123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350 |
- #include "Transform2D.hpp"
- #include "Vector2.hpp"
- #include "String.hpp"
- #include "Rect2.hpp"
- #include <algorithm>
- namespace godot {
- Transform2D::Transform2D(real_t xx, real_t xy, real_t yx, real_t yy, real_t ox, real_t oy) {
- elements[0][0] = xx;
- elements[0][1] = xy;
- elements[1][0] = yx;
- elements[1][1] = yy;
- elements[2][0] = ox;
- elements[2][1] = oy;
- }
- Vector2 Transform2D::basis_xform(const Vector2& v) const {
- return Vector2(
- tdotx(v),
- tdoty(v)
- );
- }
- Vector2 Transform2D::basis_xform_inv(const Vector2& v) const{
- return Vector2(
- elements[0].dot(v),
- elements[1].dot(v)
- );
- }
- Vector2 Transform2D::xform(const Vector2& v) const {
- return Vector2(
- tdotx(v),
- tdoty(v)
- ) + elements[2];
- }
- Vector2 Transform2D::xform_inv(const Vector2& p_vec) const {
- Vector2 v = p_vec - elements[2];
- return Vector2(
- elements[0].dot(v),
- elements[1].dot(v)
- );
- }
- Rect2 Transform2D::xform(const Rect2& p_rect) const {
- Vector2 x=elements[0]*p_rect.size.x;
- Vector2 y=elements[1]*p_rect.size.y;
- Vector2 pos = xform( p_rect.pos );
- Rect2 new_rect;
- new_rect.pos=pos;
- new_rect.expand_to( pos+x );
- new_rect.expand_to( pos+y );
- new_rect.expand_to( pos+x+y );
- return new_rect;
- }
- void Transform2D::set_rotation_and_scale(real_t p_rot,const Size2& p_scale) {
- elements[0][0]=::cos(p_rot)*p_scale.x;
- elements[1][1]=::cos(p_rot)*p_scale.y;
- elements[1][0]=-::sin(p_rot)*p_scale.y;
- elements[0][1]=::sin(p_rot)*p_scale.x;
- }
- Rect2 Transform2D::xform_inv(const Rect2& p_rect) const {
- Vector2 ends[4]={
- xform_inv( p_rect.pos ),
- xform_inv( Vector2(p_rect.pos.x,p_rect.pos.y+p_rect.size.y ) ),
- xform_inv( Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y+p_rect.size.y ) ),
- xform_inv( Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y ) )
- };
- Rect2 new_rect;
- new_rect.pos=ends[0];
- new_rect.expand_to(ends[1]);
- new_rect.expand_to(ends[2]);
- new_rect.expand_to(ends[3]);
- return new_rect;
- }
- void Transform2D::invert() {
- // FIXME: this function assumes the basis is a rotation matrix, with no scaling.
- // Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
- std::swap(elements[0][1],elements[1][0]);
- elements[2] = basis_xform(-elements[2]);
- }
- Transform2D Transform2D::inverse() const {
- Transform2D inv=*this;
- inv.invert();
- return inv;
- }
- void Transform2D::affine_invert() {
- real_t det = basis_determinant();
- ERR_FAIL_COND(det==0);
- real_t idet = 1.0 / det;
- std::swap( elements[0][0],elements[1][1] );
- elements[0]*=Vector2(idet,-idet);
- elements[1]*=Vector2(-idet,idet);
- elements[2] = basis_xform(-elements[2]);
- }
- Transform2D Transform2D::affine_inverse() const {
- Transform2D inv=*this;
- inv.affine_invert();
- return inv;
- }
- void Transform2D::rotate(real_t p_phi) {
- *this = Transform2D(p_phi,Vector2()) * (*this);
- }
- real_t Transform2D::get_rotation() const {
- real_t det = basis_determinant();
- Transform2D m = orthonormalized();
- if (det < 0) {
- m.scale_basis(Size2(-1,-1));
- }
- return ::atan2(m[0].y,m[0].x);
- }
- void Transform2D::set_rotation(real_t p_rot) {
- real_t cr = ::cos(p_rot);
- real_t sr = ::sin(p_rot);
- elements[0][0]=cr;
- elements[0][1]=sr;
- elements[1][0]=-sr;
- elements[1][1]=cr;
- }
- Transform2D::Transform2D(real_t p_rot, const Vector2& p_pos) {
- real_t cr = ::cos(p_rot);
- real_t sr = ::sin(p_rot);
- elements[0][0]=cr;
- elements[0][1]=sr;
- elements[1][0]=-sr;
- elements[1][1]=cr;
- elements[2]=p_pos;
- }
- Size2 Transform2D::get_scale() const {
- real_t det_sign = basis_determinant() > 0 ? 1 : -1;
- return det_sign * Size2( elements[0].length(), elements[1].length() );
- }
- void Transform2D::scale(const Size2& p_scale) {
- scale_basis(p_scale);
- elements[2]*=p_scale;
- }
- void Transform2D::scale_basis(const Size2& p_scale) {
- elements[0][0]*=p_scale.x;
- elements[0][1]*=p_scale.y;
- elements[1][0]*=p_scale.x;
- elements[1][1]*=p_scale.y;
- }
- void Transform2D::translate( real_t p_tx, real_t p_ty) {
- translate(Vector2(p_tx,p_ty));
- }
- void Transform2D::translate( const Vector2& p_translation ) {
- elements[2]+=basis_xform(p_translation);
- }
- void Transform2D::orthonormalize() {
- // Gram-Schmidt Process
- Vector2 x=elements[0];
- Vector2 y=elements[1];
- x.normalize();
- y = (y-x*(x.dot(y)));
- y.normalize();
- elements[0]=x;
- elements[1]=y;
- }
- Transform2D Transform2D::orthonormalized() const {
- Transform2D on=*this;
- on.orthonormalize();
- return on;
- }
- bool Transform2D::operator==(const Transform2D& p_transform) const {
- for(int i=0;i<3;i++) {
- if (elements[i]!=p_transform.elements[i])
- return false;
- }
- return true;
- }
- bool Transform2D::operator!=(const Transform2D& p_transform) const {
- for(int i=0;i<3;i++) {
- if (elements[i]!=p_transform.elements[i])
- return true;
- }
- return false;
- }
- void Transform2D::operator*=(const Transform2D& p_transform) {
- elements[2] = xform(p_transform.elements[2]);
- real_t x0,x1,y0,y1;
- x0 = tdotx(p_transform.elements[0]);
- x1 = tdoty(p_transform.elements[0]);
- y0 = tdotx(p_transform.elements[1]);
- y1 = tdoty(p_transform.elements[1]);
- elements[0][0]=x0;
- elements[0][1]=x1;
- elements[1][0]=y0;
- elements[1][1]=y1;
- }
- Transform2D Transform2D::operator*(const Transform2D& p_transform) const {
- Transform2D t = *this;
- t*=p_transform;
- return t;
- }
- Transform2D Transform2D::scaled(const Size2& p_scale) const {
- Transform2D copy=*this;
- copy.scale(p_scale);
- return copy;
- }
- Transform2D Transform2D::basis_scaled(const Size2& p_scale) const {
- Transform2D copy=*this;
- copy.scale_basis(p_scale);
- return copy;
- }
- Transform2D Transform2D::untranslated() const {
- Transform2D copy=*this;
- copy.elements[2]=Vector2();
- return copy;
- }
- Transform2D Transform2D::translated(const Vector2& p_offset) const {
- Transform2D copy=*this;
- copy.translate(p_offset);
- return copy;
- }
- Transform2D Transform2D::rotated(real_t p_phi) const {
- Transform2D copy=*this;
- copy.rotate(p_phi);
- return copy;
- }
- real_t Transform2D::basis_determinant() const {
- return elements[0].x * elements[1].y - elements[0].y * elements[1].x;
- }
- Transform2D Transform2D::interpolate_with(const Transform2D& p_transform, real_t p_c) const {
- //extract parameters
- Vector2 p1 = get_origin();
- Vector2 p2 = p_transform.get_origin();
- real_t r1 = get_rotation();
- real_t r2 = p_transform.get_rotation();
- Size2 s1 = get_scale();
- Size2 s2 = p_transform.get_scale();
- //slerp rotation
- Vector2 v1(::cos(r1), ::sin(r1));
- Vector2 v2(::cos(r2), ::sin(r2));
- real_t dot = v1.dot(v2);
- dot = (dot < -1.0) ? -1.0 : ((dot > 1.0) ? 1.0 : dot); //clamp dot to [-1,1]
- Vector2 v;
- if (dot > 0.9995) {
- v = Vector2::linear_interpolate(v1, v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
- } else {
- real_t angle = p_c*::acos(dot);
- Vector2 v3 = (v2 - v1*dot).normalized();
- v = v1*::cos(angle) + v3*::sin(angle);
- }
- //construct matrix
- Transform2D res(::atan2(v.y, v.x), Vector2::linear_interpolate(p1, p2, p_c));
- res.scale_basis(Vector2::linear_interpolate(s1, s2, p_c));
- return res;
- }
- Transform2D::operator String() const {
- //return String(String()+elements[0]+", "+elements[1]+", "+elements[2]);
- return String(); // @Todo
- }
- }
|