Browse Source

Merge pull request #436 from m4gr3d/arcore_support

Additions to the library to support the ARCore plugin
Marc 5 years ago
parent
commit
94efdc4073
4 changed files with 792 additions and 0 deletions
  1. 103 0
      include/core/CameraMatrix.hpp
  2. 2 0
      include/core/RID.hpp
  3. 683 0
      src/core/CameraMatrix.cpp
  4. 4 0
      src/core/RID.cpp

+ 103 - 0
include/core/CameraMatrix.hpp

@@ -0,0 +1,103 @@
+#ifndef CAMERA_MATRIX_H
+#define CAMERA_MATRIX_H
+
+#include "Defs.hpp"
+#include "Plane.hpp"
+#include "Rect2.hpp"
+#include "Transform.hpp"
+
+#include <vector>
+
+namespace {
+using namespace godot;
+} // namespace
+
+struct CameraMatrix {
+
+	enum Planes {
+		PLANE_NEAR,
+		PLANE_FAR,
+		PLANE_LEFT,
+		PLANE_TOP,
+		PLANE_RIGHT,
+		PLANE_BOTTOM
+	};
+
+	real_t matrix[4][4];
+
+	void set_identity();
+	void set_zero();
+	void set_light_bias();
+	void set_light_atlas_rect(const Rect2 &p_rect);
+	void set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov = false);
+	void set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist);
+	void set_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_dist, real_t p_display_width, real_t p_display_to_lens, real_t p_oversample, real_t p_z_near, real_t p_z_far);
+	void set_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar);
+	void set_orthogonal(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar, bool p_flip_fov = false);
+	void set_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far);
+	void set_frustum(real_t p_size, real_t p_aspect, Vector2 p_offset, real_t p_near, real_t p_far, bool p_flip_fov = false);
+
+	static real_t get_fovy(real_t p_fovx, real_t p_aspect) {
+
+		return rad2deg(atan(p_aspect * tan(deg2rad(p_fovx) * 0.5)) * 2.0);
+	}
+
+	static inline double deg2rad(double p_y) { return p_y * Math_PI / 180.0; }
+	static inline float deg2rad(float p_y) { return p_y * Math_PI / 180.0; }
+
+	static inline double rad2deg(double p_y) { return p_y * 180.0 / Math_PI; }
+	static inline float rad2deg(float p_y) { return p_y * 180.0 / Math_PI; }
+
+	static inline double absd(double g) {
+
+		union {
+			double d;
+			uint64_t i;
+		} u;
+		u.d = g;
+		u.i &= (uint64_t)9223372036854775807ll;
+		return u.d;
+	}
+
+	real_t get_z_far() const;
+	real_t get_z_near() const;
+	real_t get_aspect() const;
+	real_t get_fov() const;
+	bool is_orthogonal() const;
+
+	std::vector<Plane> get_projection_planes(const Transform &p_transform) const;
+
+	bool get_endpoints(const Transform &p_transform, Vector3 *p_8points) const;
+	Vector2 get_viewport_half_extents() const;
+
+	void invert();
+	CameraMatrix inverse() const;
+
+	CameraMatrix operator*(const CameraMatrix &p_matrix) const;
+
+	Plane xform4(const Plane &p_vec4) const;
+	inline Vector3 xform(const Vector3 &p_vec3) const;
+
+	operator String() const;
+
+	void scale_translate_to_fit(const AABB &p_aabb);
+	void make_scale(const Vector3 &p_scale);
+	int get_pixels_per_meter(int p_for_pixel_width) const;
+	operator Transform() const;
+
+	CameraMatrix();
+	CameraMatrix(const Transform &p_transform);
+	~CameraMatrix();
+};
+
+Vector3 CameraMatrix::xform(const Vector3 &p_vec3) const {
+
+	Vector3 ret;
+	ret.x = matrix[0][0] * p_vec3.x + matrix[1][0] * p_vec3.y + matrix[2][0] * p_vec3.z + matrix[3][0];
+	ret.y = matrix[0][1] * p_vec3.x + matrix[1][1] * p_vec3.y + matrix[2][1] * p_vec3.z + matrix[3][1];
+	ret.z = matrix[0][2] * p_vec3.x + matrix[1][2] * p_vec3.y + matrix[2][2] * p_vec3.z + matrix[3][2];
+	real_t w = matrix[0][3] * p_vec3.x + matrix[1][3] * p_vec3.y + matrix[2][3] * p_vec3.z + matrix[3][3];
+	return ret / w;
+}
+
+#endif

+ 2 - 0
include/core/RID.hpp

@@ -15,6 +15,8 @@ public:
 
 	RID(Object *p);
 
+	godot_rid _get_godot_rid() const;
+
 	int32_t get_id() const;
 
 	inline bool is_valid() const {

+ 683 - 0
src/core/CameraMatrix.cpp

@@ -0,0 +1,683 @@
+/*************************************************************************/
+/*  camera_matrix.cpp                                                    */
+/*************************************************************************/
+/*                       This file is part of:                           */
+/*                           GODOT ENGINE                                */
+/*                      https://godotengine.org                          */
+/*************************************************************************/
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur.                 */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md).   */
+/*                                                                       */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the       */
+/* "Software"), to deal in the Software without restriction, including   */
+/* without limitation the rights to use, copy, modify, merge, publish,   */
+/* distribute, sublicense, and/or sell copies of the Software, and to    */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions:                                             */
+/*                                                                       */
+/* The above copyright notice and this permission notice shall be        */
+/* included in all copies or substantial portions of the Software.       */
+/*                                                                       */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
+/*************************************************************************/
+
+#include "CameraMatrix.hpp"
+
+void CameraMatrix::set_identity() {
+
+	for (int i = 0; i < 4; i++) {
+
+		for (int j = 0; j < 4; j++) {
+
+			matrix[i][j] = (i == j) ? 1 : 0;
+		}
+	}
+}
+
+void CameraMatrix::set_zero() {
+
+	for (int i = 0; i < 4; i++) {
+
+		for (int j = 0; j < 4; j++) {
+
+			matrix[i][j] = 0;
+		}
+	}
+}
+
+Plane CameraMatrix::xform4(const Plane &p_vec4) const {
+
+	Plane ret;
+
+	ret.normal.x = matrix[0][0] * p_vec4.normal.x + matrix[1][0] * p_vec4.normal.y + matrix[2][0] * p_vec4.normal.z + matrix[3][0] * p_vec4.d;
+	ret.normal.y = matrix[0][1] * p_vec4.normal.x + matrix[1][1] * p_vec4.normal.y + matrix[2][1] * p_vec4.normal.z + matrix[3][1] * p_vec4.d;
+	ret.normal.z = matrix[0][2] * p_vec4.normal.x + matrix[1][2] * p_vec4.normal.y + matrix[2][2] * p_vec4.normal.z + matrix[3][2] * p_vec4.d;
+	ret.d = matrix[0][3] * p_vec4.normal.x + matrix[1][3] * p_vec4.normal.y + matrix[2][3] * p_vec4.normal.z + matrix[3][3] * p_vec4.d;
+	return ret;
+}
+
+void CameraMatrix::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov) {
+
+	if (p_flip_fov) {
+		p_fovy_degrees = get_fovy(p_fovy_degrees, 1.0 / p_aspect);
+	}
+
+	real_t sine, cotangent, deltaZ;
+	real_t radians = p_fovy_degrees / 2.0 * Math_PI / 180.0;
+
+	deltaZ = p_z_far - p_z_near;
+	sine = sin(radians);
+
+	if ((deltaZ == 0) || (sine == 0) || (p_aspect == 0)) {
+		return;
+	}
+	cotangent = cos(radians) / sine;
+
+	set_identity();
+
+	matrix[0][0] = cotangent / p_aspect;
+	matrix[1][1] = cotangent;
+	matrix[2][2] = -(p_z_far + p_z_near) / deltaZ;
+	matrix[2][3] = -1;
+	matrix[3][2] = -2 * p_z_near * p_z_far / deltaZ;
+	matrix[3][3] = 0;
+}
+
+void CameraMatrix::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist) {
+	if (p_flip_fov) {
+		p_fovy_degrees = get_fovy(p_fovy_degrees, 1.0 / p_aspect);
+	}
+
+	real_t left, right, modeltranslation, ymax, xmax, frustumshift;
+
+	ymax = p_z_near * tan(p_fovy_degrees * Math_PI / 360.0f);
+	xmax = ymax * p_aspect;
+	frustumshift = (p_intraocular_dist / 2.0) * p_z_near / p_convergence_dist;
+
+	switch (p_eye) {
+		case 1: { // left eye
+			left = -xmax + frustumshift;
+			right = xmax + frustumshift;
+			modeltranslation = p_intraocular_dist / 2.0;
+		}; break;
+		case 2: { // right eye
+			left = -xmax - frustumshift;
+			right = xmax - frustumshift;
+			modeltranslation = -p_intraocular_dist / 2.0;
+		}; break;
+		default: { // mono, should give the same result as set_perspective(p_fovy_degrees,p_aspect,p_z_near,p_z_far,p_flip_fov)
+			left = -xmax;
+			right = xmax;
+			modeltranslation = 0.0;
+		}; break;
+	};
+
+	set_frustum(left, right, -ymax, ymax, p_z_near, p_z_far);
+
+	// translate matrix by (modeltranslation, 0.0, 0.0)
+	CameraMatrix cm;
+	cm.set_identity();
+	cm.matrix[3][0] = modeltranslation;
+	*this = *this * cm;
+}
+
+void CameraMatrix::set_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_dist, real_t p_display_width, real_t p_display_to_lens, real_t p_oversample, real_t p_z_near, real_t p_z_far) {
+	// we first calculate our base frustum on our values without taking our lens magnification into account.
+	real_t f1 = (p_intraocular_dist * 0.5) / p_display_to_lens;
+	real_t f2 = ((p_display_width - p_intraocular_dist) * 0.5) / p_display_to_lens;
+	real_t f3 = (p_display_width / 4.0) / p_display_to_lens;
+
+	// now we apply our oversample factor to increase our FOV. how much we oversample is always a balance we strike between performance and how much
+	// we're willing to sacrifice in FOV.
+	real_t add = ((f1 + f2) * (p_oversample - 1.0)) / 2.0;
+	f1 += add;
+	f2 += add;
+	f3 *= p_oversample;
+
+	// always apply KEEP_WIDTH aspect ratio
+	f3 /= p_aspect;
+
+	switch (p_eye) {
+		case 1: { // left eye
+			set_frustum(-f2 * p_z_near, f1 * p_z_near, -f3 * p_z_near, f3 * p_z_near, p_z_near, p_z_far);
+		}; break;
+		case 2: { // right eye
+			set_frustum(-f1 * p_z_near, f2 * p_z_near, -f3 * p_z_near, f3 * p_z_near, p_z_near, p_z_far);
+		}; break;
+		default: { // mono, does not apply here!
+		}; break;
+	};
+};
+
+void CameraMatrix::set_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar) {
+
+	set_identity();
+
+	matrix[0][0] = 2.0 / (p_right - p_left);
+	matrix[3][0] = -((p_right + p_left) / (p_right - p_left));
+	matrix[1][1] = 2.0 / (p_top - p_bottom);
+	matrix[3][1] = -((p_top + p_bottom) / (p_top - p_bottom));
+	matrix[2][2] = -2.0 / (p_zfar - p_znear);
+	matrix[3][2] = -((p_zfar + p_znear) / (p_zfar - p_znear));
+	matrix[3][3] = 1.0;
+}
+
+void CameraMatrix::set_orthogonal(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar, bool p_flip_fov) {
+
+	if (!p_flip_fov) {
+		p_size *= p_aspect;
+	}
+
+	set_orthogonal(-p_size / 2, +p_size / 2, -p_size / p_aspect / 2, +p_size / p_aspect / 2, p_znear, p_zfar);
+}
+
+void CameraMatrix::set_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far) {
+
+	ERR_FAIL_COND(p_right <= p_left);
+	ERR_FAIL_COND(p_top <= p_bottom);
+	ERR_FAIL_COND(p_far <= p_near);
+
+	real_t *te = &matrix[0][0];
+	real_t x = 2 * p_near / (p_right - p_left);
+	real_t y = 2 * p_near / (p_top - p_bottom);
+
+	real_t a = (p_right + p_left) / (p_right - p_left);
+	real_t b = (p_top + p_bottom) / (p_top - p_bottom);
+	real_t c = -(p_far + p_near) / (p_far - p_near);
+	real_t d = -2 * p_far * p_near / (p_far - p_near);
+
+	te[0] = x;
+	te[1] = 0;
+	te[2] = 0;
+	te[3] = 0;
+	te[4] = 0;
+	te[5] = y;
+	te[6] = 0;
+	te[7] = 0;
+	te[8] = a;
+	te[9] = b;
+	te[10] = c;
+	te[11] = -1;
+	te[12] = 0;
+	te[13] = 0;
+	te[14] = d;
+	te[15] = 0;
+}
+
+void CameraMatrix::set_frustum(real_t p_size, real_t p_aspect, Vector2 p_offset, real_t p_near, real_t p_far, bool p_flip_fov) {
+	if (!p_flip_fov) {
+		p_size *= p_aspect;
+	}
+
+	set_frustum(-p_size / 2 + p_offset.x, +p_size / 2 + p_offset.x, -p_size / p_aspect / 2 + p_offset.y, +p_size / p_aspect / 2 + p_offset.y, p_near, p_far);
+}
+
+real_t CameraMatrix::get_z_far() const {
+
+	const real_t *matrix = (const real_t *)this->matrix;
+	Plane new_plane = Plane(matrix[3] - matrix[2],
+			matrix[7] - matrix[6],
+			matrix[11] - matrix[10],
+			matrix[15] - matrix[14]);
+
+	new_plane.normal = -new_plane.normal;
+	new_plane.normalize();
+
+	return new_plane.d;
+}
+real_t CameraMatrix::get_z_near() const {
+
+	const real_t *matrix = (const real_t *)this->matrix;
+	Plane new_plane = Plane(matrix[3] + matrix[2],
+			matrix[7] + matrix[6],
+			matrix[11] + matrix[10],
+			-matrix[15] - matrix[14]);
+
+	new_plane.normalize();
+	return new_plane.d;
+}
+
+Vector2 CameraMatrix::get_viewport_half_extents() const {
+
+	const real_t *matrix = (const real_t *)this->matrix;
+	///////--- Near Plane ---///////
+	Plane near_plane = Plane(matrix[3] + matrix[2],
+			matrix[7] + matrix[6],
+			matrix[11] + matrix[10],
+			-matrix[15] - matrix[14]);
+	near_plane.normalize();
+
+	///////--- Right Plane ---///////
+	Plane right_plane = Plane(matrix[3] - matrix[0],
+			matrix[7] - matrix[4],
+			matrix[11] - matrix[8],
+			-matrix[15] + matrix[12]);
+	right_plane.normalize();
+
+	Plane top_plane = Plane(matrix[3] - matrix[1],
+			matrix[7] - matrix[5],
+			matrix[11] - matrix[9],
+			-matrix[15] + matrix[13]);
+	top_plane.normalize();
+
+	Vector3 res;
+	near_plane.intersect_3(right_plane, top_plane, &res);
+
+	return Vector2(res.x, res.y);
+}
+
+bool CameraMatrix::get_endpoints(const Transform &p_transform, Vector3 *p_8points) const {
+
+	std::vector<Plane> planes = get_projection_planes(Transform());
+	const Planes intersections[8][3] = {
+		{ PLANE_FAR, PLANE_LEFT, PLANE_TOP },
+		{ PLANE_FAR, PLANE_LEFT, PLANE_BOTTOM },
+		{ PLANE_FAR, PLANE_RIGHT, PLANE_TOP },
+		{ PLANE_FAR, PLANE_RIGHT, PLANE_BOTTOM },
+		{ PLANE_NEAR, PLANE_LEFT, PLANE_TOP },
+		{ PLANE_NEAR, PLANE_LEFT, PLANE_BOTTOM },
+		{ PLANE_NEAR, PLANE_RIGHT, PLANE_TOP },
+		{ PLANE_NEAR, PLANE_RIGHT, PLANE_BOTTOM },
+	};
+
+	for (int i = 0; i < 8; i++) {
+
+		Vector3 point;
+		bool res = planes[intersections[i][0]].intersect_3(planes[intersections[i][1]], planes[intersections[i][2]], &point);
+		ERR_FAIL_COND_V(!res, false);
+		p_8points[i] = p_transform.xform(point);
+	}
+
+	return true;
+}
+
+std::vector<Plane> CameraMatrix::get_projection_planes(const Transform &p_transform) const {
+
+	/** Fast Plane Extraction from combined modelview/projection matrices.
+	 * References:
+	 * https://web.archive.org/web/20011221205252/http://www.markmorley.com/opengl/frustumculling.html
+	 * https://web.archive.org/web/20061020020112/http://www2.ravensoft.com/users/ggribb/plane%20extraction.pdf
+	 */
+
+	std::vector<Plane> planes;
+
+	const real_t *matrix = (const real_t *)this->matrix;
+
+	Plane new_plane;
+
+	///////--- Near Plane ---///////
+	new_plane = Plane(matrix[3] + matrix[2],
+			matrix[7] + matrix[6],
+			matrix[11] + matrix[10],
+			matrix[15] + matrix[14]);
+
+	new_plane.normal = -new_plane.normal;
+	new_plane.normalize();
+
+	planes.push_back(p_transform.xform(new_plane));
+
+	///////--- Far Plane ---///////
+	new_plane = Plane(matrix[3] - matrix[2],
+			matrix[7] - matrix[6],
+			matrix[11] - matrix[10],
+			matrix[15] - matrix[14]);
+
+	new_plane.normal = -new_plane.normal;
+	new_plane.normalize();
+
+	planes.push_back(p_transform.xform(new_plane));
+
+	///////--- Left Plane ---///////
+	new_plane = Plane(matrix[3] + matrix[0],
+			matrix[7] + matrix[4],
+			matrix[11] + matrix[8],
+			matrix[15] + matrix[12]);
+
+	new_plane.normal = -new_plane.normal;
+	new_plane.normalize();
+
+	planes.push_back(p_transform.xform(new_plane));
+
+	///////--- Top Plane ---///////
+	new_plane = Plane(matrix[3] - matrix[1],
+			matrix[7] - matrix[5],
+			matrix[11] - matrix[9],
+			matrix[15] - matrix[13]);
+
+	new_plane.normal = -new_plane.normal;
+	new_plane.normalize();
+
+	planes.push_back(p_transform.xform(new_plane));
+
+	///////--- Right Plane ---///////
+	new_plane = Plane(matrix[3] - matrix[0],
+			matrix[7] - matrix[4],
+			matrix[11] - matrix[8],
+			matrix[15] - matrix[12]);
+
+	new_plane.normal = -new_plane.normal;
+	new_plane.normalize();
+
+	planes.push_back(p_transform.xform(new_plane));
+
+	///////--- Bottom Plane ---///////
+	new_plane = Plane(matrix[3] + matrix[1],
+			matrix[7] + matrix[5],
+			matrix[11] + matrix[9],
+			matrix[15] + matrix[13]);
+
+	new_plane.normal = -new_plane.normal;
+	new_plane.normalize();
+
+	planes.push_back(p_transform.xform(new_plane));
+
+	return planes;
+}
+
+CameraMatrix CameraMatrix::inverse() const {
+
+	CameraMatrix cm = *this;
+	cm.invert();
+	return cm;
+}
+
+void CameraMatrix::invert() {
+
+	int i, j, k;
+	int pvt_i[4], pvt_j[4]; /* Locations of pivot matrix */
+	real_t pvt_val; /* Value of current pivot element */
+	real_t hold; /* Temporary storage */
+	real_t determinat; /* Determinant */
+
+	determinat = 1.0;
+	for (k = 0; k < 4; k++) {
+		/** Locate k'th pivot element **/
+		pvt_val = matrix[k][k]; /** Initialize for search **/
+		pvt_i[k] = k;
+		pvt_j[k] = k;
+		for (i = k; i < 4; i++) {
+			for (j = k; j < 4; j++) {
+				if (absd(matrix[i][j]) > absd(pvt_val)) {
+					pvt_i[k] = i;
+					pvt_j[k] = j;
+					pvt_val = matrix[i][j];
+				}
+			}
+		}
+
+		/** Product of pivots, gives determinant when finished **/
+		determinat *= pvt_val;
+		if (absd(determinat) < 1e-7) {
+			return; //(false);  /** Matrix is singular (zero determinant). **/
+		}
+
+		/** "Interchange" rows (with sign change stuff) **/
+		i = pvt_i[k];
+		if (i != k) { /** If rows are different **/
+			for (j = 0; j < 4; j++) {
+				hold = -matrix[k][j];
+				matrix[k][j] = matrix[i][j];
+				matrix[i][j] = hold;
+			}
+		}
+
+		/** "Interchange" columns **/
+		j = pvt_j[k];
+		if (j != k) { /** If columns are different **/
+			for (i = 0; i < 4; i++) {
+				hold = -matrix[i][k];
+				matrix[i][k] = matrix[i][j];
+				matrix[i][j] = hold;
+			}
+		}
+
+		/** Divide column by minus pivot value **/
+		for (i = 0; i < 4; i++) {
+			if (i != k) matrix[i][k] /= (-pvt_val);
+		}
+
+		/** Reduce the matrix **/
+		for (i = 0; i < 4; i++) {
+			hold = matrix[i][k];
+			for (j = 0; j < 4; j++) {
+				if (i != k && j != k) matrix[i][j] += hold * matrix[k][j];
+			}
+		}
+
+		/** Divide row by pivot **/
+		for (j = 0; j < 4; j++) {
+			if (j != k) matrix[k][j] /= pvt_val;
+		}
+
+		/** Replace pivot by reciprocal (at last we can touch it). **/
+		matrix[k][k] = 1.0 / pvt_val;
+	}
+
+	/* That was most of the work, one final pass of row/column interchange */
+	/* to finish */
+	for (k = 4 - 2; k >= 0; k--) { /* Don't need to work with 1 by 1 corner*/
+		i = pvt_j[k]; /* Rows to swap correspond to pivot COLUMN */
+		if (i != k) { /* If rows are different */
+			for (j = 0; j < 4; j++) {
+				hold = matrix[k][j];
+				matrix[k][j] = -matrix[i][j];
+				matrix[i][j] = hold;
+			}
+		}
+
+		j = pvt_i[k]; /* Columns to swap correspond to pivot ROW */
+		if (j != k) /* If columns are different */
+			for (i = 0; i < 4; i++) {
+				hold = matrix[i][k];
+				matrix[i][k] = -matrix[i][j];
+				matrix[i][j] = hold;
+			}
+	}
+}
+
+CameraMatrix::CameraMatrix() {
+
+	set_identity();
+}
+
+CameraMatrix CameraMatrix::operator*(const CameraMatrix &p_matrix) const {
+
+	CameraMatrix new_matrix;
+
+	for (int j = 0; j < 4; j++) {
+		for (int i = 0; i < 4; i++) {
+			real_t ab = 0;
+			for (int k = 0; k < 4; k++)
+				ab += matrix[k][i] * p_matrix.matrix[j][k];
+			new_matrix.matrix[j][i] = ab;
+		}
+	}
+
+	return new_matrix;
+}
+
+void CameraMatrix::set_light_bias() {
+
+	real_t *m = &matrix[0][0];
+
+	m[0] = 0.5;
+	m[1] = 0.0;
+	m[2] = 0.0;
+	m[3] = 0.0;
+	m[4] = 0.0;
+	m[5] = 0.5;
+	m[6] = 0.0;
+	m[7] = 0.0;
+	m[8] = 0.0;
+	m[9] = 0.0;
+	m[10] = 0.5;
+	m[11] = 0.0;
+	m[12] = 0.5;
+	m[13] = 0.5;
+	m[14] = 0.5;
+	m[15] = 1.0;
+}
+
+void CameraMatrix::set_light_atlas_rect(const Rect2 &p_rect) {
+
+	real_t *m = &matrix[0][0];
+
+	m[0] = p_rect.size.width;
+	m[1] = 0.0;
+	m[2] = 0.0;
+	m[3] = 0.0;
+	m[4] = 0.0;
+	m[5] = p_rect.size.height;
+	m[6] = 0.0;
+	m[7] = 0.0;
+	m[8] = 0.0;
+	m[9] = 0.0;
+	m[10] = 1.0;
+	m[11] = 0.0;
+	m[12] = p_rect.position.x;
+	m[13] = p_rect.position.y;
+	m[14] = 0.0;
+	m[15] = 1.0;
+}
+
+CameraMatrix::operator String() const {
+
+	String str;
+	for (int i = 0; i < 4; i++)
+		for (int j = 0; j < 4; j++)
+			str += String((j > 0) ? ", " : "\n") + String::num(matrix[i][j]);
+
+	return str;
+}
+
+real_t CameraMatrix::get_aspect() const {
+
+	Vector2 vp_he = get_viewport_half_extents();
+	return vp_he.x / vp_he.y;
+}
+
+int CameraMatrix::get_pixels_per_meter(int p_for_pixel_width) const {
+
+	Vector3 result = xform(Vector3(1, 0, -1));
+
+	return int((result.x * 0.5 + 0.5) * p_for_pixel_width);
+}
+
+bool CameraMatrix::is_orthogonal() const {
+
+	return matrix[3][3] == 1.0;
+}
+
+real_t CameraMatrix::get_fov() const {
+	const real_t *matrix = (const real_t *)this->matrix;
+
+	Plane right_plane = Plane(matrix[3] - matrix[0],
+			matrix[7] - matrix[4],
+			matrix[11] - matrix[8],
+			-matrix[15] + matrix[12]);
+	right_plane.normalize();
+
+	if ((matrix[8] == 0) && (matrix[9] == 0)) {
+		return rad2deg(acos(abs(right_plane.normal.x))) * 2.0;
+	} else {
+		// our frustum is asymmetrical need to calculate the left planes angle separately..
+		Plane left_plane = Plane(matrix[3] + matrix[0],
+				matrix[7] + matrix[4],
+				matrix[11] + matrix[8],
+				matrix[15] + matrix[12]);
+		left_plane.normalize();
+
+		return rad2deg(acos(abs(left_plane.normal.x))) + rad2deg(acos(abs(right_plane.normal.x)));
+	}
+}
+
+void CameraMatrix::make_scale(const Vector3 &p_scale) {
+
+	set_identity();
+	matrix[0][0] = p_scale.x;
+	matrix[1][1] = p_scale.y;
+	matrix[2][2] = p_scale.z;
+}
+
+void CameraMatrix::scale_translate_to_fit(const AABB &p_aabb) {
+
+	Vector3 min = p_aabb.position;
+	Vector3 max = p_aabb.position + p_aabb.size;
+
+	matrix[0][0] = 2 / (max.x - min.x);
+	matrix[1][0] = 0;
+	matrix[2][0] = 0;
+	matrix[3][0] = -(max.x + min.x) / (max.x - min.x);
+
+	matrix[0][1] = 0;
+	matrix[1][1] = 2 / (max.y - min.y);
+	matrix[2][1] = 0;
+	matrix[3][1] = -(max.y + min.y) / (max.y - min.y);
+
+	matrix[0][2] = 0;
+	matrix[1][2] = 0;
+	matrix[2][2] = 2 / (max.z - min.z);
+	matrix[3][2] = -(max.z + min.z) / (max.z - min.z);
+
+	matrix[0][3] = 0;
+	matrix[1][3] = 0;
+	matrix[2][3] = 0;
+	matrix[3][3] = 1;
+}
+
+CameraMatrix::operator Transform() const {
+
+	Transform tr;
+	const real_t *m = &matrix[0][0];
+
+	tr.basis.elements[0][0] = m[0];
+	tr.basis.elements[1][0] = m[1];
+	tr.basis.elements[2][0] = m[2];
+
+	tr.basis.elements[0][1] = m[4];
+	tr.basis.elements[1][1] = m[5];
+	tr.basis.elements[2][1] = m[6];
+
+	tr.basis.elements[0][2] = m[8];
+	tr.basis.elements[1][2] = m[9];
+	tr.basis.elements[2][2] = m[10];
+
+	tr.origin.x = m[12];
+	tr.origin.y = m[13];
+	tr.origin.z = m[14];
+
+	return tr;
+}
+
+CameraMatrix::CameraMatrix(const Transform &p_transform) {
+
+	const Transform &tr = p_transform;
+	real_t *m = &matrix[0][0];
+
+	m[0] = tr.basis.elements[0][0];
+	m[1] = tr.basis.elements[1][0];
+	m[2] = tr.basis.elements[2][0];
+	m[3] = 0.0;
+	m[4] = tr.basis.elements[0][1];
+	m[5] = tr.basis.elements[1][1];
+	m[6] = tr.basis.elements[2][1];
+	m[7] = 0.0;
+	m[8] = tr.basis.elements[0][2];
+	m[9] = tr.basis.elements[1][2];
+	m[10] = tr.basis.elements[2][2];
+	m[11] = 0.0;
+	m[12] = tr.origin.x;
+	m[13] = tr.origin.y;
+	m[14] = tr.origin.z;
+	m[15] = 1.0;
+}
+
+CameraMatrix::~CameraMatrix() {
+}

+ 4 - 0
src/core/RID.cpp

@@ -14,6 +14,10 @@ RID::RID(Object *p) {
 	godot::api->godot_rid_new_with_resource(&_godot_rid, (const godot_object *)p);
 }
 
+godot_rid RID::_get_godot_rid() const {
+	return _godot_rid;
+}
+
 int32_t RID::get_id() const {
 	return godot::api->godot_rid_get_id(&_godot_rid);
 }