weak_ringbuffer.cpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. // Copyright (c) 2006-2018 Maxim Khizhinsky
  2. //
  3. // Distributed under the Boost Software License, Version 1.0. (See accompanying
  4. // file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #include "test_bounded_queue.h"
  6. #include <cds/container/weak_ringbuffer.h>
  7. #include <cds_test/fixture.h>
  8. namespace {
  9. namespace cc = cds::container;
  10. class WeakRingBuffer: public cds_test::bounded_queue
  11. {
  12. public:
  13. template <typename Queue>
  14. void test_array( Queue& q )
  15. {
  16. typedef typename Queue::value_type value_type;
  17. const size_t nSize = q.capacity();
  18. static const size_t nArrSize = 16;
  19. const size_t nArrCount = nSize / nArrSize;
  20. {
  21. value_type el[nArrSize];
  22. for ( unsigned pass = 0; pass < 3; ++pass ) {
  23. // batch push
  24. for ( size_t i = 0; i < nSize; i += nArrSize ) {
  25. for ( size_t k = 0; k < nArrSize; ++k )
  26. el[k] = static_cast<value_type>( i + k );
  27. if ( i + nArrSize <= nSize ) {
  28. ASSERT_TRUE( q.push( el, nArrSize ));
  29. }
  30. else {
  31. ASSERT_FALSE( q.push( el, nArrSize ));
  32. }
  33. }
  34. ASSERT_TRUE( !q.empty());
  35. if ( nSize % nArrSize != 0 ) {
  36. ASSERT_FALSE( q.full());
  37. ASSERT_CONTAINER_SIZE( q, nArrCount * nArrSize );
  38. for ( size_t i = nArrCount * nArrSize; i < nSize; ++i ) {
  39. ASSERT_TRUE( q.enqueue( static_cast<value_type>( i )));
  40. }
  41. }
  42. ASSERT_TRUE( q.full());
  43. ASSERT_CONTAINER_SIZE( q, nSize );
  44. // batch pop
  45. value_type expected = 0;
  46. while ( q.pop( el, nArrSize )) {
  47. for ( size_t i = 0; i < nArrSize; ++i ) {
  48. ASSERT_EQ( el[i], expected );
  49. ++expected;
  50. }
  51. }
  52. if ( nSize % nArrSize == 0 ) {
  53. ASSERT_TRUE( q.empty());
  54. }
  55. else {
  56. ASSERT_FALSE( q.empty());
  57. ASSERT_CONTAINER_SIZE( q, nSize % nArrSize );
  58. q.clear();
  59. }
  60. ASSERT_TRUE( q.empty());
  61. ASSERT_FALSE( q.full());
  62. ASSERT_CONTAINER_SIZE( q, 0u );
  63. }
  64. }
  65. {
  66. // batch push with functor
  67. size_t el[nArrSize];
  68. auto func_push = []( value_type& dest, size_t src ) { dest = static_cast<value_type>( src * 10 ); };
  69. for ( unsigned pass = 0; pass < 3; ++pass ) {
  70. for ( size_t i = 0; i < nSize; i += nArrSize ) {
  71. for ( size_t k = 0; k < nArrSize; ++k )
  72. el[k] = i + k;
  73. if ( i + nArrSize <= nSize ) {
  74. ASSERT_TRUE( q.push( el, nArrSize, func_push ));
  75. }
  76. else {
  77. ASSERT_FALSE( q.push( el, nArrSize, func_push ));
  78. }
  79. }
  80. ASSERT_TRUE( !q.empty());
  81. if ( nSize % nArrSize != 0 ) {
  82. ASSERT_FALSE( q.full());
  83. ASSERT_CONTAINER_SIZE( q, nArrCount * nArrSize );
  84. for ( size_t i = nArrCount * nArrSize; i < nSize; ++i ) {
  85. ASSERT_TRUE( q.push( &i, 1, func_push ));
  86. }
  87. }
  88. ASSERT_TRUE( q.full());
  89. ASSERT_CONTAINER_SIZE( q, nSize );
  90. // batch pop with functor
  91. auto func_pop = []( size_t& dest, value_type src ) { dest = static_cast<size_t>( src / 10 ); };
  92. size_t expected = 0;
  93. while ( q.pop( el, nArrSize, func_pop )) {
  94. for ( size_t i = 0; i < nArrSize; ++i ) {
  95. ASSERT_EQ( el[i], expected );
  96. ++expected;
  97. }
  98. }
  99. if ( nSize % nArrSize == 0 ) {
  100. ASSERT_TRUE( q.empty());
  101. }
  102. else {
  103. ASSERT_FALSE( q.empty());
  104. ASSERT_CONTAINER_SIZE( q, nSize % nArrSize );
  105. size_t v;
  106. while ( q.pop( &v, 1, func_pop )) {
  107. ASSERT_EQ( v, expected );
  108. ++expected;
  109. }
  110. }
  111. ASSERT_TRUE( q.empty());
  112. ASSERT_FALSE( q.full());
  113. ASSERT_CONTAINER_SIZE( q, 0u );
  114. }
  115. // front/pop_front
  116. for ( unsigned pass = 0; pass < 3; ++pass ) {
  117. for ( size_t i = 0; i < nSize; i += nArrSize ) {
  118. for ( size_t k = 0; k < nArrSize; ++k )
  119. el[k] = i + k;
  120. if ( i + nArrSize <= nSize ) {
  121. ASSERT_TRUE( q.push( el, nArrSize, func_push ));
  122. }
  123. else {
  124. ASSERT_FALSE( q.push( el, nArrSize, func_push ));
  125. }
  126. }
  127. ASSERT_TRUE( !q.empty());
  128. if ( nSize % nArrSize != 0 ) {
  129. ASSERT_FALSE( q.full());
  130. ASSERT_CONTAINER_SIZE( q, nArrCount * nArrSize );
  131. for ( size_t i = nArrCount * nArrSize; i < nSize; ++i ) {
  132. ASSERT_TRUE( q.push( &i, 1, func_push ));
  133. }
  134. }
  135. ASSERT_TRUE( q.full());
  136. ASSERT_CONTAINER_SIZE( q, nSize );
  137. value_type cur = 0;
  138. while ( !q.empty()) {
  139. value_type* front = q.front();
  140. ASSERT_TRUE( front != nullptr );
  141. ASSERT_EQ( cur, *front );
  142. ASSERT_TRUE( q.pop_front());
  143. cur += 10;
  144. }
  145. ASSERT_TRUE( q.empty());
  146. ASSERT_TRUE( q.front() == nullptr );
  147. ASSERT_FALSE( q.pop_front());
  148. }
  149. }
  150. }
  151. template <typename Queue>
  152. void test_varsize_buffer( Queue& q )
  153. {
  154. size_t const capacity = q.capacity();
  155. ASSERT_TRUE( q.empty());
  156. ASSERT_EQ( q.size(), 0u );
  157. ASSERT_TRUE( q.front().first == nullptr );
  158. ASSERT_FALSE( q.pop_front());
  159. size_t total_push = 0;
  160. uint8_t chfill = 0;
  161. while ( total_push < capacity * 4 ) {
  162. unsigned buf_size = cds_test::fixture::rand( static_cast<unsigned>( capacity / 4 )) + 1;
  163. total_push += buf_size;
  164. void* buf = q.back( buf_size );
  165. ASSERT_TRUE( buf != nullptr );
  166. memset( buf, chfill, buf_size );
  167. q.push_back();
  168. ASSERT_GE( q.size(), buf_size );
  169. auto pair = q.front();
  170. ASSERT_TRUE( pair.first != nullptr );
  171. ASSERT_EQ( pair.second, buf_size );
  172. for ( size_t i = 0; i < pair.second; ++i )
  173. ASSERT_EQ( *reinterpret_cast<uint8_t*>( pair.first ), chfill );
  174. ASSERT_TRUE( q.pop_front());
  175. ASSERT_FALSE( q.pop_front());
  176. }
  177. ASSERT_TRUE( q.empty());
  178. ASSERT_EQ( q.size(), 0u );
  179. ASSERT_TRUE( q.front().first == nullptr );
  180. ASSERT_FALSE( q.pop_front());
  181. }
  182. };
  183. TEST_F( WeakRingBuffer, defaulted )
  184. {
  185. typedef cds::container::WeakRingBuffer< int > test_queue;
  186. test_queue q( 128 );
  187. test( q );
  188. test_array( q );
  189. }
  190. TEST_F( WeakRingBuffer, stat )
  191. {
  192. struct traits: public cds::container::weak_ringbuffer::traits
  193. {
  194. typedef cds::opt::v::uninitialized_static_buffer<int, 128> buffer;
  195. };
  196. typedef cds::container::WeakRingBuffer< int, traits > test_queue;
  197. test_queue q;
  198. test( q );
  199. test_array( q );
  200. }
  201. TEST_F( WeakRingBuffer, dynamic )
  202. {
  203. struct traits: public cds::container::weak_ringbuffer::traits
  204. {
  205. typedef cds::opt::v::uninitialized_dynamic_buffer<int> buffer;
  206. };
  207. typedef cds::container::WeakRingBuffer< int, traits > test_queue;
  208. test_queue q( 128 );
  209. test( q );
  210. test_array( q );
  211. }
  212. TEST_F( WeakRingBuffer, dynamic_mod )
  213. {
  214. struct traits: public cds::container::weak_ringbuffer::traits
  215. {
  216. typedef cds::opt::v::uninitialized_dynamic_buffer<int, CDS_DEFAULT_ALLOCATOR, false> buffer;
  217. };
  218. typedef cds::container::WeakRingBuffer< int, traits > test_queue;
  219. test_queue q( 100 );
  220. test( q );
  221. test_array( q );
  222. }
  223. TEST_F( WeakRingBuffer, dynamic_padding )
  224. {
  225. struct traits: public cds::container::weak_ringbuffer::traits
  226. {
  227. typedef cds::opt::v::uninitialized_dynamic_buffer<int> buffer;
  228. enum { padding = 32 };
  229. };
  230. typedef cds::container::WeakRingBuffer< int, traits > test_queue;
  231. test_queue q( 128 );
  232. test( q );
  233. test_array( q );
  234. }
  235. TEST_F( WeakRingBuffer, var_sized )
  236. {
  237. typedef cds::container::WeakRingBuffer< void > test_queue;
  238. test_queue q( 1024 * 64 );
  239. test_varsize_buffer( q );
  240. }
  241. TEST_F( WeakRingBuffer, var_sized_static )
  242. {
  243. struct traits: public cds::container::weak_ringbuffer::traits
  244. {
  245. typedef cds::opt::v::uninitialized_static_buffer<int, 1024 * 64> buffer;
  246. };
  247. typedef cds::container::WeakRingBuffer< void, traits > test_queue;
  248. test_queue q;
  249. test_varsize_buffer( q );
  250. }
  251. } // namespace