2
0

projection.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941
  1. /*************************************************************************/
  2. /* projection.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include <godot_cpp/variant/projection.hpp>
  31. #include <godot_cpp/variant/aabb.hpp>
  32. #include <godot_cpp/variant/plane.hpp>
  33. #include <godot_cpp/variant/rect2.hpp>
  34. #include <godot_cpp/variant/string.hpp>
  35. #include <godot_cpp/variant/transform3d.hpp>
  36. #include <godot_cpp/variant/variant.hpp>
  37. namespace godot {
  38. float Projection::determinant() const {
  39. return columns[0][3] * columns[1][2] * columns[2][1] * columns[3][0] - columns[0][2] * columns[1][3] * columns[2][1] * columns[3][0] -
  40. columns[0][3] * columns[1][1] * columns[2][2] * columns[3][0] + columns[0][1] * columns[1][3] * columns[2][2] * columns[3][0] +
  41. columns[0][2] * columns[1][1] * columns[2][3] * columns[3][0] - columns[0][1] * columns[1][2] * columns[2][3] * columns[3][0] -
  42. columns[0][3] * columns[1][2] * columns[2][0] * columns[3][1] + columns[0][2] * columns[1][3] * columns[2][0] * columns[3][1] +
  43. columns[0][3] * columns[1][0] * columns[2][2] * columns[3][1] - columns[0][0] * columns[1][3] * columns[2][2] * columns[3][1] -
  44. columns[0][2] * columns[1][0] * columns[2][3] * columns[3][1] + columns[0][0] * columns[1][2] * columns[2][3] * columns[3][1] +
  45. columns[0][3] * columns[1][1] * columns[2][0] * columns[3][2] - columns[0][1] * columns[1][3] * columns[2][0] * columns[3][2] -
  46. columns[0][3] * columns[1][0] * columns[2][1] * columns[3][2] + columns[0][0] * columns[1][3] * columns[2][1] * columns[3][2] +
  47. columns[0][1] * columns[1][0] * columns[2][3] * columns[3][2] - columns[0][0] * columns[1][1] * columns[2][3] * columns[3][2] -
  48. columns[0][2] * columns[1][1] * columns[2][0] * columns[3][3] + columns[0][1] * columns[1][2] * columns[2][0] * columns[3][3] +
  49. columns[0][2] * columns[1][0] * columns[2][1] * columns[3][3] - columns[0][0] * columns[1][2] * columns[2][1] * columns[3][3] -
  50. columns[0][1] * columns[1][0] * columns[2][2] * columns[3][3] + columns[0][0] * columns[1][1] * columns[2][2] * columns[3][3];
  51. }
  52. void Projection::set_identity() {
  53. for (int i = 0; i < 4; i++) {
  54. for (int j = 0; j < 4; j++) {
  55. columns[i][j] = (i == j) ? 1 : 0;
  56. }
  57. }
  58. }
  59. void Projection::set_zero() {
  60. for (int i = 0; i < 4; i++) {
  61. for (int j = 0; j < 4; j++) {
  62. columns[i][j] = 0;
  63. }
  64. }
  65. }
  66. Plane Projection::xform4(const Plane &p_vec4) const {
  67. Plane ret;
  68. ret.normal.x = columns[0][0] * p_vec4.normal.x + columns[1][0] * p_vec4.normal.y + columns[2][0] * p_vec4.normal.z + columns[3][0] * p_vec4.d;
  69. ret.normal.y = columns[0][1] * p_vec4.normal.x + columns[1][1] * p_vec4.normal.y + columns[2][1] * p_vec4.normal.z + columns[3][1] * p_vec4.d;
  70. ret.normal.z = columns[0][2] * p_vec4.normal.x + columns[1][2] * p_vec4.normal.y + columns[2][2] * p_vec4.normal.z + columns[3][2] * p_vec4.d;
  71. ret.d = columns[0][3] * p_vec4.normal.x + columns[1][3] * p_vec4.normal.y + columns[2][3] * p_vec4.normal.z + columns[3][3] * p_vec4.d;
  72. return ret;
  73. }
  74. Vector4 Projection::xform(const Vector4 &p_vec4) const {
  75. return Vector4(
  76. columns[0][0] * p_vec4.x + columns[1][0] * p_vec4.y + columns[2][0] * p_vec4.z + columns[3][0] * p_vec4.w,
  77. columns[0][1] * p_vec4.x + columns[1][1] * p_vec4.y + columns[2][1] * p_vec4.z + columns[3][1] * p_vec4.w,
  78. columns[0][2] * p_vec4.x + columns[1][2] * p_vec4.y + columns[2][2] * p_vec4.z + columns[3][2] * p_vec4.w,
  79. columns[0][3] * p_vec4.x + columns[1][3] * p_vec4.y + columns[2][3] * p_vec4.z + columns[3][3] * p_vec4.w);
  80. }
  81. Vector4 Projection::xform_inv(const Vector4 &p_vec4) const {
  82. return Vector4(
  83. columns[0][0] * p_vec4.x + columns[0][1] * p_vec4.y + columns[0][2] * p_vec4.z + columns[0][3] * p_vec4.w,
  84. columns[1][0] * p_vec4.x + columns[1][1] * p_vec4.y + columns[1][2] * p_vec4.z + columns[1][3] * p_vec4.w,
  85. columns[2][0] * p_vec4.x + columns[2][1] * p_vec4.y + columns[2][2] * p_vec4.z + columns[2][3] * p_vec4.w,
  86. columns[3][0] * p_vec4.x + columns[3][1] * p_vec4.y + columns[3][2] * p_vec4.z + columns[3][3] * p_vec4.w);
  87. }
  88. void Projection::adjust_perspective_znear(real_t p_new_znear) {
  89. real_t zfar = get_z_far();
  90. real_t znear = p_new_znear;
  91. real_t deltaZ = zfar - znear;
  92. columns[2][2] = -(zfar + znear) / deltaZ;
  93. columns[3][2] = -2 * znear * zfar / deltaZ;
  94. }
  95. Projection Projection::create_depth_correction(bool p_flip_y) {
  96. Projection proj;
  97. proj.set_depth_correction(p_flip_y);
  98. return proj;
  99. }
  100. Projection Projection::create_light_atlas_rect(const Rect2 &p_rect) {
  101. Projection proj;
  102. proj.set_light_atlas_rect(p_rect);
  103. return proj;
  104. }
  105. Projection Projection::create_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov) {
  106. Projection proj;
  107. proj.set_perspective(p_fovy_degrees, p_aspect, p_z_near, p_z_far, p_flip_fov);
  108. return proj;
  109. }
  110. Projection Projection::create_perspective_hmd(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist) {
  111. Projection proj;
  112. proj.set_perspective(p_fovy_degrees, p_aspect, p_z_near, p_z_far, p_flip_fov, p_eye, p_intraocular_dist, p_convergence_dist);
  113. return proj;
  114. }
  115. Projection Projection::create_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_dist, real_t p_display_width, real_t p_display_to_lens, real_t p_oversample, real_t p_z_near, real_t p_z_far) {
  116. Projection proj;
  117. proj.set_for_hmd(p_eye, p_aspect, p_intraocular_dist, p_display_width, p_display_to_lens, p_oversample, p_z_near, p_z_far);
  118. return proj;
  119. }
  120. Projection Projection::create_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar) {
  121. Projection proj;
  122. proj.set_orthogonal(p_left, p_right, p_bottom, p_top, p_zfar, p_zfar);
  123. return proj;
  124. }
  125. Projection Projection::create_orthogonal_aspect(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar, bool p_flip_fov) {
  126. Projection proj;
  127. proj.set_orthogonal(p_size, p_aspect, p_znear, p_zfar, p_flip_fov);
  128. return proj;
  129. }
  130. Projection Projection::create_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far) {
  131. Projection proj;
  132. proj.set_frustum(p_left, p_right, p_bottom, p_top, p_near, p_far);
  133. return proj;
  134. }
  135. Projection Projection::create_frustum_aspect(real_t p_size, real_t p_aspect, Vector2 p_offset, real_t p_near, real_t p_far, bool p_flip_fov) {
  136. Projection proj;
  137. proj.set_frustum(p_size, p_aspect, p_offset, p_near, p_far, p_flip_fov);
  138. return proj;
  139. }
  140. Projection Projection::create_fit_aabb(const AABB &p_aabb) {
  141. Projection proj;
  142. proj.scale_translate_to_fit(p_aabb);
  143. return proj;
  144. }
  145. Projection Projection::perspective_znear_adjusted(real_t p_new_znear) const {
  146. Projection proj = *this;
  147. proj.adjust_perspective_znear(p_new_znear);
  148. return proj;
  149. }
  150. Plane Projection::get_projection_plane(Planes p_plane) const {
  151. const real_t *matrix = (const real_t *)this->columns;
  152. switch (p_plane) {
  153. case PLANE_NEAR: {
  154. Plane new_plane = Plane(matrix[3] + matrix[2],
  155. matrix[7] + matrix[6],
  156. matrix[11] + matrix[10],
  157. matrix[15] + matrix[14]);
  158. new_plane.normal = -new_plane.normal;
  159. new_plane.normalize();
  160. return new_plane;
  161. }
  162. case PLANE_FAR: {
  163. Plane new_plane = Plane(matrix[3] - matrix[2],
  164. matrix[7] - matrix[6],
  165. matrix[11] - matrix[10],
  166. matrix[15] - matrix[14]);
  167. new_plane.normal = -new_plane.normal;
  168. new_plane.normalize();
  169. return new_plane;
  170. }
  171. case PLANE_LEFT: {
  172. Plane new_plane = Plane(matrix[3] + matrix[0],
  173. matrix[7] + matrix[4],
  174. matrix[11] + matrix[8],
  175. matrix[15] + matrix[12]);
  176. new_plane.normal = -new_plane.normal;
  177. new_plane.normalize();
  178. return new_plane;
  179. }
  180. case PLANE_TOP: {
  181. Plane new_plane = Plane(matrix[3] - matrix[1],
  182. matrix[7] - matrix[5],
  183. matrix[11] - matrix[9],
  184. matrix[15] - matrix[13]);
  185. new_plane.normal = -new_plane.normal;
  186. new_plane.normalize();
  187. return new_plane;
  188. }
  189. case PLANE_RIGHT: {
  190. Plane new_plane = Plane(matrix[3] - matrix[0],
  191. matrix[7] - matrix[4],
  192. matrix[11] - matrix[8],
  193. matrix[15] - matrix[12]);
  194. new_plane.normal = -new_plane.normal;
  195. new_plane.normalize();
  196. return new_plane;
  197. }
  198. case PLANE_BOTTOM: {
  199. Plane new_plane = Plane(matrix[3] + matrix[1],
  200. matrix[7] + matrix[5],
  201. matrix[11] + matrix[9],
  202. matrix[15] + matrix[13]);
  203. new_plane.normal = -new_plane.normal;
  204. new_plane.normalize();
  205. return new_plane;
  206. }
  207. }
  208. return Plane();
  209. }
  210. Projection Projection::flipped_y() const {
  211. Projection proj = *this;
  212. proj.flip_y();
  213. return proj;
  214. }
  215. Projection Projection ::jitter_offseted(const Vector2 &p_offset) const {
  216. Projection proj = *this;
  217. proj.add_jitter_offset(p_offset);
  218. return proj;
  219. }
  220. void Projection::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov) {
  221. if (p_flip_fov) {
  222. p_fovy_degrees = get_fovy(p_fovy_degrees, 1.0 / p_aspect);
  223. }
  224. real_t sine, cotangent, deltaZ;
  225. real_t radians = Math::deg_to_rad(p_fovy_degrees / 2.0);
  226. deltaZ = p_z_far - p_z_near;
  227. sine = Math::sin(radians);
  228. if ((deltaZ == 0) || (sine == 0) || (p_aspect == 0)) {
  229. return;
  230. }
  231. cotangent = Math::cos(radians) / sine;
  232. set_identity();
  233. columns[0][0] = cotangent / p_aspect;
  234. columns[1][1] = cotangent;
  235. columns[2][2] = -(p_z_far + p_z_near) / deltaZ;
  236. columns[2][3] = -1;
  237. columns[3][2] = -2 * p_z_near * p_z_far / deltaZ;
  238. columns[3][3] = 0;
  239. }
  240. void Projection::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist) {
  241. if (p_flip_fov) {
  242. p_fovy_degrees = get_fovy(p_fovy_degrees, 1.0 / p_aspect);
  243. }
  244. real_t left, right, modeltranslation, ymax, xmax, frustumshift;
  245. ymax = p_z_near * tan(Math::deg_to_rad(p_fovy_degrees / 2.0));
  246. xmax = ymax * p_aspect;
  247. frustumshift = (p_intraocular_dist / 2.0) * p_z_near / p_convergence_dist;
  248. switch (p_eye) {
  249. case 1: { // left eye
  250. left = -xmax + frustumshift;
  251. right = xmax + frustumshift;
  252. modeltranslation = p_intraocular_dist / 2.0;
  253. } break;
  254. case 2: { // right eye
  255. left = -xmax - frustumshift;
  256. right = xmax - frustumshift;
  257. modeltranslation = -p_intraocular_dist / 2.0;
  258. } break;
  259. default: { // mono, should give the same result as set_perspective(p_fovy_degrees,p_aspect,p_z_near,p_z_far,p_flip_fov)
  260. left = -xmax;
  261. right = xmax;
  262. modeltranslation = 0.0;
  263. } break;
  264. }
  265. set_frustum(left, right, -ymax, ymax, p_z_near, p_z_far);
  266. // translate matrix by (modeltranslation, 0.0, 0.0)
  267. Projection cm;
  268. cm.set_identity();
  269. cm.columns[3][0] = modeltranslation;
  270. *this = *this * cm;
  271. }
  272. void Projection::set_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_dist, real_t p_display_width, real_t p_display_to_lens, real_t p_oversample, real_t p_z_near, real_t p_z_far) {
  273. // we first calculate our base frustum on our values without taking our lens magnification into account.
  274. real_t f1 = (p_intraocular_dist * 0.5) / p_display_to_lens;
  275. real_t f2 = ((p_display_width - p_intraocular_dist) * 0.5) / p_display_to_lens;
  276. real_t f3 = (p_display_width / 4.0) / p_display_to_lens;
  277. // now we apply our oversample factor to increase our FOV. how much we oversample is always a balance we strike between performance and how much
  278. // we're willing to sacrifice in FOV.
  279. real_t add = ((f1 + f2) * (p_oversample - 1.0)) / 2.0;
  280. f1 += add;
  281. f2 += add;
  282. f3 *= p_oversample;
  283. // always apply KEEP_WIDTH aspect ratio
  284. f3 /= p_aspect;
  285. switch (p_eye) {
  286. case 1: { // left eye
  287. set_frustum(-f2 * p_z_near, f1 * p_z_near, -f3 * p_z_near, f3 * p_z_near, p_z_near, p_z_far);
  288. } break;
  289. case 2: { // right eye
  290. set_frustum(-f1 * p_z_near, f2 * p_z_near, -f3 * p_z_near, f3 * p_z_near, p_z_near, p_z_far);
  291. } break;
  292. default: { // mono, does not apply here!
  293. } break;
  294. }
  295. }
  296. void Projection::set_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar) {
  297. set_identity();
  298. columns[0][0] = 2.0 / (p_right - p_left);
  299. columns[3][0] = -((p_right + p_left) / (p_right - p_left));
  300. columns[1][1] = 2.0 / (p_top - p_bottom);
  301. columns[3][1] = -((p_top + p_bottom) / (p_top - p_bottom));
  302. columns[2][2] = -2.0 / (p_zfar - p_znear);
  303. columns[3][2] = -((p_zfar + p_znear) / (p_zfar - p_znear));
  304. columns[3][3] = 1.0;
  305. }
  306. void Projection::set_orthogonal(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar, bool p_flip_fov) {
  307. if (!p_flip_fov) {
  308. p_size *= p_aspect;
  309. }
  310. set_orthogonal(-p_size / 2, +p_size / 2, -p_size / p_aspect / 2, +p_size / p_aspect / 2, p_znear, p_zfar);
  311. }
  312. void Projection::set_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far) {
  313. ERR_FAIL_COND(p_right <= p_left);
  314. ERR_FAIL_COND(p_top <= p_bottom);
  315. ERR_FAIL_COND(p_far <= p_near);
  316. real_t *te = &columns[0][0];
  317. real_t x = 2 * p_near / (p_right - p_left);
  318. real_t y = 2 * p_near / (p_top - p_bottom);
  319. real_t a = (p_right + p_left) / (p_right - p_left);
  320. real_t b = (p_top + p_bottom) / (p_top - p_bottom);
  321. real_t c = -(p_far + p_near) / (p_far - p_near);
  322. real_t d = -2 * p_far * p_near / (p_far - p_near);
  323. te[0] = x;
  324. te[1] = 0;
  325. te[2] = 0;
  326. te[3] = 0;
  327. te[4] = 0;
  328. te[5] = y;
  329. te[6] = 0;
  330. te[7] = 0;
  331. te[8] = a;
  332. te[9] = b;
  333. te[10] = c;
  334. te[11] = -1;
  335. te[12] = 0;
  336. te[13] = 0;
  337. te[14] = d;
  338. te[15] = 0;
  339. }
  340. void Projection::set_frustum(real_t p_size, real_t p_aspect, Vector2 p_offset, real_t p_near, real_t p_far, bool p_flip_fov) {
  341. if (!p_flip_fov) {
  342. p_size *= p_aspect;
  343. }
  344. set_frustum(-p_size / 2 + p_offset.x, +p_size / 2 + p_offset.x, -p_size / p_aspect / 2 + p_offset.y, +p_size / p_aspect / 2 + p_offset.y, p_near, p_far);
  345. }
  346. real_t Projection::get_z_far() const {
  347. const real_t *matrix = (const real_t *)this->columns;
  348. Plane new_plane = Plane(matrix[3] - matrix[2],
  349. matrix[7] - matrix[6],
  350. matrix[11] - matrix[10],
  351. matrix[15] - matrix[14]);
  352. new_plane.normal = -new_plane.normal;
  353. new_plane.normalize();
  354. return new_plane.d;
  355. }
  356. real_t Projection::get_z_near() const {
  357. const real_t *matrix = (const real_t *)this->columns;
  358. Plane new_plane = Plane(matrix[3] + matrix[2],
  359. matrix[7] + matrix[6],
  360. matrix[11] + matrix[10],
  361. -matrix[15] - matrix[14]);
  362. new_plane.normalize();
  363. return new_plane.d;
  364. }
  365. Vector2 Projection::get_viewport_half_extents() const {
  366. const real_t *matrix = (const real_t *)this->columns;
  367. ///////--- Near Plane ---///////
  368. Plane near_plane = Plane(matrix[3] + matrix[2],
  369. matrix[7] + matrix[6],
  370. matrix[11] + matrix[10],
  371. -matrix[15] - matrix[14]);
  372. near_plane.normalize();
  373. ///////--- Right Plane ---///////
  374. Plane right_plane = Plane(matrix[3] - matrix[0],
  375. matrix[7] - matrix[4],
  376. matrix[11] - matrix[8],
  377. -matrix[15] + matrix[12]);
  378. right_plane.normalize();
  379. Plane top_plane = Plane(matrix[3] - matrix[1],
  380. matrix[7] - matrix[5],
  381. matrix[11] - matrix[9],
  382. -matrix[15] + matrix[13]);
  383. top_plane.normalize();
  384. Vector3 res;
  385. near_plane.intersect_3(right_plane, top_plane, &res);
  386. return Vector2(res.x, res.y);
  387. }
  388. Vector2 Projection::get_far_plane_half_extents() const {
  389. const real_t *matrix = (const real_t *)this->columns;
  390. ///////--- Far Plane ---///////
  391. Plane far_plane = Plane(matrix[3] - matrix[2],
  392. matrix[7] - matrix[6],
  393. matrix[11] - matrix[10],
  394. -matrix[15] + matrix[14]);
  395. far_plane.normalize();
  396. ///////--- Right Plane ---///////
  397. Plane right_plane = Plane(matrix[3] - matrix[0],
  398. matrix[7] - matrix[4],
  399. matrix[11] - matrix[8],
  400. -matrix[15] + matrix[12]);
  401. right_plane.normalize();
  402. Plane top_plane = Plane(matrix[3] - matrix[1],
  403. matrix[7] - matrix[5],
  404. matrix[11] - matrix[9],
  405. -matrix[15] + matrix[13]);
  406. top_plane.normalize();
  407. Vector3 res;
  408. far_plane.intersect_3(right_plane, top_plane, &res);
  409. return Vector2(res.x, res.y);
  410. }
  411. bool Projection::get_endpoints(const Transform3D &p_transform, Vector3 *p_8points) const {
  412. Array planes = get_projection_planes(Transform3D());
  413. const Planes intersections[8][3] = {
  414. { PLANE_FAR, PLANE_LEFT, PLANE_TOP },
  415. { PLANE_FAR, PLANE_LEFT, PLANE_BOTTOM },
  416. { PLANE_FAR, PLANE_RIGHT, PLANE_TOP },
  417. { PLANE_FAR, PLANE_RIGHT, PLANE_BOTTOM },
  418. { PLANE_NEAR, PLANE_LEFT, PLANE_TOP },
  419. { PLANE_NEAR, PLANE_LEFT, PLANE_BOTTOM },
  420. { PLANE_NEAR, PLANE_RIGHT, PLANE_TOP },
  421. { PLANE_NEAR, PLANE_RIGHT, PLANE_BOTTOM },
  422. };
  423. for (int i = 0; i < 8; i++) {
  424. Vector3 point;
  425. Plane a = planes[intersections[i][0]];
  426. Plane b = planes[intersections[i][1]];
  427. Plane c = planes[intersections[i][2]];
  428. bool res = a.intersect_3(b, c, &point);
  429. ERR_FAIL_COND_V(!res, false);
  430. p_8points[i] = p_transform.xform(point);
  431. }
  432. return true;
  433. }
  434. Array Projection::get_projection_planes(const Transform3D &p_transform) const {
  435. /** Fast Plane Extraction from combined modelview/projection matrices.
  436. * References:
  437. * https://web.archive.org/web/20011221205252/https://www.markmorley.com/opengl/frustumculling.html
  438. * https://web.archive.org/web/20061020020112/https://www2.ravensoft.com/users/ggribb/plane%20extraction.pdf
  439. */
  440. Array planes;
  441. planes.resize(6);
  442. const real_t *matrix = (const real_t *)this->columns;
  443. Plane new_plane;
  444. ///////--- Near Plane ---///////
  445. new_plane = Plane(matrix[3] + matrix[2],
  446. matrix[7] + matrix[6],
  447. matrix[11] + matrix[10],
  448. matrix[15] + matrix[14]);
  449. new_plane.normal = -new_plane.normal;
  450. new_plane.normalize();
  451. planes[0] = p_transform.xform(new_plane);
  452. ///////--- Far Plane ---///////
  453. new_plane = Plane(matrix[3] - matrix[2],
  454. matrix[7] - matrix[6],
  455. matrix[11] - matrix[10],
  456. matrix[15] - matrix[14]);
  457. new_plane.normal = -new_plane.normal;
  458. new_plane.normalize();
  459. planes[1] = p_transform.xform(new_plane);
  460. ///////--- Left Plane ---///////
  461. new_plane = Plane(matrix[3] + matrix[0],
  462. matrix[7] + matrix[4],
  463. matrix[11] + matrix[8],
  464. matrix[15] + matrix[12]);
  465. new_plane.normal = -new_plane.normal;
  466. new_plane.normalize();
  467. planes[2] = p_transform.xform(new_plane);
  468. ///////--- Top Plane ---///////
  469. new_plane = Plane(matrix[3] - matrix[1],
  470. matrix[7] - matrix[5],
  471. matrix[11] - matrix[9],
  472. matrix[15] - matrix[13]);
  473. new_plane.normal = -new_plane.normal;
  474. new_plane.normalize();
  475. planes[3] = p_transform.xform(new_plane);
  476. ///////--- Right Plane ---///////
  477. new_plane = Plane(matrix[3] - matrix[0],
  478. matrix[7] - matrix[4],
  479. matrix[11] - matrix[8],
  480. matrix[15] - matrix[12]);
  481. new_plane.normal = -new_plane.normal;
  482. new_plane.normalize();
  483. planes[4] = p_transform.xform(new_plane);
  484. ///////--- Bottom Plane ---///////
  485. new_plane = Plane(matrix[3] + matrix[1],
  486. matrix[7] + matrix[5],
  487. matrix[11] + matrix[9],
  488. matrix[15] + matrix[13]);
  489. new_plane.normal = -new_plane.normal;
  490. new_plane.normalize();
  491. planes[5] = p_transform.xform(new_plane);
  492. return planes;
  493. }
  494. Projection Projection::inverse() const {
  495. Projection cm = *this;
  496. cm.invert();
  497. return cm;
  498. }
  499. void Projection::invert() {
  500. int i, j, k;
  501. int pvt_i[4], pvt_j[4]; /* Locations of pivot matrix */
  502. real_t pvt_val; /* Value of current pivot element */
  503. real_t hold; /* Temporary storage */
  504. real_t determinant = 1.0f;
  505. for (k = 0; k < 4; k++) {
  506. /** Locate k'th pivot element **/
  507. pvt_val = columns[k][k]; /** Initialize for search **/
  508. pvt_i[k] = k;
  509. pvt_j[k] = k;
  510. for (i = k; i < 4; i++) {
  511. for (j = k; j < 4; j++) {
  512. if (Math::abs(columns[i][j]) > Math::abs(pvt_val)) {
  513. pvt_i[k] = i;
  514. pvt_j[k] = j;
  515. pvt_val = columns[i][j];
  516. }
  517. }
  518. }
  519. /** Product of pivots, gives determinant when finished **/
  520. determinant *= pvt_val;
  521. if (Math::is_zero_approx(determinant)) {
  522. return; /** Matrix is singular (zero determinant). **/
  523. }
  524. /** "Interchange" rows (with sign change stuff) **/
  525. i = pvt_i[k];
  526. if (i != k) { /** If rows are different **/
  527. for (j = 0; j < 4; j++) {
  528. hold = -columns[k][j];
  529. columns[k][j] = columns[i][j];
  530. columns[i][j] = hold;
  531. }
  532. }
  533. /** "Interchange" columns **/
  534. j = pvt_j[k];
  535. if (j != k) { /** If columns are different **/
  536. for (i = 0; i < 4; i++) {
  537. hold = -columns[i][k];
  538. columns[i][k] = columns[i][j];
  539. columns[i][j] = hold;
  540. }
  541. }
  542. /** Divide column by minus pivot value **/
  543. for (i = 0; i < 4; i++) {
  544. if (i != k) {
  545. columns[i][k] /= (-pvt_val);
  546. }
  547. }
  548. /** Reduce the matrix **/
  549. for (i = 0; i < 4; i++) {
  550. hold = columns[i][k];
  551. for (j = 0; j < 4; j++) {
  552. if (i != k && j != k) {
  553. columns[i][j] += hold * columns[k][j];
  554. }
  555. }
  556. }
  557. /** Divide row by pivot **/
  558. for (j = 0; j < 4; j++) {
  559. if (j != k) {
  560. columns[k][j] /= pvt_val;
  561. }
  562. }
  563. /** Replace pivot by reciprocal (at last we can touch it). **/
  564. columns[k][k] = 1.0 / pvt_val;
  565. }
  566. /* That was most of the work, one final pass of row/column interchange */
  567. /* to finish */
  568. for (k = 4 - 2; k >= 0; k--) { /* Don't need to work with 1 by 1 corner*/
  569. i = pvt_j[k]; /* Rows to swap correspond to pivot COLUMN */
  570. if (i != k) { /* If rows are different */
  571. for (j = 0; j < 4; j++) {
  572. hold = columns[k][j];
  573. columns[k][j] = -columns[i][j];
  574. columns[i][j] = hold;
  575. }
  576. }
  577. j = pvt_i[k]; /* Columns to swap correspond to pivot ROW */
  578. if (j != k) { /* If columns are different */
  579. for (i = 0; i < 4; i++) {
  580. hold = columns[i][k];
  581. columns[i][k] = -columns[i][j];
  582. columns[i][j] = hold;
  583. }
  584. }
  585. }
  586. }
  587. void Projection::flip_y() {
  588. for (int i = 0; i < 4; i++) {
  589. columns[1][i] = -columns[1][i];
  590. }
  591. }
  592. Projection::Projection() {
  593. set_identity();
  594. }
  595. Projection Projection::operator*(const Projection &p_matrix) const {
  596. Projection new_matrix;
  597. for (int j = 0; j < 4; j++) {
  598. for (int i = 0; i < 4; i++) {
  599. real_t ab = 0;
  600. for (int k = 0; k < 4; k++) {
  601. ab += columns[k][i] * p_matrix.columns[j][k];
  602. }
  603. new_matrix.columns[j][i] = ab;
  604. }
  605. }
  606. return new_matrix;
  607. }
  608. void Projection::set_depth_correction(bool p_flip_y) {
  609. real_t *m = &columns[0][0];
  610. m[0] = 1;
  611. m[1] = 0.0;
  612. m[2] = 0.0;
  613. m[3] = 0.0;
  614. m[4] = 0.0;
  615. m[5] = p_flip_y ? -1 : 1;
  616. m[6] = 0.0;
  617. m[7] = 0.0;
  618. m[8] = 0.0;
  619. m[9] = 0.0;
  620. m[10] = 0.5;
  621. m[11] = 0.0;
  622. m[12] = 0.0;
  623. m[13] = 0.0;
  624. m[14] = 0.5;
  625. m[15] = 1.0;
  626. }
  627. void Projection::set_light_bias() {
  628. real_t *m = &columns[0][0];
  629. m[0] = 0.5;
  630. m[1] = 0.0;
  631. m[2] = 0.0;
  632. m[3] = 0.0;
  633. m[4] = 0.0;
  634. m[5] = 0.5;
  635. m[6] = 0.0;
  636. m[7] = 0.0;
  637. m[8] = 0.0;
  638. m[9] = 0.0;
  639. m[10] = 0.5;
  640. m[11] = 0.0;
  641. m[12] = 0.5;
  642. m[13] = 0.5;
  643. m[14] = 0.5;
  644. m[15] = 1.0;
  645. }
  646. void Projection::set_light_atlas_rect(const Rect2 &p_rect) {
  647. real_t *m = &columns[0][0];
  648. m[0] = p_rect.size.width;
  649. m[1] = 0.0;
  650. m[2] = 0.0;
  651. m[3] = 0.0;
  652. m[4] = 0.0;
  653. m[5] = p_rect.size.height;
  654. m[6] = 0.0;
  655. m[7] = 0.0;
  656. m[8] = 0.0;
  657. m[9] = 0.0;
  658. m[10] = 1.0;
  659. m[11] = 0.0;
  660. m[12] = p_rect.position.x;
  661. m[13] = p_rect.position.y;
  662. m[14] = 0.0;
  663. m[15] = 1.0;
  664. }
  665. Projection::operator String() const {
  666. String str;
  667. for (int i = 0; i < 4; i++) {
  668. for (int j = 0; j < 4; j++) {
  669. str = str + String((j > 0) ? ", " : "\n") + rtos(columns[i][j]);
  670. }
  671. }
  672. return str;
  673. }
  674. real_t Projection::get_aspect() const {
  675. Vector2 vp_he = get_viewport_half_extents();
  676. return vp_he.x / vp_he.y;
  677. }
  678. int Projection::get_pixels_per_meter(int p_for_pixel_width) const {
  679. Vector3 result = xform(Vector3(1, 0, -1));
  680. return int((result.x * 0.5 + 0.5) * p_for_pixel_width);
  681. }
  682. bool Projection::is_orthogonal() const {
  683. return columns[3][3] == 1.0;
  684. }
  685. real_t Projection::get_fov() const {
  686. const real_t *matrix = (const real_t *)this->columns;
  687. Plane right_plane = Plane(matrix[3] - matrix[0],
  688. matrix[7] - matrix[4],
  689. matrix[11] - matrix[8],
  690. -matrix[15] + matrix[12]);
  691. right_plane.normalize();
  692. if ((matrix[8] == 0) && (matrix[9] == 0)) {
  693. return Math::rad_to_deg(Math::acos(Math::abs(right_plane.normal.x))) * 2.0;
  694. } else {
  695. // our frustum is asymmetrical need to calculate the left planes angle separately..
  696. Plane left_plane = Plane(matrix[3] + matrix[0],
  697. matrix[7] + matrix[4],
  698. matrix[11] + matrix[8],
  699. matrix[15] + matrix[12]);
  700. left_plane.normalize();
  701. return Math::rad_to_deg(Math::acos(Math::abs(left_plane.normal.x))) + Math::rad_to_deg(Math::acos(Math::abs(right_plane.normal.x)));
  702. }
  703. }
  704. float Projection::get_lod_multiplier() const {
  705. if (is_orthogonal()) {
  706. return get_viewport_half_extents().x;
  707. } else {
  708. float zn = get_z_near();
  709. float width = get_viewport_half_extents().x * 2.0;
  710. return 1.0 / (zn / width);
  711. }
  712. // Usage is lod_size / (lod_distance * multiplier) < threshold
  713. }
  714. void Projection::make_scale(const Vector3 &p_scale) {
  715. set_identity();
  716. columns[0][0] = p_scale.x;
  717. columns[1][1] = p_scale.y;
  718. columns[2][2] = p_scale.z;
  719. }
  720. void Projection::scale_translate_to_fit(const AABB &p_aabb) {
  721. Vector3 min = p_aabb.position;
  722. Vector3 max = p_aabb.position + p_aabb.size;
  723. columns[0][0] = 2 / (max.x - min.x);
  724. columns[1][0] = 0;
  725. columns[2][0] = 0;
  726. columns[3][0] = -(max.x + min.x) / (max.x - min.x);
  727. columns[0][1] = 0;
  728. columns[1][1] = 2 / (max.y - min.y);
  729. columns[2][1] = 0;
  730. columns[3][1] = -(max.y + min.y) / (max.y - min.y);
  731. columns[0][2] = 0;
  732. columns[1][2] = 0;
  733. columns[2][2] = 2 / (max.z - min.z);
  734. columns[3][2] = -(max.z + min.z) / (max.z - min.z);
  735. columns[0][3] = 0;
  736. columns[1][3] = 0;
  737. columns[2][3] = 0;
  738. columns[3][3] = 1;
  739. }
  740. void Projection::add_jitter_offset(const Vector2 &p_offset) {
  741. columns[3][0] += p_offset.x;
  742. columns[3][1] += p_offset.y;
  743. }
  744. Projection::operator Transform3D() const {
  745. Transform3D tr;
  746. const real_t *m = &columns[0][0];
  747. tr.basis.rows[0][0] = m[0];
  748. tr.basis.rows[1][0] = m[1];
  749. tr.basis.rows[2][0] = m[2];
  750. tr.basis.rows[0][1] = m[4];
  751. tr.basis.rows[1][1] = m[5];
  752. tr.basis.rows[2][1] = m[6];
  753. tr.basis.rows[0][2] = m[8];
  754. tr.basis.rows[1][2] = m[9];
  755. tr.basis.rows[2][2] = m[10];
  756. tr.origin.x = m[12];
  757. tr.origin.y = m[13];
  758. tr.origin.z = m[14];
  759. return tr;
  760. }
  761. Projection::Projection(const Vector4 &p_x, const Vector4 &p_y, const Vector4 &p_z, const Vector4 &p_w) {
  762. columns[0] = p_x;
  763. columns[1] = p_y;
  764. columns[2] = p_z;
  765. columns[3] = p_w;
  766. }
  767. Projection::Projection(const Transform3D &p_transform) {
  768. const Transform3D &tr = p_transform;
  769. real_t *m = &columns[0][0];
  770. m[0] = tr.basis.rows[0][0];
  771. m[1] = tr.basis.rows[1][0];
  772. m[2] = tr.basis.rows[2][0];
  773. m[3] = 0.0;
  774. m[4] = tr.basis.rows[0][1];
  775. m[5] = tr.basis.rows[1][1];
  776. m[6] = tr.basis.rows[2][1];
  777. m[7] = 0.0;
  778. m[8] = tr.basis.rows[0][2];
  779. m[9] = tr.basis.rows[1][2];
  780. m[10] = tr.basis.rows[2][2];
  781. m[11] = 0.0;
  782. m[12] = tr.origin.x;
  783. m[13] = tr.origin.y;
  784. m[14] = tr.origin.z;
  785. m[15] = 1.0;
  786. }
  787. Projection::~Projection() {
  788. }
  789. } // namespace godot