basis.hpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. /*************************************************************************/
  2. /* basis.hpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #ifndef GODOT_BASIS_HPP
  31. #define GODOT_BASIS_HPP
  32. #include <godot_cpp/core/math.hpp>
  33. #include <godot_cpp/variant/quaternion.hpp>
  34. #include <godot_cpp/variant/vector3.hpp>
  35. namespace godot {
  36. struct _NO_DISCARD_ Basis {
  37. Vector3 rows[3] = {
  38. Vector3(1, 0, 0),
  39. Vector3(0, 1, 0),
  40. Vector3(0, 0, 1)
  41. };
  42. _FORCE_INLINE_ const Vector3 &operator[](int axis) const {
  43. return rows[axis];
  44. }
  45. _FORCE_INLINE_ Vector3 &operator[](int axis) {
  46. return rows[axis];
  47. }
  48. void invert();
  49. void transpose();
  50. Basis inverse() const;
  51. Basis transposed() const;
  52. _FORCE_INLINE_ real_t determinant() const;
  53. enum EulerOrder {
  54. EULER_ORDER_XYZ,
  55. EULER_ORDER_XZY,
  56. EULER_ORDER_YXZ,
  57. EULER_ORDER_YZX,
  58. EULER_ORDER_ZXY,
  59. EULER_ORDER_ZYX
  60. };
  61. void from_z(const Vector3 &p_z);
  62. void rotate(const Vector3 &p_axis, real_t p_angle);
  63. Basis rotated(const Vector3 &p_axis, real_t p_angle) const;
  64. void rotate_local(const Vector3 &p_axis, real_t p_angle);
  65. Basis rotated_local(const Vector3 &p_axis, real_t p_angle) const;
  66. void rotate(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ);
  67. Basis rotated(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) const;
  68. void rotate(const Quaternion &p_quaternion);
  69. Basis rotated(const Quaternion &p_quaternion) const;
  70. Vector3 get_euler_normalized(EulerOrder p_order = EULER_ORDER_YXZ) const;
  71. void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
  72. void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
  73. Quaternion get_rotation_quaternion() const;
  74. void rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction);
  75. Vector3 rotref_posscale_decomposition(Basis &rotref) const;
  76. Vector3 get_euler(EulerOrder p_order = EULER_ORDER_YXZ) const;
  77. void set_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ);
  78. static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) {
  79. Basis b;
  80. b.set_euler(p_euler, p_order);
  81. return b;
  82. }
  83. Quaternion get_quaternion() const;
  84. void set_quaternion(const Quaternion &p_quaternion);
  85. void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
  86. void set_axis_angle(const Vector3 &p_axis, real_t p_angle);
  87. void scale(const Vector3 &p_scale);
  88. Basis scaled(const Vector3 &p_scale) const;
  89. void scale_local(const Vector3 &p_scale);
  90. Basis scaled_local(const Vector3 &p_scale) const;
  91. void scale_orthogonal(const Vector3 &p_scale);
  92. Basis scaled_orthogonal(const Vector3 &p_scale) const;
  93. void make_scale_uniform();
  94. float get_uniform_scale() const;
  95. Vector3 get_scale() const;
  96. Vector3 get_scale_abs() const;
  97. Vector3 get_scale_local() const;
  98. void set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale);
  99. void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order = EULER_ORDER_YXZ);
  100. void set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale);
  101. // transposed dot products
  102. _FORCE_INLINE_ real_t tdotx(const Vector3 &v) const {
  103. return rows[0][0] * v[0] + rows[1][0] * v[1] + rows[2][0] * v[2];
  104. }
  105. _FORCE_INLINE_ real_t tdoty(const Vector3 &v) const {
  106. return rows[0][1] * v[0] + rows[1][1] * v[1] + rows[2][1] * v[2];
  107. }
  108. _FORCE_INLINE_ real_t tdotz(const Vector3 &v) const {
  109. return rows[0][2] * v[0] + rows[1][2] * v[1] + rows[2][2] * v[2];
  110. }
  111. bool is_equal_approx(const Basis &p_basis) const;
  112. bool operator==(const Basis &p_matrix) const;
  113. bool operator!=(const Basis &p_matrix) const;
  114. _FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
  115. _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
  116. _FORCE_INLINE_ void operator*=(const Basis &p_matrix);
  117. _FORCE_INLINE_ Basis operator*(const Basis &p_matrix) const;
  118. _FORCE_INLINE_ void operator+=(const Basis &p_matrix);
  119. _FORCE_INLINE_ Basis operator+(const Basis &p_matrix) const;
  120. _FORCE_INLINE_ void operator-=(const Basis &p_matrix);
  121. _FORCE_INLINE_ Basis operator-(const Basis &p_matrix) const;
  122. _FORCE_INLINE_ void operator*=(const real_t p_val);
  123. _FORCE_INLINE_ Basis operator*(const real_t p_val) const;
  124. bool is_orthogonal() const;
  125. bool is_diagonal() const;
  126. bool is_rotation() const;
  127. Basis lerp(const Basis &p_to, const real_t &p_weight) const;
  128. Basis slerp(const Basis &p_to, const real_t &p_weight) const;
  129. void rotate_sh(real_t *p_values);
  130. operator String() const;
  131. /* create / set */
  132. _FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
  133. rows[0][0] = xx;
  134. rows[0][1] = xy;
  135. rows[0][2] = xz;
  136. rows[1][0] = yx;
  137. rows[1][1] = yy;
  138. rows[1][2] = yz;
  139. rows[2][0] = zx;
  140. rows[2][1] = zy;
  141. rows[2][2] = zz;
  142. }
  143. _FORCE_INLINE_ void set_columns(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
  144. set_column(0, p_x);
  145. set_column(1, p_y);
  146. set_column(2, p_z);
  147. }
  148. _FORCE_INLINE_ Vector3 get_column(int p_index) const {
  149. // Get actual basis axis column (we store transposed as rows for performance).
  150. return Vector3(rows[0][p_index], rows[1][p_index], rows[2][p_index]);
  151. }
  152. _FORCE_INLINE_ void set_column(int p_index, const Vector3 &p_value) {
  153. // Set actual basis axis column (we store transposed as rows for performance).
  154. rows[0][p_index] = p_value.x;
  155. rows[1][p_index] = p_value.y;
  156. rows[2][p_index] = p_value.z;
  157. }
  158. _FORCE_INLINE_ Vector3 get_main_diagonal() const {
  159. return Vector3(rows[0][0], rows[1][1], rows[2][2]);
  160. }
  161. _FORCE_INLINE_ void set_zero() {
  162. rows[0].zero();
  163. rows[1].zero();
  164. rows[2].zero();
  165. }
  166. _FORCE_INLINE_ Basis transpose_xform(const Basis &m) const {
  167. return Basis(
  168. rows[0].x * m[0].x + rows[1].x * m[1].x + rows[2].x * m[2].x,
  169. rows[0].x * m[0].y + rows[1].x * m[1].y + rows[2].x * m[2].y,
  170. rows[0].x * m[0].z + rows[1].x * m[1].z + rows[2].x * m[2].z,
  171. rows[0].y * m[0].x + rows[1].y * m[1].x + rows[2].y * m[2].x,
  172. rows[0].y * m[0].y + rows[1].y * m[1].y + rows[2].y * m[2].y,
  173. rows[0].y * m[0].z + rows[1].y * m[1].z + rows[2].y * m[2].z,
  174. rows[0].z * m[0].x + rows[1].z * m[1].x + rows[2].z * m[2].x,
  175. rows[0].z * m[0].y + rows[1].z * m[1].y + rows[2].z * m[2].y,
  176. rows[0].z * m[0].z + rows[1].z * m[1].z + rows[2].z * m[2].z);
  177. }
  178. Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
  179. set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
  180. }
  181. void orthonormalize();
  182. Basis orthonormalized() const;
  183. void orthogonalize();
  184. Basis orthogonalized() const;
  185. #ifdef MATH_CHECKS
  186. bool is_symmetric() const;
  187. #endif
  188. Basis diagonalize();
  189. operator Quaternion() const { return get_quaternion(); }
  190. static Basis looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0));
  191. Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); };
  192. Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); }
  193. Basis(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); }
  194. Basis(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_angle, p_scale); }
  195. static Basis from_scale(const Vector3 &p_scale);
  196. _FORCE_INLINE_ Basis(const Vector3 &p_x_axis, const Vector3 &p_y_axis, const Vector3 &p_z_axis) {
  197. set_columns(p_x_axis, p_y_axis, p_z_axis);
  198. }
  199. _FORCE_INLINE_ Basis() {}
  200. private:
  201. // Helper method.
  202. void _set_diagonal(const Vector3 &p_diag);
  203. };
  204. _FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) {
  205. set(
  206. p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]),
  207. p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]),
  208. p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2]));
  209. }
  210. _FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const {
  211. return Basis(
  212. p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]),
  213. p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]),
  214. p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2]));
  215. }
  216. _FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) {
  217. rows[0] += p_matrix.rows[0];
  218. rows[1] += p_matrix.rows[1];
  219. rows[2] += p_matrix.rows[2];
  220. }
  221. _FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const {
  222. Basis ret(*this);
  223. ret += p_matrix;
  224. return ret;
  225. }
  226. _FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) {
  227. rows[0] -= p_matrix.rows[0];
  228. rows[1] -= p_matrix.rows[1];
  229. rows[2] -= p_matrix.rows[2];
  230. }
  231. _FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const {
  232. Basis ret(*this);
  233. ret -= p_matrix;
  234. return ret;
  235. }
  236. _FORCE_INLINE_ void Basis::operator*=(const real_t p_val) {
  237. rows[0] *= p_val;
  238. rows[1] *= p_val;
  239. rows[2] *= p_val;
  240. }
  241. _FORCE_INLINE_ Basis Basis::operator*(const real_t p_val) const {
  242. Basis ret(*this);
  243. ret *= p_val;
  244. return ret;
  245. }
  246. Vector3 Basis::xform(const Vector3 &p_vector) const {
  247. return Vector3(
  248. rows[0].dot(p_vector),
  249. rows[1].dot(p_vector),
  250. rows[2].dot(p_vector));
  251. }
  252. Vector3 Basis::xform_inv(const Vector3 &p_vector) const {
  253. return Vector3(
  254. (rows[0][0] * p_vector.x) + (rows[1][0] * p_vector.y) + (rows[2][0] * p_vector.z),
  255. (rows[0][1] * p_vector.x) + (rows[1][1] * p_vector.y) + (rows[2][1] * p_vector.z),
  256. (rows[0][2] * p_vector.x) + (rows[1][2] * p_vector.y) + (rows[2][2] * p_vector.z));
  257. }
  258. real_t Basis::determinant() const {
  259. return rows[0][0] * (rows[1][1] * rows[2][2] - rows[2][1] * rows[1][2]) -
  260. rows[1][0] * (rows[0][1] * rows[2][2] - rows[2][1] * rows[0][2]) +
  261. rows[2][0] * (rows[0][1] * rows[1][2] - rows[1][1] * rows[0][2]);
  262. }
  263. } // namespace godot
  264. #endif // GODOT_BASIS_HPP