123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 |
- #include "Quat.hpp"
- #include "Basis.hpp"
- #include "Defs.hpp"
- #include "Vector3.hpp"
- #include <cmath>
- namespace godot {
- // set_euler_xyz expects a vector containing the Euler angles in the format
- // (ax,ay,az), where ax is the angle of rotation around x axis,
- // and similar for other axes.
- // This implementation uses XYZ convention (Z is the first rotation).
- void Quat::set_euler_xyz(const Vector3 &p_euler) {
- real_t half_a1 = p_euler.x * 0.5;
- real_t half_a2 = p_euler.y * 0.5;
- real_t half_a3 = p_euler.z * 0.5;
- // R = X(a1).Y(a2).Z(a3) convention for Euler angles.
- // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2)
- // a3 is the angle of the first rotation, following the notation in this reference.
- real_t cos_a1 = ::cos(half_a1);
- real_t sin_a1 = ::sin(half_a1);
- real_t cos_a2 = ::cos(half_a2);
- real_t sin_a2 = ::sin(half_a2);
- real_t cos_a3 = ::cos(half_a3);
- real_t sin_a3 = ::sin(half_a3);
- set(sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1,
- -sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3,
- sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2,
- -sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
- }
- // get_euler_xyz returns a vector containing the Euler angles in the format
- // (ax,ay,az), where ax is the angle of rotation around x axis,
- // and similar for other axes.
- // This implementation uses XYZ convention (Z is the first rotation).
- Vector3 Quat::get_euler_xyz() const {
- Basis m(*this);
- return m.get_euler_xyz();
- }
- // set_euler_yxz expects a vector containing the Euler angles in the format
- // (ax,ay,az), where ax is the angle of rotation around x axis,
- // and similar for other axes.
- // This implementation uses YXZ convention (Z is the first rotation).
- void Quat::set_euler_yxz(const Vector3 &p_euler) {
- real_t half_a1 = p_euler.y * 0.5;
- real_t half_a2 = p_euler.x * 0.5;
- real_t half_a3 = p_euler.z * 0.5;
- // R = Y(a1).X(a2).Z(a3) convention for Euler angles.
- // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
- // a3 is the angle of the first rotation, following the notation in this reference.
- real_t cos_a1 = ::cos(half_a1);
- real_t sin_a1 = ::sin(half_a1);
- real_t cos_a2 = ::cos(half_a2);
- real_t sin_a2 = ::sin(half_a2);
- real_t cos_a3 = ::cos(half_a3);
- real_t sin_a3 = ::sin(half_a3);
- set(sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3,
- sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3,
- -sin_a1 * sin_a2 * cos_a3 + cos_a1 * sin_a2 * sin_a3,
- sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
- }
- // get_euler_yxz returns a vector containing the Euler angles in the format
- // (ax,ay,az), where ax is the angle of rotation around x axis,
- // and similar for other axes.
- // This implementation uses YXZ convention (Z is the first rotation).
- Vector3 Quat::get_euler_yxz() const {
- Basis m(*this);
- return m.get_euler_yxz();
- }
- real_t Quat::length() const {
- return ::sqrt(length_squared());
- }
- void Quat::normalize() {
- *this /= length();
- }
- Quat Quat::normalized() const {
- return *this / length();
- }
- bool Quat::is_normalized() const {
- return std::abs(length_squared() - 1.0) < 0.00001;
- }
- Quat Quat::inverse() const {
- return Quat(-x, -y, -z, w);
- }
- Quat Quat::slerp(const Quat &q, const real_t &t) const {
- Quat to1;
- real_t omega, cosom, sinom, scale0, scale1;
- // calc cosine
- cosom = dot(q);
- // adjust signs (if necessary)
- if (cosom < 0.0) {
- cosom = -cosom;
- to1.x = -q.x;
- to1.y = -q.y;
- to1.z = -q.z;
- to1.w = -q.w;
- } else {
- to1.x = q.x;
- to1.y = q.y;
- to1.z = q.z;
- to1.w = q.w;
- }
- // calculate coefficients
- if ((1.0 - cosom) > CMP_EPSILON) {
- // standard case (slerp)
- omega = ::acos(cosom);
- sinom = ::sin(omega);
- scale0 = ::sin((1.0 - t) * omega) / sinom;
- scale1 = ::sin(t * omega) / sinom;
- } else {
- // "from" and "to" quaternions are very close
- // ... so we can do a linear interpolation
- scale0 = 1.0 - t;
- scale1 = t;
- }
- // calculate final values
- return Quat(
- scale0 * x + scale1 * to1.x,
- scale0 * y + scale1 * to1.y,
- scale0 * z + scale1 * to1.z,
- scale0 * w + scale1 * to1.w);
- }
- Quat Quat::slerpni(const Quat &q, const real_t &t) const {
- const Quat &from = *this;
- real_t dot = from.dot(q);
- if (::fabs(dot) > 0.9999) return from;
- real_t theta = ::acos(dot),
- sinT = 1.0 / ::sin(theta),
- newFactor = ::sin(t * theta) * sinT,
- invFactor = ::sin((1.0 - t) * theta) * sinT;
- return Quat(invFactor * from.x + newFactor * q.x,
- invFactor * from.y + newFactor * q.y,
- invFactor * from.z + newFactor * q.z,
- invFactor * from.w + newFactor * q.w);
- }
- Quat Quat::cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const {
- //the only way to do slerp :|
- real_t t2 = (1.0 - t) * t * 2;
- Quat sp = this->slerp(q, t);
- Quat sq = prep.slerpni(postq, t);
- return sp.slerpni(sq, t2);
- }
- void Quat::get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const {
- r_angle = 2 * ::acos(w);
- r_axis.x = x / ::sqrt(1 - w * w);
- r_axis.y = y / ::sqrt(1 - w * w);
- r_axis.z = z / ::sqrt(1 - w * w);
- }
- void Quat::set_axis_angle(const Vector3 &axis, const float angle) {
- ERR_FAIL_COND(!axis.is_normalized());
- real_t d = axis.length();
- if (d == 0)
- set(0, 0, 0, 0);
- else {
- real_t sin_angle = ::sin(angle * 0.5);
- real_t cos_angle = ::cos(angle * 0.5);
- real_t s = sin_angle / d;
- set(axis.x * s, axis.y * s, axis.z * s,
- cos_angle);
- }
- }
- Quat Quat::operator*(const Vector3 &v) const {
- return Quat(w * v.x + y * v.z - z * v.y,
- w * v.y + z * v.x - x * v.z,
- w * v.z + x * v.y - y * v.x,
- -x * v.x - y * v.y - z * v.z);
- }
- Vector3 Quat::xform(const Vector3 &v) const {
- Quat q = *this * v;
- q *= this->inverse();
- return Vector3(q.x, q.y, q.z);
- }
- Quat::operator String() const {
- return String(); // @Todo
- }
- Quat::Quat(const Vector3 &axis, const real_t &angle) {
- real_t d = axis.length();
- if (d == 0)
- set(0, 0, 0, 0);
- else {
- real_t sin_angle = ::sin(angle * 0.5);
- real_t cos_angle = ::cos(angle * 0.5);
- real_t s = sin_angle / d;
- set(axis.x * s, axis.y * s, axis.z * s,
- cos_angle);
- }
- }
- Quat::Quat(const Vector3 &v0, const Vector3 &v1) // shortest arc
- {
- Vector3 c = v0.cross(v1);
- real_t d = v0.dot(v1);
- if (d < -1.0 + CMP_EPSILON) {
- x = 0;
- y = 1;
- z = 0;
- w = 0;
- } else {
- real_t s = ::sqrt((1.0 + d) * 2.0);
- real_t rs = 1.0 / s;
- x = c.x * rs;
- y = c.y * rs;
- z = c.z * rs;
- w = s * 0.5;
- }
- }
- real_t Quat::dot(const Quat &q) const {
- return x * q.x + y * q.y + z * q.z + w * q.w;
- }
- real_t Quat::length_squared() const {
- return dot(*this);
- }
- void Quat::operator+=(const Quat &q) {
- x += q.x;
- y += q.y;
- z += q.z;
- w += q.w;
- }
- void Quat::operator-=(const Quat &q) {
- x -= q.x;
- y -= q.y;
- z -= q.z;
- w -= q.w;
- }
- void Quat::operator*=(const Quat &q) {
- set(w * q.x + x * q.w + y * q.z - z * q.y,
- w * q.y + y * q.w + z * q.x - x * q.z,
- w * q.z + z * q.w + x * q.y - y * q.x,
- w * q.w - x * q.x - y * q.y - z * q.z);
- }
- void Quat::operator*=(const real_t &s) {
- x *= s;
- y *= s;
- z *= s;
- w *= s;
- }
- void Quat::operator/=(const real_t &s) {
- *this *= 1.0 / s;
- }
- Quat Quat::operator+(const Quat &q2) const {
- const Quat &q1 = *this;
- return Quat(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w);
- }
- Quat Quat::operator-(const Quat &q2) const {
- const Quat &q1 = *this;
- return Quat(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w);
- }
- Quat Quat::operator*(const Quat &q2) const {
- Quat q1 = *this;
- q1 *= q2;
- return q1;
- }
- Quat Quat::operator-() const {
- const Quat &q2 = *this;
- return Quat(-q2.x, -q2.y, -q2.z, -q2.w);
- }
- Quat Quat::operator*(const real_t &s) const {
- return Quat(x * s, y * s, z * s, w * s);
- }
- Quat Quat::operator/(const real_t &s) const {
- return *this * (1.0 / s);
- }
- bool Quat::operator==(const Quat &p_quat) const {
- return x == p_quat.x && y == p_quat.y && z == p_quat.z && w == p_quat.w;
- }
- bool Quat::operator!=(const Quat &p_quat) const {
- return x != p_quat.x || y != p_quat.y || z != p_quat.z || w != p_quat.w;
- }
- } // namespace godot
|