Transform.cpp 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275
  1. #include "Transform.hpp"
  2. #include "Basis.hpp"
  3. #include "AABB.hpp"
  4. #include "Plane.hpp"
  5. #include "Quat.hpp"
  6. namespace godot {
  7. const Transform Transform::IDENTITY = Transform();
  8. const Transform Transform::FLIP_X = Transform(-1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0);
  9. const Transform Transform::FLIP_Y = Transform(1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0);
  10. const Transform Transform::FLIP_Z = Transform(1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0);
  11. Transform Transform::inverse_xform(const Transform &t) const {
  12. Vector3 v = t.origin - origin;
  13. return Transform(basis.transpose_xform(t.basis),
  14. basis.xform(v));
  15. }
  16. void Transform::set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t tx, real_t ty, real_t tz) {
  17. basis.elements[0][0] = xx;
  18. basis.elements[0][1] = xy;
  19. basis.elements[0][2] = xz;
  20. basis.elements[1][0] = yx;
  21. basis.elements[1][1] = yy;
  22. basis.elements[1][2] = yz;
  23. basis.elements[2][0] = zx;
  24. basis.elements[2][1] = zy;
  25. basis.elements[2][2] = zz;
  26. origin.x = tx;
  27. origin.y = ty;
  28. origin.z = tz;
  29. }
  30. Vector3 Transform::xform(const Vector3 &p_vector) const {
  31. return Vector3(
  32. basis.elements[0].dot(p_vector) + origin.x,
  33. basis.elements[1].dot(p_vector) + origin.y,
  34. basis.elements[2].dot(p_vector) + origin.z);
  35. }
  36. Vector3 Transform::xform_inv(const Vector3 &p_vector) const {
  37. Vector3 v = p_vector - origin;
  38. return Vector3(
  39. (basis.elements[0][0] * v.x) + (basis.elements[1][0] * v.y) + (basis.elements[2][0] * v.z),
  40. (basis.elements[0][1] * v.x) + (basis.elements[1][1] * v.y) + (basis.elements[2][1] * v.z),
  41. (basis.elements[0][2] * v.x) + (basis.elements[1][2] * v.y) + (basis.elements[2][2] * v.z));
  42. }
  43. Plane Transform::xform(const Plane &p_plane) const {
  44. Vector3 point = p_plane.normal * p_plane.d;
  45. Vector3 point_dir = point + p_plane.normal;
  46. point = xform(point);
  47. point_dir = xform(point_dir);
  48. Vector3 normal = point_dir - point;
  49. normal.normalize();
  50. real_t d = normal.dot(point);
  51. return Plane(normal, d);
  52. }
  53. Plane Transform::xform_inv(const Plane &p_plane) const {
  54. Vector3 point = p_plane.normal * p_plane.d;
  55. Vector3 point_dir = point + p_plane.normal;
  56. point = xform_inv(point);
  57. point_dir = xform_inv(point_dir);
  58. Vector3 normal = point_dir - point;
  59. normal.normalize();
  60. real_t d = normal.dot(point);
  61. return Plane(normal, d);
  62. }
  63. AABB Transform::xform(const AABB &p_aabb) const {
  64. /* define vertices */
  65. Vector3 x = basis.get_axis(0) * p_aabb.size.x;
  66. Vector3 y = basis.get_axis(1) * p_aabb.size.y;
  67. Vector3 z = basis.get_axis(2) * p_aabb.size.z;
  68. Vector3 pos = xform(p_aabb.position);
  69. //could be even further optimized
  70. AABB new_aabb;
  71. new_aabb.position = pos;
  72. new_aabb.expand_to(pos + x);
  73. new_aabb.expand_to(pos + y);
  74. new_aabb.expand_to(pos + z);
  75. new_aabb.expand_to(pos + x + y);
  76. new_aabb.expand_to(pos + x + z);
  77. new_aabb.expand_to(pos + y + z);
  78. new_aabb.expand_to(pos + x + y + z);
  79. return new_aabb;
  80. }
  81. AABB Transform::xform_inv(const AABB &p_aabb) const {
  82. /* define vertices */
  83. Vector3 vertices[8] = {
  84. Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z),
  85. Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z),
  86. Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z),
  87. Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z),
  88. Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z),
  89. Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z),
  90. Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z),
  91. Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z)
  92. };
  93. AABB ret;
  94. ret.position = xform_inv(vertices[0]);
  95. for (int i = 1; i < 8; i++) {
  96. ret.expand_to(xform_inv(vertices[i]));
  97. }
  98. return ret;
  99. }
  100. void Transform::affine_invert() {
  101. basis.invert();
  102. origin = basis.xform(-origin);
  103. }
  104. Transform Transform::affine_inverse() const {
  105. Transform ret = *this;
  106. ret.affine_invert();
  107. return ret;
  108. }
  109. void Transform::invert() {
  110. basis.transpose();
  111. origin = basis.xform(-origin);
  112. }
  113. Transform Transform::inverse() const {
  114. // FIXME: this function assumes the basis is a rotation matrix, with no scaling.
  115. // Transform::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
  116. Transform ret = *this;
  117. ret.invert();
  118. return ret;
  119. }
  120. void Transform::rotate(const Vector3 &p_axis, real_t p_phi) {
  121. *this = rotated(p_axis, p_phi);
  122. }
  123. Transform Transform::rotated(const Vector3 &p_axis, real_t p_phi) const {
  124. return Transform(Basis(p_axis, p_phi), Vector3()) * (*this);
  125. }
  126. void Transform::rotate_basis(const Vector3 &p_axis, real_t p_phi) {
  127. basis.rotate(p_axis, p_phi);
  128. }
  129. Transform Transform::looking_at(const Vector3 &p_target, const Vector3 &p_up) const {
  130. Transform t = *this;
  131. t.set_look_at(origin, p_target, p_up);
  132. return t;
  133. }
  134. void Transform::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) {
  135. // Reference: MESA source code
  136. Vector3 v_x, v_y, v_z;
  137. /* Make rotation matrix */
  138. /* Z vector */
  139. v_z = p_eye - p_target;
  140. v_z.normalize();
  141. v_y = p_up;
  142. v_x = v_y.cross(v_z);
  143. /* Recompute Y = Z cross X */
  144. v_y = v_z.cross(v_x);
  145. v_x.normalize();
  146. v_y.normalize();
  147. basis.set_axis(0, v_x);
  148. basis.set_axis(1, v_y);
  149. basis.set_axis(2, v_z);
  150. origin = p_eye;
  151. }
  152. Transform Transform::interpolate_with(const Transform &p_transform, real_t p_c) const {
  153. /* not sure if very "efficient" but good enough? */
  154. Vector3 src_scale = basis.get_scale();
  155. Quat src_rot = basis;
  156. Vector3 src_loc = origin;
  157. Vector3 dst_scale = p_transform.basis.get_scale();
  158. Quat dst_rot = p_transform.basis;
  159. Vector3 dst_loc = p_transform.origin;
  160. Transform dst;
  161. dst.basis = src_rot.slerp(dst_rot, p_c);
  162. dst.basis.scale(src_scale.linear_interpolate(dst_scale, p_c));
  163. dst.origin = src_loc.linear_interpolate(dst_loc, p_c);
  164. return dst;
  165. }
  166. void Transform::scale(const Vector3 &p_scale) {
  167. basis.scale(p_scale);
  168. origin *= p_scale;
  169. }
  170. Transform Transform::scaled(const Vector3 &p_scale) const {
  171. Transform t = *this;
  172. t.scale(p_scale);
  173. return t;
  174. }
  175. void Transform::scale_basis(const Vector3 &p_scale) {
  176. basis.scale(p_scale);
  177. }
  178. void Transform::translate(real_t p_tx, real_t p_ty, real_t p_tz) {
  179. translate(Vector3(p_tx, p_ty, p_tz));
  180. }
  181. void Transform::translate(const Vector3 &p_translation) {
  182. for (int i = 0; i < 3; i++) {
  183. origin[i] += basis.elements[i].dot(p_translation);
  184. }
  185. }
  186. Transform Transform::translated(const Vector3 &p_translation) const {
  187. Transform t = *this;
  188. t.translate(p_translation);
  189. return t;
  190. }
  191. void Transform::orthonormalize() {
  192. basis.orthonormalize();
  193. }
  194. Transform Transform::orthonormalized() const {
  195. Transform _copy = *this;
  196. _copy.orthonormalize();
  197. return _copy;
  198. }
  199. bool Transform::operator==(const Transform &p_transform) const {
  200. return (basis == p_transform.basis && origin == p_transform.origin);
  201. }
  202. bool Transform::operator!=(const Transform &p_transform) const {
  203. return (basis != p_transform.basis || origin != p_transform.origin);
  204. }
  205. void Transform::operator*=(const Transform &p_transform) {
  206. origin = xform(p_transform.origin);
  207. basis *= p_transform.basis;
  208. }
  209. Transform Transform::operator*(const Transform &p_transform) const {
  210. Transform t = *this;
  211. t *= p_transform;
  212. return t;
  213. }
  214. Transform::operator String() const {
  215. return basis.operator String() + " - " + origin.operator String();
  216. }
  217. Transform::Transform(const Basis &p_basis, const Vector3 &p_origin) {
  218. basis = p_basis;
  219. origin = p_origin;
  220. }
  221. } // namespace godot