Transform2D.cpp 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. #include "Transform2D.hpp"
  2. #include "Vector2.hpp"
  3. #include "String.hpp"
  4. #include "Rect2.hpp"
  5. #include <algorithm>
  6. namespace godot {
  7. Transform2D::Transform2D(real_t xx, real_t xy, real_t yx, real_t yy, real_t ox, real_t oy) {
  8. elements[0][0] = xx;
  9. elements[0][1] = xy;
  10. elements[1][0] = yx;
  11. elements[1][1] = yy;
  12. elements[2][0] = ox;
  13. elements[2][1] = oy;
  14. }
  15. Vector2 Transform2D::basis_xform(const Vector2& v) const {
  16. return Vector2(
  17. tdotx(v),
  18. tdoty(v)
  19. );
  20. }
  21. Vector2 Transform2D::basis_xform_inv(const Vector2& v) const{
  22. return Vector2(
  23. elements[0].dot(v),
  24. elements[1].dot(v)
  25. );
  26. }
  27. Vector2 Transform2D::xform(const Vector2& v) const {
  28. return Vector2(
  29. tdotx(v),
  30. tdoty(v)
  31. ) + elements[2];
  32. }
  33. Vector2 Transform2D::xform_inv(const Vector2& p_vec) const {
  34. Vector2 v = p_vec - elements[2];
  35. return Vector2(
  36. elements[0].dot(v),
  37. elements[1].dot(v)
  38. );
  39. }
  40. Rect2 Transform2D::xform(const Rect2& p_rect) const {
  41. Vector2 x=elements[0]*p_rect.size.x;
  42. Vector2 y=elements[1]*p_rect.size.y;
  43. Vector2 pos = xform( p_rect.pos );
  44. Rect2 new_rect;
  45. new_rect.pos=pos;
  46. new_rect.expand_to( pos+x );
  47. new_rect.expand_to( pos+y );
  48. new_rect.expand_to( pos+x+y );
  49. return new_rect;
  50. }
  51. void Transform2D::set_rotation_and_scale(real_t p_rot,const Size2& p_scale) {
  52. elements[0][0]=::cos(p_rot)*p_scale.x;
  53. elements[1][1]=::cos(p_rot)*p_scale.y;
  54. elements[1][0]=-::sin(p_rot)*p_scale.y;
  55. elements[0][1]=::sin(p_rot)*p_scale.x;
  56. }
  57. Rect2 Transform2D::xform_inv(const Rect2& p_rect) const {
  58. Vector2 ends[4]={
  59. xform_inv( p_rect.pos ),
  60. xform_inv( Vector2(p_rect.pos.x,p_rect.pos.y+p_rect.size.y ) ),
  61. xform_inv( Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y+p_rect.size.y ) ),
  62. xform_inv( Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y ) )
  63. };
  64. Rect2 new_rect;
  65. new_rect.pos=ends[0];
  66. new_rect.expand_to(ends[1]);
  67. new_rect.expand_to(ends[2]);
  68. new_rect.expand_to(ends[3]);
  69. return new_rect;
  70. }
  71. void Transform2D::invert() {
  72. // FIXME: this function assumes the basis is a rotation matrix, with no scaling.
  73. // Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
  74. std::swap(elements[0][1],elements[1][0]);
  75. elements[2] = basis_xform(-elements[2]);
  76. }
  77. Transform2D Transform2D::inverse() const {
  78. Transform2D inv=*this;
  79. inv.invert();
  80. return inv;
  81. }
  82. void Transform2D::affine_invert() {
  83. real_t det = basis_determinant();
  84. ERR_FAIL_COND(det==0);
  85. real_t idet = 1.0 / det;
  86. std::swap( elements[0][0],elements[1][1] );
  87. elements[0]*=Vector2(idet,-idet);
  88. elements[1]*=Vector2(-idet,idet);
  89. elements[2] = basis_xform(-elements[2]);
  90. }
  91. Transform2D Transform2D::affine_inverse() const {
  92. Transform2D inv=*this;
  93. inv.affine_invert();
  94. return inv;
  95. }
  96. void Transform2D::rotate(real_t p_phi) {
  97. *this = Transform2D(p_phi,Vector2()) * (*this);
  98. }
  99. real_t Transform2D::get_rotation() const {
  100. real_t det = basis_determinant();
  101. Transform2D m = orthonormalized();
  102. if (det < 0) {
  103. m.scale_basis(Size2(-1,-1));
  104. }
  105. return ::atan2(m[0].y,m[0].x);
  106. }
  107. void Transform2D::set_rotation(real_t p_rot) {
  108. real_t cr = ::cos(p_rot);
  109. real_t sr = ::sin(p_rot);
  110. elements[0][0]=cr;
  111. elements[0][1]=sr;
  112. elements[1][0]=-sr;
  113. elements[1][1]=cr;
  114. }
  115. Transform2D::Transform2D(real_t p_rot, const Vector2& p_pos) {
  116. real_t cr = ::cos(p_rot);
  117. real_t sr = ::sin(p_rot);
  118. elements[0][0]=cr;
  119. elements[0][1]=sr;
  120. elements[1][0]=-sr;
  121. elements[1][1]=cr;
  122. elements[2]=p_pos;
  123. }
  124. Size2 Transform2D::get_scale() const {
  125. real_t det_sign = basis_determinant() > 0 ? 1 : -1;
  126. return det_sign * Size2( elements[0].length(), elements[1].length() );
  127. }
  128. void Transform2D::scale(const Size2& p_scale) {
  129. scale_basis(p_scale);
  130. elements[2]*=p_scale;
  131. }
  132. void Transform2D::scale_basis(const Size2& p_scale) {
  133. elements[0][0]*=p_scale.x;
  134. elements[0][1]*=p_scale.y;
  135. elements[1][0]*=p_scale.x;
  136. elements[1][1]*=p_scale.y;
  137. }
  138. void Transform2D::translate( real_t p_tx, real_t p_ty) {
  139. translate(Vector2(p_tx,p_ty));
  140. }
  141. void Transform2D::translate( const Vector2& p_translation ) {
  142. elements[2]+=basis_xform(p_translation);
  143. }
  144. void Transform2D::orthonormalize() {
  145. // Gram-Schmidt Process
  146. Vector2 x=elements[0];
  147. Vector2 y=elements[1];
  148. x.normalize();
  149. y = (y-x*(x.dot(y)));
  150. y.normalize();
  151. elements[0]=x;
  152. elements[1]=y;
  153. }
  154. Transform2D Transform2D::orthonormalized() const {
  155. Transform2D on=*this;
  156. on.orthonormalize();
  157. return on;
  158. }
  159. bool Transform2D::operator==(const Transform2D& p_transform) const {
  160. for(int i=0;i<3;i++) {
  161. if (elements[i]!=p_transform.elements[i])
  162. return false;
  163. }
  164. return true;
  165. }
  166. bool Transform2D::operator!=(const Transform2D& p_transform) const {
  167. for(int i=0;i<3;i++) {
  168. if (elements[i]!=p_transform.elements[i])
  169. return true;
  170. }
  171. return false;
  172. }
  173. void Transform2D::operator*=(const Transform2D& p_transform) {
  174. elements[2] = xform(p_transform.elements[2]);
  175. real_t x0,x1,y0,y1;
  176. x0 = tdotx(p_transform.elements[0]);
  177. x1 = tdoty(p_transform.elements[0]);
  178. y0 = tdotx(p_transform.elements[1]);
  179. y1 = tdoty(p_transform.elements[1]);
  180. elements[0][0]=x0;
  181. elements[0][1]=x1;
  182. elements[1][0]=y0;
  183. elements[1][1]=y1;
  184. }
  185. Transform2D Transform2D::operator*(const Transform2D& p_transform) const {
  186. Transform2D t = *this;
  187. t*=p_transform;
  188. return t;
  189. }
  190. Transform2D Transform2D::scaled(const Size2& p_scale) const {
  191. Transform2D copy=*this;
  192. copy.scale(p_scale);
  193. return copy;
  194. }
  195. Transform2D Transform2D::basis_scaled(const Size2& p_scale) const {
  196. Transform2D copy=*this;
  197. copy.scale_basis(p_scale);
  198. return copy;
  199. }
  200. Transform2D Transform2D::untranslated() const {
  201. Transform2D copy=*this;
  202. copy.elements[2]=Vector2();
  203. return copy;
  204. }
  205. Transform2D Transform2D::translated(const Vector2& p_offset) const {
  206. Transform2D copy=*this;
  207. copy.translate(p_offset);
  208. return copy;
  209. }
  210. Transform2D Transform2D::rotated(real_t p_phi) const {
  211. Transform2D copy=*this;
  212. copy.rotate(p_phi);
  213. return copy;
  214. }
  215. real_t Transform2D::basis_determinant() const {
  216. return elements[0].x * elements[1].y - elements[0].y * elements[1].x;
  217. }
  218. Transform2D Transform2D::interpolate_with(const Transform2D& p_transform, real_t p_c) const {
  219. //extract parameters
  220. Vector2 p1 = get_origin();
  221. Vector2 p2 = p_transform.get_origin();
  222. real_t r1 = get_rotation();
  223. real_t r2 = p_transform.get_rotation();
  224. Size2 s1 = get_scale();
  225. Size2 s2 = p_transform.get_scale();
  226. //slerp rotation
  227. Vector2 v1(::cos(r1), ::sin(r1));
  228. Vector2 v2(::cos(r2), ::sin(r2));
  229. real_t dot = v1.dot(v2);
  230. dot = (dot < -1.0) ? -1.0 : ((dot > 1.0) ? 1.0 : dot); //clamp dot to [-1,1]
  231. Vector2 v;
  232. if (dot > 0.9995) {
  233. v = Vector2::linear_interpolate(v1, v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
  234. } else {
  235. real_t angle = p_c*::acos(dot);
  236. Vector2 v3 = (v2 - v1*dot).normalized();
  237. v = v1*::cos(angle) + v3*::sin(angle);
  238. }
  239. //construct matrix
  240. Transform2D res(::atan2(v.y, v.x), Vector2::linear_interpolate(p1, p2, p_c));
  241. res.scale_basis(Vector2::linear_interpolate(s1, s2, p_c));
  242. return res;
  243. }
  244. Transform2D::operator String() const {
  245. //return String(String()+elements[0]+", "+elements[1]+", "+elements[2]);
  246. return String(); // @Todo
  247. }
  248. }