123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319 |
- #include "Transform.hpp"
- #include "Basis.hpp"
- #include "Plane.hpp"
- #include "Rect3.hpp"
- #include "Quat.hpp"
- namespace godot {
- Transform Transform::inverse_xform(const Transform& t) const {
- Vector3 v = t.origin - origin;
- return Transform(basis.transpose_xform(t.basis),
- basis.xform(v));
- }
- void Transform::set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz,real_t tx, real_t ty, real_t tz) {
- basis.elements[0][0]=xx;
- basis.elements[0][1]=xy;
- basis.elements[0][2]=xz;
- basis.elements[1][0]=yx;
- basis.elements[1][1]=yy;
- basis.elements[1][2]=yz;
- basis.elements[2][0]=zx;
- basis.elements[2][1]=zy;
- basis.elements[2][2]=zz;
- origin.x=tx;
- origin.y=ty;
- origin.z=tz;
- }
- Vector3 Transform::xform(const Vector3& p_vector) const {
- return Vector3(
- basis[0].dot(p_vector)+origin.x,
- basis[1].dot(p_vector)+origin.y,
- basis[2].dot(p_vector)+origin.z
- );
- }
- Vector3 Transform::xform_inv(const Vector3& p_vector) const {
- Vector3 v = p_vector - origin;
- return Vector3(
- (basis.elements[0][0]*v.x ) + ( basis.elements[1][0]*v.y ) + ( basis.elements[2][0]*v.z ),
- (basis.elements[0][1]*v.x ) + ( basis.elements[1][1]*v.y ) + ( basis.elements[2][1]*v.z ),
- (basis.elements[0][2]*v.x ) + ( basis.elements[1][2]*v.y ) + ( basis.elements[2][2]*v.z )
- );
- }
- Plane Transform::xform(const Plane& p_plane) const {
- Vector3 point=p_plane.normal*p_plane.d;
- Vector3 point_dir=point+p_plane.normal;
- point=xform(point);
- point_dir=xform(point_dir);
- Vector3 normal=point_dir-point;
- normal.normalize();
- real_t d=normal.dot(point);
- return Plane(normal,d);
- }
- Plane Transform::xform_inv(const Plane& p_plane) const {
- Vector3 point=p_plane.normal*p_plane.d;
- Vector3 point_dir=point+p_plane.normal;
- xform_inv(point);
- xform_inv(point_dir);
- Vector3 normal=point_dir-point;
- normal.normalize();
- real_t d=normal.dot(point);
- return Plane(normal,d);
- }
- Rect3 Transform::xform(const Rect3& p_aabb) const {
- /* define vertices */
- Vector3 x=basis.get_axis(0)*p_aabb.size.x;
- Vector3 y=basis.get_axis(1)*p_aabb.size.y;
- Vector3 z=basis.get_axis(2)*p_aabb.size.z;
- Vector3 pos = xform( p_aabb.pos );
- //could be even further optimized
- Rect3 new_aabb;
- new_aabb.pos=pos;
- new_aabb.expand_to( pos+x );
- new_aabb.expand_to( pos+y );
- new_aabb.expand_to( pos+z );
- new_aabb.expand_to( pos+x+y );
- new_aabb.expand_to( pos+x+z );
- new_aabb.expand_to( pos+y+z );
- new_aabb.expand_to( pos+x+y+z );
- return new_aabb;
- }
- Rect3 Transform::xform_inv(const Rect3& p_aabb) const {
- /* define vertices */
- Vector3 vertices[8]={
- Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z+p_aabb.size.z),
- Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z),
- Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y, p_aabb.pos.z+p_aabb.size.z),
- Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y, p_aabb.pos.z),
- Vector3(p_aabb.pos.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z+p_aabb.size.z),
- Vector3(p_aabb.pos.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z),
- Vector3(p_aabb.pos.x, p_aabb.pos.y, p_aabb.pos.z+p_aabb.size.z),
- Vector3(p_aabb.pos.x, p_aabb.pos.y, p_aabb.pos.z)
- };
- Rect3 ret;
- ret.pos=xform_inv(vertices[0]);
- for (int i=1;i<8;i++) {
- ret.expand_to( xform_inv(vertices[i]) );
- }
- return ret;
- }
- void Transform::affine_invert() {
- basis.invert();
- origin = basis.xform(-origin);
- }
- Transform Transform::affine_inverse() const {
- Transform ret=*this;
- ret.affine_invert();
- return ret;
- }
- void Transform::invert() {
- basis.transpose();
- origin = basis.xform(-origin);
- }
- Transform Transform::inverse() const {
- // FIXME: this function assumes the basis is a rotation matrix, with no scaling.
- // Transform::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
- Transform ret=*this;
- ret.invert();
- return ret;
- }
- void Transform::rotate(const Vector3& p_axis,real_t p_phi) {
- *this = rotated(p_axis, p_phi);
- }
- Transform Transform::rotated(const Vector3& p_axis,real_t p_phi) const{
- return Transform(Basis( p_axis, p_phi ), Vector3()) * (*this);
- }
- void Transform::rotate_basis(const Vector3& p_axis,real_t p_phi) {
- basis.rotate(p_axis,p_phi);
- }
- Transform Transform::looking_at( const Vector3& p_target, const Vector3& p_up ) const {
- Transform t = *this;
- t.set_look_at(origin,p_target,p_up);
- return t;
- }
- void Transform::set_look_at( const Vector3& p_eye, const Vector3& p_target, const Vector3& p_up ) {
- // Reference: MESA source code
- Vector3 v_x, v_y, v_z;
- /* Make rotation matrix */
- /* Z vector */
- v_z = p_eye - p_target;
- v_z.normalize();
- v_y = p_up;
- v_x=v_y.cross(v_z);
- /* Recompute Y = Z cross X */
- v_y=v_z.cross(v_x);
- v_x.normalize();
- v_y.normalize();
- basis.set_axis(0,v_x);
- basis.set_axis(1,v_y);
- basis.set_axis(2,v_z);
- origin=p_eye;
- }
- Transform Transform::interpolate_with(const Transform& p_transform, real_t p_c) const {
- /* not sure if very "efficient" but good enough? */
- Vector3 src_scale = basis.get_scale();
- Quat src_rot = basis;
- Vector3 src_loc = origin;
- Vector3 dst_scale = p_transform.basis.get_scale();
- Quat dst_rot = p_transform.basis;
- Vector3 dst_loc = p_transform.origin;
- Transform dst;
- dst.basis=src_rot.slerp(dst_rot,p_c);
- dst.basis.scale(src_scale.linear_interpolate(dst_scale,p_c));
- dst.origin=src_loc.linear_interpolate(dst_loc,p_c);
- return dst;
- }
- void Transform::scale(const Vector3& p_scale) {
- basis.scale(p_scale);
- origin*=p_scale;
- }
- Transform Transform::scaled(const Vector3& p_scale) const {
- Transform t = *this;
- t.scale(p_scale);
- return t;
- }
- void Transform::scale_basis(const Vector3& p_scale) {
- basis.scale(p_scale);
- }
- void Transform::translate( real_t p_tx, real_t p_ty, real_t p_tz) {
- translate( Vector3(p_tx,p_ty,p_tz) );
- }
- void Transform::translate( const Vector3& p_translation ) {
- for( int i = 0; i < 3; i++ ) {
- origin[i] += basis[i].dot(p_translation);
- }
- }
- Transform Transform::translated( const Vector3& p_translation ) const {
- Transform t=*this;
- t.translate(p_translation);
- return t;
- }
- void Transform::orthonormalize() {
- basis.orthonormalize();
- }
- Transform Transform::orthonormalized() const {
- Transform _copy = *this;
- _copy.orthonormalize();
- return _copy;
- }
- bool Transform::operator==(const Transform& p_transform) const {
- return (basis==p_transform.basis && origin==p_transform.origin);
- }
- bool Transform::operator!=(const Transform& p_transform) const {
- return (basis!=p_transform.basis || origin!=p_transform.origin);
- }
- void Transform::operator*=(const Transform& p_transform) {
- origin=xform(p_transform.origin);
- basis*=p_transform.basis;
- }
- Transform Transform::operator*(const Transform& p_transform) const {
- Transform t=*this;
- t*=p_transform;
- return t;
- }
- Transform::operator String() const {
- return basis.operator String() + " - " + origin.operator String();
- }
- Transform::Transform(const Basis& p_basis, const Vector3& p_origin) {
- basis=p_basis;
- origin=p_origin;
- }
- }
|