|
@@ -5,6 +5,8 @@
|
|
|
|
|
|
#include "Vector3.h"
|
|
|
|
|
|
+// #include "Basis.h"
|
|
|
+
|
|
|
namespace godot {
|
|
|
|
|
|
#define CMP_EPSILON 0.00001
|
|
@@ -16,17 +18,127 @@ public:
|
|
|
|
|
|
real_t x,y,z,w;
|
|
|
|
|
|
- real_t length_squared() const;
|
|
|
- real_t length() const;
|
|
|
- void normalize();
|
|
|
- Quat normalized() const;
|
|
|
- Quat inverse() const;
|
|
|
- real_t dot(const Quat& q) const;
|
|
|
- void set_euler(const Vector3& p_euler);
|
|
|
- Vector3 get_euler() const;
|
|
|
- Quat slerp(const Quat& q, const real_t& t) const;
|
|
|
- Quat slerpni(const Quat& q, const real_t& t) const;
|
|
|
- Quat cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const;
|
|
|
+ real_t length_squared() const; // down below
|
|
|
+ real_t length() const
|
|
|
+ {
|
|
|
+ return ::sqrt(length_squared());
|
|
|
+ }
|
|
|
+
|
|
|
+ void normalize()
|
|
|
+ {
|
|
|
+ *this /= length();
|
|
|
+ }
|
|
|
+
|
|
|
+ Quat normalized() const
|
|
|
+ {
|
|
|
+ return *this / length();
|
|
|
+ }
|
|
|
+
|
|
|
+ Quat inverse() const
|
|
|
+ {
|
|
|
+ return Quat( -x, -y, -z, w );
|
|
|
+ }
|
|
|
+
|
|
|
+ real_t dot(const Quat& q) const; // down below
|
|
|
+ void set_euler(const Vector3& p_euler)
|
|
|
+ {
|
|
|
+ real_t half_a1 = p_euler.x * 0.5;
|
|
|
+ real_t half_a2 = p_euler.y * 0.5;
|
|
|
+ real_t half_a3 = p_euler.z * 0.5;
|
|
|
+
|
|
|
+ // R = X(a1).Y(a2).Z(a3) convention for Euler angles.
|
|
|
+ // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2)
|
|
|
+ // a3 is the angle of the first rotation, following the notation in this reference.
|
|
|
+
|
|
|
+ real_t cos_a1 = ::cos(half_a1);
|
|
|
+ real_t sin_a1 = ::sin(half_a1);
|
|
|
+ real_t cos_a2 = ::cos(half_a2);
|
|
|
+ real_t sin_a2 = ::sin(half_a2);
|
|
|
+ real_t cos_a3 = ::cos(half_a3);
|
|
|
+ real_t sin_a3 = ::sin(half_a3);
|
|
|
+
|
|
|
+ set(sin_a1*cos_a2*cos_a3 + sin_a2*sin_a3*cos_a1,
|
|
|
+ -sin_a1*sin_a3*cos_a2 + sin_a2*cos_a1*cos_a3,
|
|
|
+ sin_a1*sin_a2*cos_a3 + sin_a3*cos_a1*cos_a2,
|
|
|
+ -sin_a1*sin_a2*sin_a3 + cos_a1*cos_a2*cos_a3);
|
|
|
+ }
|
|
|
+
|
|
|
+ Vector3 get_euler() const; // down below
|
|
|
+
|
|
|
+ Quat slerp(const Quat& q, const real_t& t) const {
|
|
|
+
|
|
|
+ Quat to1;
|
|
|
+ real_t omega, cosom, sinom, scale0, scale1;
|
|
|
+
|
|
|
+
|
|
|
+ // calc cosine
|
|
|
+ cosom = dot(q);
|
|
|
+
|
|
|
+ // adjust signs (if necessary)
|
|
|
+ if ( cosom <0.0 ) {
|
|
|
+ cosom = -cosom;
|
|
|
+ to1.x = - q.x;
|
|
|
+ to1.y = - q.y;
|
|
|
+ to1.z = - q.z;
|
|
|
+ to1.w = - q.w;
|
|
|
+ } else {
|
|
|
+ to1.x = q.x;
|
|
|
+ to1.y = q.y;
|
|
|
+ to1.z = q.z;
|
|
|
+ to1.w = q.w;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // calculate coefficients
|
|
|
+
|
|
|
+ if ( (1.0 - cosom) > CMP_EPSILON ) {
|
|
|
+ // standard case (slerp)
|
|
|
+ omega = ::acos(cosom);
|
|
|
+ sinom = ::sin(omega);
|
|
|
+ scale0 = ::sin((1.0 - t) * omega) / sinom;
|
|
|
+ scale1 = ::sin(t * omega) / sinom;
|
|
|
+ } else {
|
|
|
+ // "from" and "to" quaternions are very close
|
|
|
+ // ... so we can do a linear interpolation
|
|
|
+ scale0 = 1.0 - t;
|
|
|
+ scale1 = t;
|
|
|
+ }
|
|
|
+ // calculate final values
|
|
|
+ return Quat(
|
|
|
+ scale0 * x + scale1 * to1.x,
|
|
|
+ scale0 * y + scale1 * to1.y,
|
|
|
+ scale0 * z + scale1 * to1.z,
|
|
|
+ scale0 * w + scale1 * to1.w
|
|
|
+ );
|
|
|
+ }
|
|
|
+
|
|
|
+ Quat slerpni(const Quat& q, const real_t& t) const {
|
|
|
+
|
|
|
+ const Quat &from = *this;
|
|
|
+
|
|
|
+ real_t dot = from.dot(q);
|
|
|
+
|
|
|
+ if (::fabs(dot) > 0.9999) return from;
|
|
|
+
|
|
|
+ real_t theta = ::acos(dot),
|
|
|
+ sinT = 1.0 / ::sin(theta),
|
|
|
+ newFactor = ::sin(t * theta) * sinT,
|
|
|
+ invFactor = ::sin((1.0 - t) * theta) * sinT;
|
|
|
+
|
|
|
+ return Quat(invFactor * from.x + newFactor * q.x,
|
|
|
+ invFactor * from.y + newFactor * q.y,
|
|
|
+ invFactor * from.z + newFactor * q.z,
|
|
|
+ invFactor * from.w + newFactor * q.w);
|
|
|
+ }
|
|
|
+
|
|
|
+ Quat cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const
|
|
|
+ {
|
|
|
+ //the only way to do slerp :|
|
|
|
+ real_t t2 = (1.0-t)*t*2;
|
|
|
+ Quat sp = this->slerp(q,t);
|
|
|
+ Quat sq = prep.slerpni(postq,t);
|
|
|
+ return sp.slerpni(sq,t2);
|
|
|
+ }
|
|
|
|
|
|
void get_axis_and_angle(Vector3& r_axis, real_t &r_angle) const {
|
|
|
r_angle = 2 * ::acos(w);
|
|
@@ -35,8 +147,8 @@ public:
|
|
|
r_axis.z = z / ::sqrt(1-w*w);
|
|
|
}
|
|
|
|
|
|
- void operator*=(const Quat& q);
|
|
|
- Quat operator*(const Quat& q) const;
|
|
|
+ void operator*=(const Quat& q); // down below
|
|
|
+ Quat operator*(const Quat& q) const; // down below
|
|
|
|
|
|
|
|
|
|
|
@@ -55,6 +167,7 @@ public:
|
|
|
return Vector3(q.x,q.y,q.z);
|
|
|
}
|
|
|
|
|
|
+ // everything's down
|
|
|
void operator+=(const Quat& q);
|
|
|
void operator-=(const Quat& q);
|
|
|
void operator*=(const real_t& s);
|
|
@@ -69,7 +182,10 @@ public:
|
|
|
bool operator==(const Quat& p_quat) const;
|
|
|
bool operator!=(const Quat& p_quat) const;
|
|
|
|
|
|
- operator String() const;
|
|
|
+ operator String() const
|
|
|
+ {
|
|
|
+ return String(); // @Todo
|
|
|
+ }
|
|
|
|
|
|
inline void set( real_t p_x, real_t p_y, real_t p_z, real_t p_w) {
|
|
|
x=p_x; y=p_y; z=p_z; w=p_w;
|
|
@@ -77,7 +193,19 @@ public:
|
|
|
inline Quat(real_t p_x, real_t p_y, real_t p_z, real_t p_w) {
|
|
|
x=p_x; y=p_y; z=p_z; w=p_w;
|
|
|
}
|
|
|
- Quat(const Vector3& axis, const real_t& angle);
|
|
|
+ Quat(const Vector3& axis, const real_t& angle)
|
|
|
+ {
|
|
|
+ real_t d = axis.length();
|
|
|
+ if (d==0)
|
|
|
+ set(0,0,0,0);
|
|
|
+ else {
|
|
|
+ real_t sin_angle = ::sin(angle * 0.5);
|
|
|
+ real_t cos_angle = ::cos(angle * 0.5);
|
|
|
+ real_t s = sin_angle / d;
|
|
|
+ set(axis.x * s, axis.y * s, axis.z * s,
|
|
|
+ cos_angle);
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
Quat(const Vector3& v0, const Vector3& v1) // shortest arc
|
|
|
{
|
|
@@ -143,6 +271,13 @@ Quat Quat::operator-(const Quat& q2) const {
|
|
|
return Quat( q1.x-q2.x, q1.y-q2.y, q1.z-q2.z, q1.w-q2.w);
|
|
|
}
|
|
|
|
|
|
+Quat Quat::operator*(const Quat& q2) const {
|
|
|
+ Quat q1 = *this;
|
|
|
+ q1 *= q2;
|
|
|
+ return q1;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
Quat Quat::operator-() const {
|
|
|
const Quat& q2 = *this;
|
|
|
return Quat( -q2.x, -q2.y, -q2.z, -q2.w);
|
|
@@ -166,6 +301,18 @@ bool Quat::operator!=(const Quat& p_quat) const {
|
|
|
}
|
|
|
|
|
|
|
|
|
+}
|
|
|
+
|
|
|
+#include "Basis.h"
|
|
|
+
|
|
|
+namespace godot {
|
|
|
+
|
|
|
+Vector3 Quat::get_euler() const
|
|
|
+{
|
|
|
+ Basis m(*this);
|
|
|
+ return m.get_euler();
|
|
|
+}
|
|
|
+
|
|
|
}
|
|
|
|
|
|
#endif // QUAT_H
|