Vector3.h 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. #ifndef VECTOR3_H
  2. #define VECTOR3_H
  3. typedef float real_t;
  4. #include "String.h"
  5. #include <cmath>
  6. typedef float real_t; // @Todo move this to a global Godot.h
  7. namespace godot {
  8. struct Vector3 {
  9. enum Axis {
  10. AXIS_X,
  11. AXIS_Y,
  12. AXIS_Z,
  13. };
  14. union {
  15. struct {
  16. real_t x;
  17. real_t y;
  18. real_t z;
  19. };
  20. real_t coord[3];
  21. };
  22. Vector3(real_t x, real_t y, real_t z)
  23. {
  24. this->x = x;
  25. this->y = y;
  26. this->z = z;
  27. }
  28. Vector3()
  29. {
  30. this->x = 0;
  31. this->y = 0;
  32. this->z = 0;
  33. }
  34. Vector3(const Vector3& b)
  35. {
  36. this->x = b.x;
  37. this->y = b.y;
  38. this->z = b.z;
  39. }
  40. const real_t& operator[](int p_axis) const
  41. {
  42. return coord[p_axis];
  43. }
  44. real_t& operator[](int p_axis)
  45. {
  46. return coord[p_axis];
  47. }
  48. Vector3& operator+=(const Vector3& p_v)
  49. {
  50. x += p_v.x;
  51. y += p_v.y;
  52. z += p_v.z;
  53. return *this;
  54. }
  55. Vector3 operator+(const Vector3& p_v) const
  56. {
  57. Vector3 v = *this;
  58. v += p_v;
  59. return v;
  60. }
  61. Vector3& operator-=(const Vector3& p_v)
  62. {
  63. x -= p_v.x;
  64. y -= p_v.y;
  65. z -= p_v.z;
  66. return *this;
  67. }
  68. Vector3 operator-(const Vector3& p_v) const
  69. {
  70. Vector3 v = *this;
  71. v -= p_v;
  72. return v;
  73. }
  74. Vector3& operator*=(const Vector3& p_v)
  75. {
  76. x *= p_v.x;
  77. y *= p_v.y;
  78. z *= p_v.z;
  79. return *this;
  80. }
  81. Vector3 operator*(const Vector3& p_v) const
  82. {
  83. Vector3 v = *this;
  84. v *= p_v;
  85. return v;
  86. }
  87. Vector3& operator/=(const Vector3& p_v)
  88. {
  89. x /= p_v.x;
  90. y /= p_v.y;
  91. z /= p_v.z;
  92. return *this;
  93. }
  94. Vector3 operator/(const Vector3& p_v) const
  95. {
  96. Vector3 v = *this;
  97. v /= p_v;
  98. return v;
  99. }
  100. Vector3& operator*=(real_t p_scalar)
  101. {
  102. *this *= Vector3(p_scalar, p_scalar, p_scalar);
  103. return *this;
  104. }
  105. Vector3 operator*(real_t p_scalar) const
  106. {
  107. Vector3 v = *this;
  108. v *= p_scalar;
  109. return v;
  110. }
  111. Vector3& operator/=(real_t p_scalar)
  112. {
  113. *this /= Vector3(p_scalar, p_scalar, p_scalar);
  114. return *this;
  115. }
  116. Vector3 operator/(real_t p_scalar) const
  117. {
  118. Vector3 v = *this;
  119. v /= p_scalar;
  120. return v;
  121. }
  122. Vector3 operator-() const
  123. {
  124. return Vector3(-x, -y, -z);
  125. }
  126. bool operator==(const Vector3& p_v) const
  127. {
  128. return (x==p_v.x && y==p_v.y && z==p_v.z);
  129. }
  130. bool operator!=(const Vector3& p_v) const
  131. {
  132. return (x!=p_v.x || y!=p_v.y || z!=p_v.z);
  133. }
  134. bool operator<(const Vector3& p_v) const
  135. {
  136. if (x==p_v.x) {
  137. if (y==p_v.y)
  138. return z<p_v.z;
  139. else
  140. return y<p_v.y;
  141. } else {
  142. return x<p_v.x;
  143. }
  144. }
  145. bool operator<=(const Vector3& p_v) const
  146. {
  147. if (x==p_v.x) {
  148. if (y==p_v.y)
  149. return z<=p_v.z;
  150. else
  151. return y<p_v.y;
  152. } else {
  153. return x<p_v.x;
  154. }
  155. }
  156. Vector3 abs() const
  157. {
  158. return Vector3(::fabs(x), ::fabs(y), ::fabs(z));
  159. }
  160. Vector3 ceil() const
  161. {
  162. return Vector3(::ceil(x), ::ceil(y), ::ceil(z));
  163. }
  164. Vector3 cross(const Vector3& b) const
  165. {
  166. Vector3 ret (
  167. (y * b.z) - (z * b.y),
  168. (z * b.x) - (x * b.z),
  169. (x * b.y) - (y * b.x)
  170. );
  171. return ret;
  172. }
  173. Vector3 linear_interpolate(const Vector3& p_b,real_t p_t) const
  174. {
  175. return Vector3(
  176. x+(p_t * (p_b.x-x)),
  177. y+(p_t * (p_b.y-y)),
  178. z+(p_t * (p_b.z-z))
  179. );
  180. }
  181. Vector3 cubic_interpolate(const Vector3& b, const Vector3& pre_a, const Vector3& post_b, const real_t t) const
  182. {
  183. Vector3 p0=pre_a;
  184. Vector3 p1=*this;
  185. Vector3 p2=b;
  186. Vector3 p3=post_b;
  187. real_t t2 = t * t;
  188. real_t t3 = t2 * t;
  189. Vector3 out;
  190. out = ( ( p1 * 2.0) +
  191. ( -p0 + p2 ) * t +
  192. ( p0 * 2.0 - p1 * 5.0 + p2 * 4 - p3 ) * t2 +
  193. ( -p0 + p1 * 3.0 - p2 * 3.0 + p3 ) * t3 ) * 0.5;
  194. return out;
  195. }
  196. real_t length() const
  197. {
  198. real_t x2=x*x;
  199. real_t y2=y*y;
  200. real_t z2=z*z;
  201. return ::sqrt(x2+y2+z2);
  202. }
  203. real_t length_squared() const
  204. {
  205. real_t x2=x*x;
  206. real_t y2=y*y;
  207. real_t z2=z*z;
  208. return x2+y2+z2;
  209. }
  210. real_t distance_squared_to(const Vector3& b) const
  211. {
  212. return (b-*this).length();
  213. }
  214. real_t distance_to(const Vector3& b) const
  215. {
  216. return (b-*this).length_squared();
  217. }
  218. real_t dot(const Vector3& b) const
  219. {
  220. return x*b.x + y*b.y + z*b.z;
  221. }
  222. Vector3 floor() const
  223. {
  224. return Vector3(::floor(x), ::floor(y), ::floor(z));
  225. }
  226. Vector3 inverse() const
  227. {
  228. return Vector3( 1.0/x, 1.0/y, 1.0/z );
  229. }
  230. int max_axis() const
  231. {
  232. return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0);
  233. }
  234. int min_axis() const
  235. {
  236. return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2);
  237. }
  238. void normalize()
  239. {
  240. real_t l=length();
  241. if (l==0) {
  242. x=y=z=0;
  243. } else {
  244. x/=l;
  245. y/=l;
  246. z/=l;
  247. }
  248. }
  249. Vector3 normalized() const
  250. {
  251. Vector3 v = *this;
  252. v.normalize();
  253. return v;
  254. }
  255. Vector3 reflect(const Vector3& by) const
  256. {
  257. return by - *this * this->dot(by) * 2.0;
  258. }
  259. Vector3 rotated(const Vector3& axis, const real_t phi) const
  260. {
  261. Vector3 v = *this;
  262. v.rotate(axis, phi);
  263. return v;
  264. }
  265. void rotate(const Vector3& p_axis,real_t p_phi)
  266. {
  267. // this is ugly, but I don't want to deal with C++ header inclusion order issues
  268. // this is what is happening here
  269. // *this=Basis(p_axis,p_phi).xform(*this);
  270. Vector3 elements[3];
  271. Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z);
  272. real_t cosine= ::cos(p_phi);
  273. real_t sine= ::sin(p_phi);
  274. elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x );
  275. elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine;
  276. elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine;
  277. elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine;
  278. elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y );
  279. elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine;
  280. elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine;
  281. elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine;
  282. elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z );
  283. *this = Vector3(
  284. elements[0].dot(*this),
  285. elements[1].dot(*this),
  286. elements[2].dot(*this)
  287. );
  288. }
  289. Vector3 slide(const Vector3& by) const
  290. {
  291. return by - *this * this->dot(by);
  292. }
  293. // this is ugly as well, but hey, I'm a simple man
  294. #define _ugly_stepify(val, step) (step != 0 ? ::floor(val / step + 0.5) * step : val)
  295. void snap(real_t p_val)
  296. {
  297. x = _ugly_stepify(x,p_val);
  298. y = _ugly_stepify(y,p_val);
  299. z = _ugly_stepify(z,p_val);
  300. }
  301. #undef _ugly_stepify
  302. Vector3 snapped(const float by)
  303. {
  304. Vector3 v = *this;
  305. v.snap(by);
  306. return v;
  307. }
  308. operator String() const
  309. {
  310. return String(); // @Todo
  311. }
  312. };
  313. Vector3 operator*(real_t p_scalar, const Vector3& p_vec)
  314. {
  315. return p_vec * p_scalar;
  316. }
  317. Vector3 vec3_cross(const Vector3& p_a, const Vector3& p_b) {
  318. return p_a.cross(p_b);
  319. }
  320. }
  321. #endif // VECTOR3_H