123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424 |
- #ifndef GODOT_MATH_H
- #define GODOT_MATH_H
- #include <godot_cpp/core/defs.hpp>
- #include <godot/gdnative_interface.h>
- #include <cmath>
- namespace godot {
- namespace Math {
- // This epsilon should match the one used by Godot for consistency.
- // Using `f` when `real_t` is float.
- #define CMP_EPSILON 0.00001f
- #define CMP_EPSILON2 (CMP_EPSILON * CMP_EPSILON)
- // This epsilon is for values related to a unit size (scalar or vector len).
- #ifdef PRECISE_MATH_CHECKS
- #define UNIT_EPSILON 0.00001
- #else
- // Tolerate some more floating point error normally.
- #define UNIT_EPSILON 0.001
- #endif
- #define Math_SQRT12 0.7071067811865475244008443621048490
- #define Math_SQRT2 1.4142135623730950488016887242
- #define Math_LN2 0.6931471805599453094172321215
- #define Math_PI 3.1415926535897932384626433833
- #define Math_TAU 6.2831853071795864769252867666
- #define Math_E 2.7182818284590452353602874714
- #define Math_INF INFINITY
- #define Math_NAN NAN
- // Functions reproduced as in Godot's source code `math_funcs.h`.
- // Some are overloads to automatically support changing real_t into either double or float in the way Godot does.
- inline double fmod(double p_x, double p_y) {
- return ::fmod(p_x, p_y);
- }
- inline float fmod(float p_x, float p_y) {
- return ::fmodf(p_x, p_y);
- }
- inline double fposmod(double p_x, double p_y) {
- double value = Math::fmod(p_x, p_y);
- if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
- value += p_y;
- }
- value += 0.0;
- return value;
- }
- inline float fposmod(float p_x, float p_y) {
- float value = Math::fmod(p_x, p_y);
- if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
- value += p_y;
- }
- value += 0.0;
- return value;
- }
- inline float fposmodp(float p_x, float p_y) {
- float value = Math::fmod(p_x, p_y);
- if (value < 0) {
- value += p_y;
- }
- value += 0.0;
- return value;
- }
- inline double fposmodp(double p_x, double p_y) {
- double value = Math::fmod(p_x, p_y);
- if (value < 0) {
- value += p_y;
- }
- value += 0.0;
- return value;
- }
- inline double floor(double p_x) {
- return ::floor(p_x);
- }
- inline float floor(float p_x) {
- return ::floorf(p_x);
- }
- inline double ceil(double p_x) {
- return ::ceil(p_x);
- }
- inline float ceil(float p_x) {
- return ::ceilf(p_x);
- }
- inline double exp(double p_x) {
- return ::exp(p_x);
- }
- inline float exp(float p_x) {
- return ::expf(p_x);
- }
- inline double sin(double p_x) {
- return ::sin(p_x);
- }
- inline float sin(float p_x) {
- return ::sinf(p_x);
- }
- inline double cos(double p_x) {
- return ::cos(p_x);
- }
- inline float cos(float p_x) {
- return ::cosf(p_x);
- }
- inline double tan(double p_x) {
- return ::tan(p_x);
- }
- inline float tan(float p_x) {
- return ::tanf(p_x);
- }
- inline double sinh(double p_x) {
- return ::sinh(p_x);
- }
- inline float sinh(float p_x) {
- return ::sinhf(p_x);
- }
- inline float sinc(float p_x) {
- return p_x == 0 ? 1 : ::sin(p_x) / p_x;
- }
- inline double sinc(double p_x) {
- return p_x == 0 ? 1 : ::sin(p_x) / p_x;
- }
- inline float sincn(float p_x) {
- return sinc(Math_PI * p_x);
- }
- inline double sincn(double p_x) {
- return sinc(Math_PI * p_x);
- }
- inline double cosh(double p_x) {
- return ::cosh(p_x);
- }
- inline float cosh(float p_x) {
- return ::coshf(p_x);
- }
- inline double tanh(double p_x) {
- return ::tanh(p_x);
- }
- inline float tanh(float p_x) {
- return ::tanhf(p_x);
- }
- inline double asin(double p_x) {
- return ::asin(p_x);
- }
- inline float asin(float p_x) {
- return ::asinf(p_x);
- }
- inline double acos(double p_x) {
- return ::acos(p_x);
- }
- inline float acos(float p_x) {
- return ::acosf(p_x);
- }
- inline double atan(double p_x) {
- return ::atan(p_x);
- }
- inline float atan(float p_x) {
- return ::atanf(p_x);
- }
- inline double atan2(double p_y, double p_x) {
- return ::atan2(p_y, p_x);
- }
- inline float atan2(float p_y, float p_x) {
- return ::atan2f(p_y, p_x);
- }
- inline double sqrt(double p_x) {
- return ::sqrt(p_x);
- }
- inline float sqrt(float p_x) {
- return ::sqrtf(p_x);
- }
- inline double pow(double p_x, double p_y) {
- return ::pow(p_x, p_y);
- }
- inline float pow(float p_x, float p_y) {
- return ::powf(p_x, p_y);
- }
- inline double log(double p_x) {
- return ::log(p_x);
- }
- inline float log(float p_x) {
- return ::logf(p_x);
- }
- inline float lerp(float minv, float maxv, float t) {
- return minv + t * (maxv - minv);
- }
- inline double lerp(double minv, double maxv, double t) {
- return minv + t * (maxv - minv);
- }
- inline double lerp_angle(double p_from, double p_to, double p_weight) {
- double difference = fmod(p_to - p_from, Math_TAU);
- double distance = fmod(2.0 * difference, Math_TAU) - difference;
- return p_from + distance * p_weight;
- }
- inline float lerp_angle(float p_from, float p_to, float p_weight) {
- float difference = fmod(p_to - p_from, (float)Math_TAU);
- float distance = fmod(2.0f * difference, (float)Math_TAU) - difference;
- return p_from + distance * p_weight;
- }
- template <typename T>
- inline T clamp(T x, T minv, T maxv) {
- if (x < minv) {
- return minv;
- }
- if (x > maxv) {
- return maxv;
- }
- return x;
- }
- template <typename T>
- inline T min(T a, T b) {
- return a < b ? a : b;
- }
- template <typename T>
- inline T max(T a, T b) {
- return a > b ? a : b;
- }
- template <typename T>
- inline T sign(T x) {
- return static_cast<T>(x < 0 ? -1 : 1);
- }
- template <typename T>
- inline T abs(T x) {
- return std::abs(x);
- }
- inline double deg2rad(double p_y) {
- return p_y * Math_PI / 180.0;
- }
- inline float deg2rad(float p_y) {
- return p_y * static_cast<float>(Math_PI) / 180.f;
- }
- inline double rad2deg(double p_y) {
- return p_y * 180.0 / Math_PI;
- }
- inline float rad2deg(float p_y) {
- return p_y * 180.f / static_cast<float>(Math_PI);
- }
- inline double inverse_lerp(double p_from, double p_to, double p_value) {
- return (p_value - p_from) / (p_to - p_from);
- }
- inline float inverse_lerp(float p_from, float p_to, float p_value) {
- return (p_value - p_from) / (p_to - p_from);
- }
- inline double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
- return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
- }
- inline float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
- return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
- }
- inline bool is_equal_approx(real_t a, real_t b) {
- // Check for exact equality first, required to handle "infinity" values.
- if (a == b) {
- return true;
- }
- // Then check for approximate equality.
- real_t tolerance = CMP_EPSILON * std::abs(a);
- if (tolerance < CMP_EPSILON) {
- tolerance = CMP_EPSILON;
- }
- return std::abs(a - b) < tolerance;
- }
- inline bool is_equal_approx(real_t a, real_t b, real_t tolerance) {
- // Check for exact equality first, required to handle "infinity" values.
- if (a == b) {
- return true;
- }
- // Then check for approximate equality.
- return std::abs(a - b) < tolerance;
- }
- inline bool is_zero_approx(real_t s) {
- return std::abs(s) < CMP_EPSILON;
- }
- inline double smoothstep(double p_from, double p_to, double p_weight) {
- if (is_equal_approx(static_cast<real_t>(p_from), static_cast<real_t>(p_to))) {
- return p_from;
- }
- double x = clamp((p_weight - p_from) / (p_to - p_from), 0.0, 1.0);
- return x * x * (3.0 - 2.0 * x);
- }
- inline float smoothstep(float p_from, float p_to, float p_weight) {
- if (is_equal_approx(p_from, p_to)) {
- return p_from;
- }
- float x = clamp((p_weight - p_from) / (p_to - p_from), 0.0f, 1.0f);
- return x * x * (3.0f - 2.0f * x);
- }
- inline double move_toward(double p_from, double p_to, double p_delta) {
- return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
- }
- inline float move_toward(float p_from, float p_to, float p_delta) {
- return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
- }
- inline double linear2db(double p_linear) {
- return log(p_linear) * 8.6858896380650365530225783783321;
- }
- inline float linear2db(float p_linear) {
- return log(p_linear) * 8.6858896380650365530225783783321f;
- }
- inline double db2linear(double p_db) {
- return exp(p_db * 0.11512925464970228420089957273422);
- }
- inline float db2linear(float p_db) {
- return exp(p_db * 0.11512925464970228420089957273422f);
- }
- inline double round(double p_val) {
- return (p_val >= 0) ? floor(p_val + 0.5) : -floor(-p_val + 0.5);
- }
- inline float round(float p_val) {
- return (p_val >= 0) ? floor(p_val + 0.5f) : -floor(-p_val + 0.5f);
- }
- inline int64_t wrapi(int64_t value, int64_t min, int64_t max) {
- int64_t range = max - min;
- return range == 0 ? min : min + ((((value - min) % range) + range) % range);
- }
- inline float wrapf(real_t value, real_t min, real_t max) {
- const real_t range = max - min;
- return is_zero_approx(range) ? min : value - (range * floor((value - min) / range));
- }
- inline float stepify(float p_value, float p_step) {
- if (p_step != 0) {
- p_value = floor(p_value / p_step + 0.5f) * p_step;
- }
- return p_value;
- }
- inline double stepify(double p_value, double p_step) {
- if (p_step != 0) {
- p_value = floor(p_value / p_step + 0.5) * p_step;
- }
- return p_value;
- }
- inline unsigned int next_power_of_2(unsigned int x) {
- if (x == 0)
- return 0;
- --x;
- x |= x >> 1;
- x |= x >> 2;
- x |= x >> 4;
- x |= x >> 8;
- x |= x >> 16;
- return ++x;
- }
- // This function should be as fast as possible and rounding mode should not matter.
- inline int fast_ftoi(float a) {
- static int b;
- #if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone?
- b = (int)((a > 0.0) ? (a + 0.5) : (a - 0.5));
- #elif defined(_MSC_VER) && _MSC_VER < 1800
- __asm fld a __asm fistp b
- /*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) )
- // use AT&T inline assembly style, document that
- // we use memory as output (=m) and input (m)
- __asm__ __volatile__ (
- "flds %1 \n\t"
- "fistpl %0 \n\t"
- : "=m" (b)
- : "m" (a));*/
- #else
- b = lrintf(a); //assuming everything but msvc 2012 or earlier has lrint
- #endif
- return b;
- }
- inline double snapped(double p_value, double p_step) {
- if (p_step != 0) {
- p_value = Math::floor(p_value / p_step + 0.5) * p_step;
- }
- return p_value;
- }
- } // namespace Math
- } // namespace godot
- #endif // GODOT_MATH_H
|