarchingTetrahedra(Isovalue: Single;
- out Vertices: TVertexArray; out Triangles: TIntegerArray; isPolished: boolean);
- var
- i, j, k: Integer;
- index: word;
- CubeVertices: array of TAffineVector;
- Tetrahedron: array [0 .. 3] of TAffineVector;
- DataTetra: array [0 .. 3] of Single;
- // Add Triangle to List
- procedure AppendTri();
- var
- edge: byte;
- Ver1, Ver2, Ver3: TVertex;
- VListlength: Integer;
- TListlength: Integer;
- begin
- edge := 0;
- while MT_TRITABLE[index, edge] <> -1 do
- begin
- Ver1 := Interpolate(Tetrahedron[MT_EDGETABLE[MT_TRITABLE[index, edge], 0]
- ], Tetrahedron[MT_EDGETABLE[MT_TRITABLE[index, edge], 1]],
- DataTetra[MT_EDGETABLE[MT_TRITABLE[index, edge], 0]],
- DataTetra[MT_EDGETABLE[MT_TRITABLE[index, edge], 1]], Isovalue, isPolished);
- Ver2 := Interpolate(Tetrahedron[MT_EDGETABLE[MT_TRITABLE[index, edge + 1],
- 0]], Tetrahedron[MT_EDGETABLE[MT_TRITABLE[index, edge + 1], 1]],
- DataTetra[MT_EDGETABLE[MT_TRITABLE[index, edge + 1], 0]],
- DataTetra[MT_EDGETABLE[MT_TRITABLE[index, edge + 1], 1]], Isovalue, isPolished);
- Ver3 := Interpolate(Tetrahedron[MT_EDGETABLE[MT_TRITABLE[index, edge + 2],
- 0]], Tetrahedron[MT_EDGETABLE[MT_TRITABLE[index, edge + 2], 1]],
- DataTetra[MT_EDGETABLE[MT_TRITABLE[index, edge + 2], 0]],
- DataTetra[MT_EDGETABLE[MT_TRITABLE[index, edge + 2], 1]], Isovalue, isPolished);
- VListlength := Length(Vertices) + 3;
- TListlength := Length(Triangles) + 3;
- SetLength(Vertices, VListlength);
- SetLength(Triangles, TListlength);
- Vertices[VListlength - 3] := Ver1;
- Vertices[VListlength - 2] := Ver2;
- Vertices[VListlength - 1] := Ver3;
- Triangles[TListlength - 3] := VListlength - 3;
- Triangles[TListlength - 2] := VListlength - 2;
- Triangles[TListlength - 1] := VListlength - 1;
- edge := edge + 3;
- end;
- end;
- // Split Cube in 6 Tetrahedrons and process each tetrahedron
- procedure SplitCube();
- var
- i, j: Integer;
- begin
- for i := 0 to 5 do
- begin
- for j := 0 to 3 do
- begin
- Tetrahedron[j] := CubeVertices[MT_CUBESPLIT[i, j]];
- DataTetra[j] := Data[Trunc(Tetrahedron[j].X),
- Trunc(Tetrahedron[j].Y), Trunc(Tetrahedron[j].Z)];
- end;
- index := BuildIndex(DataTetra, Isovalue);
- AppendTri();
- end;
- end;
- begin
- (*
- 1----2
- /| /|
- 0----3 |
- | 5--|-6
- |/ |/
- 4----7
- *)
- SetLength(CubeVertices, 8);
- for k := 0 to Dimensions['z'] - 2 do
- begin
- for j := 0 to Dimensions['y'] - 2 do
- begin
- for i := 0 to Dimensions['x'] - 2 do
- begin
- CubeVertices[0] := AffineVectorMake(i, j, k);
- CubeVertices[1] := AffineVectorMake(i, j, k + 1);
- CubeVertices[2] := AffineVectorMake(i + 1, j, k + 1);
- CubeVertices[3] := AffineVectorMake(i + 1, j, k);
- CubeVertices[4] := AffineVectorMake(i, j + 1, k);
- CubeVertices[5] := AffineVectorMake(i, j + 1, k + 1);
- CubeVertices[6] := AffineVectorMake(i + 1, j + 1, k + 1);
- CubeVertices[7] := AffineVectorMake(i + 1, j + 1, k);
- SplitCube();
- end; // for k
- end; // for j
- end; // for i
- end; // ccMT
- constructor TIsoSurfaceExtractor.Create;
- begin
- inherited;
- end;
- constructor TIsoSurfaceExtractor.Create(Xdim, Ydim, Zdim: Integer;
- var AData: TArray3DExt);
- begin
- Create();
- AssignData(Xdim, Ydim, Zdim, AData);
- end;
- destructor TIsoSurfaceExtractor.Destroy;
- begin
- inherited;
- end;
- procedure TIsoSurfaceExtractor.AssignData(Xdim, Ydim, Zdim: Integer;
- var AData: TArray3DExt);
- begin
- Dimensions['x'] := Xdim;
- Dimensions['y'] := Ydim;
- Dimensions['z'] := Zdim;
- Data := AData;
- end;
- //-----------------------------------------------------------------------
- procedure TIsoSurfaceExtractor.MarchingCubes(Isovalue: Single;
- out Vertices: TVertexArray; out Triangles: TIntegerArray; isPolished: boolean);
- var
- i, j, k: Integer;
- index: word;
- CubeVertices: array [0 .. 7] of TAffineVector;
- CubeData: array [0 .. 7] of Single;
- procedure AppendTri();
- var
- edge: byte;
- Ver1, Ver2, Ver3: TVertex;
- VListlength: Integer;
- TListlength: Integer;
- begin
- edge := 0;
- while MC_TRITABLE[index, edge] <> -1 do
- begin
- Ver1 := Interpolate(CubeVertices[MC_EDGETABLE[MC_TRITABLE[index, edge], 0]
- ], CubeVertices[MC_EDGETABLE[MC_TRITABLE[index, edge], 1]],
- CubeData[MC_EDGETABLE[MC_TRITABLE[index, edge], 0]],
- CubeData[MC_EDGETABLE[MC_TRITABLE[index, edge], 1]], Isovalue, isPolished);
- Ver2 := Interpolate(CubeVertices[MC_EDGETABLE[MC_TRITABLE[index,
- edge + 1], 0]], CubeVertices[MC_EDGETABLE[MC_TRITABLE[index, edge + 1],
- 1]], CubeData[MC_EDGETABLE[MC_TRITABLE[index, edge + 1], 0]],
- CubeData[MC_EDGETABLE[MC_TRITABLE[index, edge + 1], 1]], Isovalue, isPolished);
- Ver3 := Interpolate(CubeVertices[MC_EDGETABLE[MC_TRITABLE[index,
- edge + 2], 0]], CubeVertices[MC_EDGETABLE[MC_TRITABLE[index, edge + 2],
- 1]], CubeData[MC_EDGETABLE[MC_TRITABLE[index, edge + 2], 0]],
- CubeData[MC_EDGETABLE[MC_TRITABLE[index, edge + 2], 1]], Isovalue, isPolished);
- VListlength := Length(Vertices) + 3;
- TListlength := Length(Triangles) + 3;
- SetLength(Vertices, VListlength);
- SetLength(Triangles, TListlength);
- Vertices[VListlength - 3] := Ver1;
- Vertices[VListlength - 2] := Ver2;
- Vertices[VListlength - 1] := Ver3;
- Triangles[TListlength - 3] := VListlength - 3;
- Triangles[TListlength - 2] := VListlength - 2;
- Triangles[TListlength - 1] := VListlength - 1;
- edge := edge + 3;
- end;
- end;
- begin
- (*
- 7----6
- /| /|
- 3----2 |
- | 4--|-5
- |/ |/
- 0----1
- *)
- for i := 0 to Dimensions['x'] - 2 do
- begin
- for j := 1 to Dimensions['y'] - 1 do
- begin
- for k := 0 to Dimensions['z'] - 2 do
- begin
- CubeVertices[0] := AffineVectorMake(i, j, k);
- CubeVertices[1] := AffineVectorMake(i + 1, j, k);
- CubeVertices[2] := AffineVectorMake(i + 1, j - 1, k);
- CubeVertices[3] := AffineVectorMake(i, j - 1, k);
- CubeVertices[4] := AffineVectorMake(i, j, k + 1);
- CubeVertices[5] := AffineVectorMake(i + 1, j, k + 1);
- CubeVertices[6] := AffineVectorMake(i + 1, j - 1, k + 1);
- CubeVertices[7] := AffineVectorMake(i, j - 1, k + 1);
- CubeData[0] := Data[i, j, k];
- CubeData[1] := Data[i + 1, j, k];
- CubeData[2] := Data[i + 1, j - 1, k];
- CubeData[3] := Data[i, j - 1, k];
- CubeData[4] := Data[i, j, k + 1];
- CubeData[5] := Data[i + 1, j, k + 1];
- CubeData[6] := Data[i + 1, j - 1, k + 1];
- CubeData[7] := Data[i, j - 1, k + 1];
- Index := BuildIndex(CubeData, Isovalue);
- AppendTri();
- end; // for k
- end; // for j
- end; // for i
- end;
- function TgxMarchingCube.add_c_vertex: Integer;
- var
- u: Single;
- vid: Integer;
- procedure VertexAdd(iv: Integer);
- begin
- with PVertices^[_Nverts] do
- begin
- u := u + 1;
- P := VectorAdd(P, PVertices[iv].P);
- N := VectorAdd(N, PVertices[iv].N);
- {$IFDEF UseDensity}
- Density := Density + PVertices[iv].Density;
- {$ENDIF}
- end
- end;
- begin
- test_vertex_addiction;
- u := 0;
- with PVertices^[_Nverts] do
- begin
- P := NullVector;
- N := NullVector;
- {$IFDEF UseDensity}
- Density := 0;
- {$ENDIF}
- end;
- Inc(_Nverts);
- // Computes the average of the intersection points of the cube
- vid := Get_x_vert(_i, _j, _k);
- if (vid <> -1) then
- VertexAdd(vid);
- vid := Get_y_vert(_i + 1, _j, _k);
- if (vid <> -1) then
- VertexAdd(vid);
- vid := Get_x_vert(_i, _j + 1, _k);
- if (vid <> -1) then
- VertexAdd(vid);
- vid := Get_y_vert(_i, _j, _k);
- if (vid <> -1) then
- VertexAdd(vid);
- vid := Get_x_vert(_i, _j, _k + 1);
- if (vid <> -1) then
- VertexAdd(vid);
- vid := Get_y_vert(_i + 1, _j, _k + 1);
- if (vid <> -1) then
- VertexAdd(vid);
- vid := Get_x_vert(_i, _j + 1, _k + 1);
- if (vid <> -1) then
- VertexAdd(vid);
- vid := Get_y_vert(_i, _j, _k + 1);
- if (vid <> -1) then
- VertexAdd(vid);
- vid := Get_z_vert(_i, _j, _k);
- if (vid <> -1) then
- VertexAdd(vid);
- vid := Get_z_vert(_i + 1, _j, _k);
- if (vid <> -1) then
- VertexAdd(vid);
- vid := Get_z_vert(_i + 1, _j + 1, _k);
- if (vid <> -1) then
- VertexAdd(vid);
- vid := Get_z_vert(_i, _j + 1, _k);
- if (vid <> -1) then
- VertexAdd(vid);
- ScaleVector(PVertices^[_Nverts].P, 1 / u);
- NormalizeVector(PVertices^[_Nverts].N);
- {$IFDEF UseDensity}
- PVertices^[_Nverts].Density := PVertices^[_Nverts].Density / u;
- {$ENDIF}
- Result := _Nverts - 1;
- end;
- procedure TgxMarchingCube.add_triangle(trig: array of Integer; N: Byte;
- v12: Integer = -1);
- var
- tv: array [0 .. 2] of Integer;
- t, tmod3: Integer;
- begin
- for t := 0 to 3 * N - 1 do
- begin
- tmod3 := t mod 3;
- case trig[t] of
- 0: tv[tmod3] := Get_x_vert(_i, _j, _k);
- 1: tv[tmod3] := Get_y_vert(_i + 1, _j, _k);
- 2: tv[tmod3] := Get_x_vert(_i, _j + 1, _k);
- 3: tv[tmod3] := Get_y_vert(_i, _j, _k);
- 4: tv[tmod3] := Get_x_vert(_i, _j, _k + 1);
- 5: tv[tmod3] := Get_y_vert(_i + 1, _j, _k + 1);
- 6: tv[tmod3] := Get_x_vert(_i, _j + 1, _k + 1);
- 7: tv[tmod3] := Get_y_vert(_i, _j, _k + 1);
- 8: tv[tmod3] := Get_z_vert(_i, _j, _k);
- 9: tv[tmod3] := Get_z_vert(_i + 1, _j, _k);
- 10: tv[tmod3] := Get_z_vert(_i + 1, _j + 1, _k);
- 11: tv[tmod3] := Get_z_vert(_i, _j + 1, _k);
- 12: tv[tmod3] := v12
- end;
- if (tv[tmod3] = -1) then
- Break;
- if (tmod3 = 2) then
- begin
- if (_Ntrigs >= _Strigs) then
- begin
- _Strigs := 2 * _Strigs;
- ReallocMem(PTriangles, _Strigs * SizeOf(TTriangleRec));
- end;
- with PTriangles^[_Ntrigs] do
- begin
- v1 := tv[0];
- v2 := tv[1];
- v3 := tv[2];
- end;
- Inc(_Ntrigs);
- end
- end
- end;
- function TgxMarchingCube.calc_u(v1, v2: Single): Extended;
- begin
- if (abs(FIsoValue - v1) >= 0.00001) then
- Result := 1
- else if (abs(FIsoValue - v2) >= 0.00001) then
- Result := 0
- else if (abs(v1 - v2) >= 0.00001) then
- Result := (FIsoValue - v1) / (v2 - v1)
- else
- Result := 0.5
- end;
- function TgxMarchingCube.add_x_vertex: Integer;
- var
- u: Single;
- begin
- test_vertex_addiction;
- u := calc_u(_Cube[0].Density, _Cube[1].Density);
- with PVertices^[_Nverts] do
- begin
- P.X := _Cube[0].P.X + u * FStepX;
- P.Y := _Cube[0].P.Y;
- P.Z := _Cube[0].P.Z;
- N.X := (1 - u) * Get_x_grad(_i, _j, _k) + u * Get_x_grad(_i + 1, _j, _k);
- N.Y := (1 - u) * Get_y_grad(_i, _j, _k) + u * Get_y_grad(_i + 1, _j, _k);
- N.Z := (1 - u) * Get_z_grad(_i, _j, _k) + u * Get_z_grad(_i + 1, _j, _k);
- NormalizeVector(N);
- {$IFDEF UseDensity}
- Density := _Cube[1].Density
- {$ENDIF}
- end;
- Inc(_Nverts);
- Result := _Nverts - 1;
- end;
- function TgxMarchingCube.add_y_vertex: Integer;
- var
- u: Single;
- begin
- test_vertex_addiction;
- u := calc_u(_Cube[0].Density, _Cube[3].Density);
- with PVertices^[_Nverts] do
- begin
- P.X := _Cube[0].P.X;
- P.Y := _Cube[0].P.Y + u * FStepY;
- P.Z := _Cube[0].P.Z;
- N.X := (1 - u) * Get_x_grad(_i, _j, _k) + u * Get_x_grad(_i, _j + 1, _k);
- N.Y := (1 - u) * Get_y_grad(_i, _j, _k) + u * Get_y_grad(_i, _j + 1, _k);
- N.Z := (1 - u) * Get_z_grad(_i, _j, _k) + u * Get_z_grad(_i, _j + 1, _k);
- NormalizeVector(N);
- {$IFDEF UseDensity}
- Density := _Cube[3].Density
- {$ENDIF}
- end;
- Inc(_Nverts);
- Result := _Nverts - 1;
- end;
- function TgxMarchingCube.add_z_vertex: Integer;
- var
- u: Single;
- begin
- test_vertex_addiction;
- u := calc_u(_Cube[0].Density, _Cube[4].Density);
- with PVertices^[_Nverts] do
- begin
- P.X := _Cube[0].P.X;
- P.Y := _Cube[0].P.Y;
- P.Z := _Cube[0].P.Z + u * FStepZ;;
- N.X := (1 - u) * Get_x_grad(_i, _j, _k) + u * Get_x_grad(_i, _j, _k + 1);
- N.Y := (1 - u) * Get_y_grad(_i, _j, _k) + u * Get_y_grad(_i, _j, _k + 1);
- N.Z := (1 - u) * Get_z_grad(_i, _j, _k) + u * Get_z_grad(_i, _j, _k + 1);
- NormalizeVector(N);
- {$IFDEF UseDensity}
- Density := _Cube[4].Density
- {$ENDIF}
- end;
- Inc(_Nverts);
- Result := _Nverts - 1;
- end;
- procedure TgxMarchingCube.clean_all(keepFacets: Boolean = False);
- begin
- clean_temps;
- clean_space;
- if (not keepFacets) then
- FreeMem(PVertices);
- FreeMem(PTriangles);
- PVertices := nil;
- PTriangles := nil;
- _Nverts := 0;
- _Ntrigs := 0;
- _Sverts := 0;
- _Strigs := 0;
- end;
- procedure TgxMarchingCube.clean_space;
- begin
- if (VoxelData <> nil) then
- begin
- FreeMem(VoxelData);
- VoxelData := nil
- end;
- FSizeX := 0;
- FSizeY := 0;
- FSizeZ := 0
- end;
- procedure TgxMarchingCube.clean_temps;
- begin
- FreeMem(PVertsX);
- PVertsX := nil;
- FreeMem(PVertsY);
- PVertsY := nil;
- FreeMem(PVertsZ);
- PVertsZ := nil;
- end;
- procedure TgxMarchingCube.compute_intersection_points;
- var
- k, j, i: Integer;
- begin
- _Cube[0] := getVoxelData(0, 0, 0);
- _Cube[1] := getVoxelData(1, 0, 0);
- _Cube[3] := getVoxelData(0, 1, 0);
- _Cube[4] := getVoxelData(0, 0, 1);
- { _step_x:= _Cube[1].P[0] - _Cube[0].P[0] ;
- _step_y:= _Cube[3].P[1] - _Cube[0].P[1] ;
- _step_z:= _Cube[4].P[2] - _Cube[0].P[2] ; }
- for k := 0 to FSizeZ - 2 do
- begin
- _k := k;
- for j := 0 to FSizeY - 2 do
- begin
- _j := j;
- for i := 0 to FSizeX - 2 do
- begin
- _i := i;
- _Cube[0] := getVoxelData(_i, _j, _k);
- _Cube[1] := getVoxelData(_i + 1, _j, _k);
- _Cube[3] := getVoxelData(_i, _j + 1, _k);
- _Cube[4] := getVoxelData(_i, _j, _k + 1);
- if (Internal(_Cube[0].Density)) then
- begin
- if (not Internal(_Cube[1].Density)) then
- set_x_vert(add_x_vertex(), _i, _j, _k);
- if (not Internal(_Cube[3].Density)) then
- set_y_vert(add_y_vertex(), _i, _j, _k);
- if (not Internal(_Cube[4].Density)) then
- set_z_vert(add_z_vertex(), _i, _j, _k);
- end
- else
- begin
- if (Internal(_Cube[1].Density)) then
- set_x_vert(add_x_vertex(), _i, _j, _k);
- if (Internal(_Cube[3].Density)) then
- set_y_vert(add_y_vertex(), _i, _j, _k);
- if (Internal(_Cube[4].Density)) then
- set_z_vert(add_z_vertex(), _i, _j, _k);
- end
- end
- end
- end
- end;
- procedure TgxMarchingCube.ReDim(ASizeX, ASizeY, ASizeZ: Integer;
- xMin, xMax, yMin, yMax, zMin, zMax: Single);
- begin
- clean_all;
- FSizeX := ASizeX;
- FSizeY := ASizeY;
- FSizeZ := ASizeZ;
- FxMin := xMin;
- FxMax := xMax;
- FyMin := yMin;
- FyMax := yMax;
- FzMin := zMin;
- FzMax := zMax;
- FStepX := (FxMax - FxMin) / (FSizeX - 1);
- FStepY := (FyMax - FyMin) / (FSizeY - 1);
- FStepZ := (FzMax - FzMin) / (FSizeZ - 1);
- VoxelData := nil;
- PVertsX := nil;
- PVertsY := nil;
- PVertsZ := nil;
- _Nverts := 0;
- _Ntrigs := 0;
- _Sverts := 0;
- _Strigs := 0;
- PVertices := nil;
- PTriangles := nil;
- Init_all;
- // FillVoxelData;
- end;
- constructor TgxMarchingCube.Create;
- begin
- FOriginalMC := True; // now only original MC is implemented
- FIsoValue := 0;
- ScalarField := nil;
- // SFSphere;//SFKleinBottle;//SFMinkowski;// SFChmutov2;// SFChmutov1;//SFDoubleTorus;// SFToroidal;
- VoxelData := nil;
- PVertsX := nil;
- PVertsY := nil;
- PVertsZ := nil;
- _Nverts := 0;
- _Ntrigs := 0;
- _Sverts := 0;
- _Strigs := 0;
- PVertices := nil;
- PTriangles := nil;
- end;
- constructor TgxMarchingCube.Create(SizeX, SizeY, SizeZ: Integer;
- AIsoValue: TScalarValue = 0.0; xMin: Single = -0.5; xMax: Single = 0.5;
- yMin: Single = -0.5; yMax: Single = 0.5; zMin: Single = -0.5;
- zMax: Single = 0.5);
- begin
- FOriginalMC := True; // now only original MC is implemented
- FIsoValue := AIsoValue;
- ScalarField := SFSphere;
- //SFKleinBottle;
- //SFMinkowski;
- //SFChmutov2;
- //SFChmutov1;
- //SFDoubleTorus;
- //SFToroidal;
- ReDim(SizeX, SizeY, SizeZ, xMin, xMax, yMin, yMax, zMin, zMax);
- FillVoxelData;
- end;
- destructor TgxMarchingCube.Destroy;
- begin
- clean_all;
- inherited;
- end;
- function TgxMarchingCube.getVoxelValue(i, j, k: Integer): TScalarValue;
- begin
- Result := VoxelData^[i + j * FSizeX + k * FSizeX * FSizeY].Density
- end;
- function TgxMarchingCube.getVoxelData(i, j, k: Integer): TVoxelRec;
- begin
- Result := VoxelData^[i + j * FSizeX + k * FSizeX * FSizeY]
- end;
- function TgxMarchingCube.Get_x_grad(i, j, k: Integer): Single;
- begin
- if (i > 0) then
- if (i < FSizeX - 1) then
- Result := (getVoxelValue(i + 1, j, k) - getVoxelValue(i - 1, j, k)) / 2
- else
- Result := getVoxelValue(i, j, k) - getVoxelValue(i - 1, j, k)
- else
- Result := getVoxelValue(i + 1, j, k) - getVoxelValue(i, j, k)
- end;
- function TgxMarchingCube.Get_x_vert(i, j, k: Integer): Integer;
- begin
- Result := PVertsX^[i + j * FSizeX + k * FSizeX * FSizeY]
- end;
- function TgxMarchingCube.Get_y_grad(i, j, k: Integer): Single;
- begin
- if (j > 0) then
- if (j < FSizeY - 1) then
- Result := (getVoxelValue(i, j + 1, k) - getVoxelValue(i, j - 1, k)) / 2
- else
- Result := getVoxelValue(i, j, k) - getVoxelValue(i, j - 1, k)
- else
- Result := getVoxelValue(i, j + 1, k) - getVoxelValue(i, j, k)
- end;
- function TgxMarchingCube.Get_y_vert(i, j, k: Integer): Integer;
- begin
- Result := PVertsY^[i + j * FSizeX + k * FSizeX * FSizeY]
- end;
- function TgxMarchingCube.Get_z_grad(i, j, k: Integer): Single;
- begin
- if (k > 0) then
- if (k < FSizeZ - 1) then
- Result := (getVoxelValue(i, j, k + 1) - getVoxelValue(i, j, k - 1)) / 2
- else
- Result := getVoxelValue(i, j, k) - getVoxelValue(i, j, k - 1)
- else
- Result := getVoxelValue(i, j, k + 1) - getVoxelValue(i, j, k)
- end;
- function TgxMarchingCube.Get_z_vert(i, j, k: Integer): Integer;
- begin
- Result := PVertsZ^[i + j * FSizeX + k * FSizeX * FSizeY]
- end;
- procedure TgxMarchingCube.Init_all;
- begin
- Init_temps;
- Init_space;
- if (PVertices <> nil) then
- FreeMem(PVertices);
- if (PTriangles <> nil) then
- FreeMem(PTriangles);
- _Nverts := 0;
- _Ntrigs := 0;
- _Sverts := ALLOC_SIZE;
- _Strigs := ALLOC_SIZE;
- GetMem(PVertices, _Sverts * SizeOf(TVertexRec));
- GetMem(PTriangles, _Strigs * SizeOf(TTriangleRec));
- end;
- procedure TgxMarchingCube.Init_space;
- begin
- VoxelData := AllocMem(FSizeX * FSizeY * FSizeZ * SizeOf(TVoxelRec));
- end;
- procedure TgxMarchingCube.Init_temps;
- var
- spaceSize: Longword;
- begin
- spaceSize := FSizeX * FSizeY * FSizeZ;
- GetMem(PVertsX, spaceSize * SizeOf(Integer));
- GetMem(PVertsY, spaceSize * SizeOf(Integer));
- GetMem(PVertsZ, spaceSize * SizeOf(Integer));
- FillChar(PVertsX^, spaceSize * SizeOf(Integer), -1);
- FillChar(PVertsY^, spaceSize * SizeOf(Integer), -1);
- FillChar(PVertsZ^, spaceSize * SizeOf(Integer), -1);
- end;
- function TgxMarchingCube.Internal(AValue: TScalarValue): Boolean;
- begin
- Result := AValue <= FIsoValue
- end;
- procedure TgxMarchingCube.process_cube;
- var
- nt: Byte;
- begin
- if (FOriginalMC) then
- begin
- nt := 0;
- while (MC_TRITABLE[_lut_entry][3 * nt] <> -1) do
- Inc(nt);
- add_triangle(MC_TRITABLE[_lut_entry], nt);
- Exit;
- end;
- {
- TODO complete algorithm with various tiling...
- }
- end;
- procedure TgxMarchingCube.Run;
- var
- i, j, k, P: Integer;
- begin
- if (PVertsX = nil) then
- begin
- Init_temps;
- _Nverts := 0;
- _Ntrigs := 0;
- end;
- Compute_Intersection_Points;
- for k := 0 to FSizeZ - 2 do
- begin
- _k := k;
- for j := 0 to FSizeY - 2 do
- begin
- _j := j;
- for i := 0 to FSizeX - 2 do
- begin
- _i := i;
- _lut_entry := 0;
- for P := 0 to 7 do
- begin
- _Cube[P] := getVoxelData(i + ((P xor (P shr 1)) and 1),
- j + ((P shr 1) and 1), k + ((P shr 2) and 1));
- // _Cube[p]:= getVoxelData( i+((p^(p>>1))&1), j+((p>>1)&1), k+((p>>2)&1) ) ;
- if (Internal(_Cube[P].Density)) then
- _lut_entry := _lut_entry or (1 shl P);
- end;
- process_cube;
- end
- end
- end;
- clean_temps;
- end;
- procedure TgxMarchingCube.Run(IsoValue: TScalarValue);
- begin
- FIsoValue := IsoValue;
- Run
- end;
- procedure TgxMarchingCube.setVoxelValue(i, j, k: Integer; HfValue: TScalarValue);
- begin
- VoxelData^[i + j * FSizeX + k * FSizeX * FSizeY].Density := HfValue
- end;
- procedure TgxMarchingCube.set_x_vert(a_val, i, j, k: Integer);
- begin
- PVertsX^[i + j * FSizeX + k * FSizeX * FSizeY] := a_val
- end;
- procedure TgxMarchingCube.set_y_vert(a_val, i, j, k: Integer);
- begin
- PVertsY^[i + j * FSizeX + k * FSizeX * FSizeY] := a_val
- end;
- procedure TgxMarchingCube.set_z_vert(a_val, i, j, k: Integer);
- begin
- PVertsZ^[i + j * FSizeX + k * FSizeX * FSizeY] := a_val
- end;
- procedure TgxMarchingCube.test_vertex_addiction;
- begin
- if _Nverts >= _Sverts then
- begin
- _Sverts := 2 * _Sverts;
- ReallocMem(PVertices, _Sverts * SizeOf(TVertexRec))
- end;
- end;
- function TgxMarchingCube.voxel(i, j, k: Integer): PVoxelRec;
- begin
- if (k >= FSizeZ) or (j >= FSizeY) or (i >= FSizeX) then
- Result := nil
- else
- Result := @VoxelData^[i + j * FSizeX + k * FSizeX * FSizeY]
- end;
- procedure TgxMarchingCube.FillVoxelData;
- var
- iX, iY, iZ: Integer;
- X, Y, Z: Single;
- begin
- for iX := 0 to FSizeX - 1 do
- begin
- X := FxMin + iX * FStepX;
- for iY := 0 to FSizeY - 1 do
- begin
- Y := FyMin + iY * FStepY;
- for iZ := 0 to FSizeZ - 1 do
- with VoxelData^[iX + iY * FSizeX + iZ * FSizeX * FSizeY] do
- begin
- Z := FzMin + iZ * FStepZ;
- MakeVector(P, X, Y, Z);
- Density := ScalarField(X, Y, Z);
- if Internal(Density) then
- Status := bpInternal
- else
- Status := bpExternal
- end;
- end;
- end;
- end;
- procedure TgxMarchingCube.FillVoxelData(AIsoValue: TScalarValue; AScalarField: TScalarField = nil);
- begin
- FIsoValue := AIsoValue;
- if Assigned(AScalarField) then
- ScalarField := AScalarField;
- FillVoxelData;
- end;
- procedure TgxMarchingCube.FillVoxelData(AIsoValue: TScalarValue; AScalarField: TScalarFieldInt);
- var
- iX, iY, iZ: Integer;
- X, Y, Z: Single;
- begin
- FIsoValue := AIsoValue;
- for iX := 0 to FSizeX - 1 do
- begin
- X := FxMin + iX * FStepX;
- for iY := 0 to FSizeY - 1 do
- begin
- Y := FyMin + iY * FStepY;
- for iZ := 0 to FSizeZ - 1 do
- with VoxelData^[iX + iY * FSizeX + iZ * FSizeX * FSizeY] do
- begin
- Z := FzMin + iZ * FStepZ;
- MakeVector(P, X, Y, Z);
- Density := AScalarField(iX, iY, iZ);
- if Internal(Density) then
- Status := bpInternal
- else
- Status := bpExternal
- end;
- end;
- end;
- end;
- procedure TgxMarchingCube.CalcVertices(Vertices: TgxVertexList;
- Alpha: Single = 1);
- var
- i: Integer;
- vx1, vx2, vx3: TgxVertexData;
- function GetNrmColor(Nrm: TAffineVector): TVector4f;
- begin
- Result.V[0] := 0;
- if Nrm.V[0] > 0.0 then
- Result.V[0] := Result.V[0] + Nrm.V[0];
- if Nrm.V[1] < 0.0 then
- Result.V[0] := Result.V[0] - 0.5 * Nrm.V[1];
- if Nrm.V[2] < 0.0 then
- Result.V[0] := Result.V[0] - 0.5 * Nrm.V[2];
- Result.V[1] := 1;
- if Nrm.V[0] < 0.0 then
- Result.V[1] := Result.V[1] - 0.5 * Nrm.V[0];
- if Nrm.V[1] > 0.0 then
- Result.V[1] := Result.V[1] + Nrm.V[1];
- if Nrm.V[2] < 0.0 then
- Result.V[1] := Result.V[1] - 0.5 * Nrm.V[2];
- Result.V[2] := 0;
- if Nrm.V[0] < 0.0 then
- Result.V[2] := Result.V[2] - 0.5 * Nrm.V[0];
- if Nrm.V[1] < 0.0 then
- Result.V[2] := Result.V[2] - 0.5 * Nrm.V[1];
- if Nrm.V[2] > 0.0 then
- Result.V[2] := Result.V[2] + Nrm.V[2];
- Result.V[3] := 0.3
- end;
- function GetColor(H: TScalarValue): TVector4f;
- begin
- Result := VectorMake(0.890, 0.855, 0.788, Alpha)
- { if H <= 10 then Result:= VectorMake(0.922, 0.957, 0.980, 1.000) //<=10
- else if H <= 50 then Result:= VectorMake(0.541, 0.027, 0.027, 1.000) // 10..50
- else if H <= 300 then Result:= VectorMake(0.941, 0.910, 0.859, 1.000) //50..300
- else if H <= 2000 then Result:= VectorMake(0.965, 0.969, 0.973, 1.000) //350.. 2000
- else if H <= 4000 then Result:= VectorMake(0.890, 0.855, 0.788, 1.000) //2000..4000
- else Result:= VectorMake(0.9, 0.9, 0.6, 1.0) }
- end;
- begin
- Vertices.Clear;
- Vertices.Capacity := 3 * _Ntrigs;
- for i := 0 to _Ntrigs - 1 do
- with PTriangles^[i] do
- begin
- vx1.coord := PVertices^[v1].P;
- vx1.normal := PVertices^[v1].N;
- vx2.coord := PVertices^[v2].P;
- vx2.normal := PVertices^[v2].N;
- vx3.coord := PVertices^[v3].P;
- vx3.normal := PVertices^[v3].N;
- {$IFDEF UseDensity}
- vx1.Color := GetColor(PVertices^[v1].Density); // GetNrmColor(vx1.normal);
- vx2.Color := GetColor(PVertices^[v2].Density); // GetNrmColor(vx2.normal);
- vx3.Color := GetColor(PVertices^[v3].Density); // GetNrmColor(vx3.normal);
- {$ELSE}
- vx1.Color := VectorMake(0.890, 0.855, 0.788, Alpha);
- vx2.Color := VectorMake(0.890, 0.855, 0.788, Alpha);
- vx3.Color := VectorMake(0.890, 0.855, 0.788, Alpha);
- {$ENDIF}
- // Vertices.AddVertex3(vx1, vx2, vx3); seems to be correct the next line
- Vertices.AddVertex3(vx3, vx2, vx1);
- end;
- end;
- procedure TgxMarchingCube.CalcMeshObject(AMeshObject: TgxMeshObject; Alpha: Single);
- var
- i: Integer;
- begin
- AMeshObject.Clear;
- AMeshObject.Vertices.Capacity := _Nverts;
- AMeshObject.Normals.Capacity := _Nverts;
- AMeshObject.Colors.Capacity := _Nverts;
- with TgxFGVertexIndexList.CreateOwned(AMeshObject.FaceGroups) do
- begin
- Mode := fgmmTriangles;
- for i := 0 to _Nverts - 1 do
- begin
- AMeshObject.Vertices.Add(PVertices^[i].P);
- AMeshObject.Normals.Add(PVertices^[i].N);
- // AMeshObject.Normals.Add(VectorScale(PVertices^[i].N, -1));
- // AMeshObject.Colors.Add(VectorMake(0.890, 0.855, 0.788, Alpha));
- end;
- for i := 0 to _Ntrigs - 1 do
- // with PTriangles^[i] do VertexIndices.Add(v1, v2, v3);
- with PTriangles^[i] do
- VertexIndices.Add(v3, v2, v1);
- end;
- end;
- end.
|