123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697 |
- /*************************************************************************/
- /* math.hpp */
- /*************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /*************************************************************************/
- /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
- /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #ifndef GODOT_MATH_HPP
- #define GODOT_MATH_HPP
- #include <godot_cpp/core/defs.hpp>
- #include <godot/gdnative_interface.h>
- #include <cmath>
- namespace godot {
- namespace Math {
- // This epsilon should match the one used by Godot for consistency.
- // Using `f` when `real_t` is float.
- #define CMP_EPSILON 0.00001f
- #define CMP_EPSILON2 (CMP_EPSILON * CMP_EPSILON)
- // This epsilon is for values related to a unit size (scalar or vector len).
- #ifdef PRECISE_MATH_CHECKS
- #define UNIT_EPSILON 0.00001
- #else
- // Tolerate some more floating point error normally.
- #define UNIT_EPSILON 0.001
- #endif
- #define Math_SQRT12 0.7071067811865475244008443621048490
- #define Math_SQRT2 1.4142135623730950488016887242
- #define Math_LN2 0.6931471805599453094172321215
- #define Math_PI 3.1415926535897932384626433833
- #define Math_TAU 6.2831853071795864769252867666
- #define Math_E 2.7182818284590452353602874714
- #define Math_INF INFINITY
- #define Math_NAN NAN
- // Windows badly defines a lot of stuff we'll never use. Undefine it.
- #ifdef _WIN32
- #undef MIN // override standard definition
- #undef MAX // override standard definition
- #undef CLAMP // override standard definition
- #endif
- // Generic ABS function, for math uses please use Math::abs.
- #ifndef ABS
- #define ABS(m_v) (((m_v) < 0) ? (-(m_v)) : (m_v))
- #endif
- #ifndef SIGN
- #define SIGN(m_v) (((m_v) == 0) ? (0.0) : (((m_v) < 0) ? (-1.0) : (+1.0)))
- #endif
- #ifndef MIN
- #define MIN(m_a, m_b) (((m_a) < (m_b)) ? (m_a) : (m_b))
- #endif
- #ifndef MAX
- #define MAX(m_a, m_b) (((m_a) > (m_b)) ? (m_a) : (m_b))
- #endif
- #ifndef CLAMP
- #define CLAMP(m_a, m_min, m_max) (((m_a) < (m_min)) ? (m_min) : (((m_a) > (m_max)) ? m_max : m_a))
- #endif
- // Functions reproduced as in Godot's source code `math_funcs.h`.
- // Some are overloads to automatically support changing real_t into either double or float in the way Godot does.
- inline double fmod(double p_x, double p_y) {
- return ::fmod(p_x, p_y);
- }
- inline float fmod(float p_x, float p_y) {
- return ::fmodf(p_x, p_y);
- }
- inline double fposmod(double p_x, double p_y) {
- double value = Math::fmod(p_x, p_y);
- if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
- value += p_y;
- }
- value += 0.0;
- return value;
- }
- inline float fposmod(float p_x, float p_y) {
- float value = Math::fmod(p_x, p_y);
- if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
- value += p_y;
- }
- value += 0.0f;
- return value;
- }
- inline float fposmodp(float p_x, float p_y) {
- float value = Math::fmod(p_x, p_y);
- if (value < 0) {
- value += p_y;
- }
- value += 0.0f;
- return value;
- }
- inline double fposmodp(double p_x, double p_y) {
- double value = Math::fmod(p_x, p_y);
- if (value < 0) {
- value += p_y;
- }
- value += 0.0;
- return value;
- }
- inline int64_t posmod(int64_t p_x, int64_t p_y) {
- int64_t value = p_x % p_y;
- if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
- value += p_y;
- }
- return value;
- }
- inline double floor(double p_x) {
- return ::floor(p_x);
- }
- inline float floor(float p_x) {
- return ::floorf(p_x);
- }
- inline double ceil(double p_x) {
- return ::ceil(p_x);
- }
- inline float ceil(float p_x) {
- return ::ceilf(p_x);
- }
- inline double exp(double p_x) {
- return ::exp(p_x);
- }
- inline float exp(float p_x) {
- return ::expf(p_x);
- }
- inline double sin(double p_x) {
- return ::sin(p_x);
- }
- inline float sin(float p_x) {
- return ::sinf(p_x);
- }
- inline double cos(double p_x) {
- return ::cos(p_x);
- }
- inline float cos(float p_x) {
- return ::cosf(p_x);
- }
- inline double tan(double p_x) {
- return ::tan(p_x);
- }
- inline float tan(float p_x) {
- return ::tanf(p_x);
- }
- inline double sinh(double p_x) {
- return ::sinh(p_x);
- }
- inline float sinh(float p_x) {
- return ::sinhf(p_x);
- }
- inline float sinc(float p_x) {
- return p_x == 0 ? 1 : ::sin(p_x) / p_x;
- }
- inline double sinc(double p_x) {
- return p_x == 0 ? 1 : ::sin(p_x) / p_x;
- }
- inline float sincn(float p_x) {
- return (float)sinc(Math_PI * p_x);
- }
- inline double sincn(double p_x) {
- return sinc(Math_PI * p_x);
- }
- inline double cosh(double p_x) {
- return ::cosh(p_x);
- }
- inline float cosh(float p_x) {
- return ::coshf(p_x);
- }
- inline double tanh(double p_x) {
- return ::tanh(p_x);
- }
- inline float tanh(float p_x) {
- return ::tanhf(p_x);
- }
- inline double asin(double p_x) {
- return ::asin(p_x);
- }
- inline float asin(float p_x) {
- return ::asinf(p_x);
- }
- inline double acos(double p_x) {
- return ::acos(p_x);
- }
- inline float acos(float p_x) {
- return ::acosf(p_x);
- }
- inline double atan(double p_x) {
- return ::atan(p_x);
- }
- inline float atan(float p_x) {
- return ::atanf(p_x);
- }
- inline double atan2(double p_y, double p_x) {
- return ::atan2(p_y, p_x);
- }
- inline float atan2(float p_y, float p_x) {
- return ::atan2f(p_y, p_x);
- }
- inline double sqrt(double p_x) {
- return ::sqrt(p_x);
- }
- inline float sqrt(float p_x) {
- return ::sqrtf(p_x);
- }
- inline double pow(double p_x, double p_y) {
- return ::pow(p_x, p_y);
- }
- inline float pow(float p_x, float p_y) {
- return ::powf(p_x, p_y);
- }
- inline double log(double p_x) {
- return ::log(p_x);
- }
- inline float log(float p_x) {
- return ::logf(p_x);
- }
- inline float lerp(float minv, float maxv, float t) {
- return minv + t * (maxv - minv);
- }
- inline double lerp(double minv, double maxv, double t) {
- return minv + t * (maxv - minv);
- }
- inline double lerp_angle(double p_from, double p_to, double p_weight) {
- double difference = fmod(p_to - p_from, Math_TAU);
- double distance = fmod(2.0 * difference, Math_TAU) - difference;
- return p_from + distance * p_weight;
- }
- inline float lerp_angle(float p_from, float p_to, float p_weight) {
- float difference = fmod(p_to - p_from, (float)Math_TAU);
- float distance = fmod(2.0f * difference, (float)Math_TAU) - difference;
- return p_from + distance * p_weight;
- }
- inline double cubic_interpolate(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
- return 0.5 *
- ((p_from * 2.0) +
- (-p_pre + p_to) * p_weight +
- (2.0 * p_pre - 5.0 * p_from + 4.0 * p_to - p_post) * (p_weight * p_weight) +
- (-p_pre + 3.0 * p_from - 3.0 * p_to + p_post) * (p_weight * p_weight * p_weight));
- }
- inline float cubic_interpolate(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
- return 0.5f *
- ((p_from * 2.0f) +
- (-p_pre + p_to) * p_weight +
- (2.0f * p_pre - 5.0f * p_from + 4.0f * p_to - p_post) * (p_weight * p_weight) +
- (-p_pre + 3.0f * p_from - 3.0f * p_to + p_post) * (p_weight * p_weight * p_weight));
- }
- inline double cubic_interpolate_angle(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
- double from_rot = fmod(p_from, Math_TAU);
- double pre_diff = fmod(p_pre - from_rot, Math_TAU);
- double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff;
- double to_diff = fmod(p_to - from_rot, Math_TAU);
- double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff;
- double post_diff = fmod(p_post - to_rot, Math_TAU);
- double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff;
- return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
- }
- inline float cubic_interpolate_angle(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
- float from_rot = fmod(p_from, (float)Math_TAU);
- float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU);
- float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff;
- float to_diff = fmod(p_to - from_rot, (float)Math_TAU);
- float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff;
- float post_diff = fmod(p_post - to_rot, (float)Math_TAU);
- float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff;
- return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
- }
- inline double cubic_interpolate_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
- double p_to_t, double p_pre_t, double p_post_t) {
- /* Barry-Goldman method */
- double t = Math::lerp(0.0, p_to_t, p_weight);
- double a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0 : (t - p_pre_t) / -p_pre_t);
- double a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5 : t / p_to_t);
- double a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0 : (t - p_to_t) / (p_post_t - p_to_t));
- double b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0 : (t - p_pre_t) / (p_to_t - p_pre_t));
- double b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0 : t / p_post_t);
- return Math::lerp(b1, b2, p_to_t == 0 ? 0.5 : t / p_to_t);
- }
- inline float cubic_interpolate_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
- float p_to_t, float p_pre_t, float p_post_t) {
- /* Barry-Goldman method */
- float t = Math::lerp(0.0f, p_to_t, p_weight);
- float a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0f : (t - p_pre_t) / -p_pre_t);
- float a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5f : t / p_to_t);
- float a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0f : (t - p_to_t) / (p_post_t - p_to_t));
- float b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0f : (t - p_pre_t) / (p_to_t - p_pre_t));
- float b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0f : t / p_post_t);
- return Math::lerp(b1, b2, p_to_t == 0 ? 0.5f : t / p_to_t);
- }
- inline double cubic_interpolate_angle_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
- double p_to_t, double p_pre_t, double p_post_t) {
- double from_rot = fmod(p_from, Math_TAU);
- double pre_diff = fmod(p_pre - from_rot, Math_TAU);
- double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff;
- double to_diff = fmod(p_to - from_rot, Math_TAU);
- double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff;
- double post_diff = fmod(p_post - to_rot, Math_TAU);
- double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff;
- return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
- }
- inline float cubic_interpolate_angle_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
- float p_to_t, float p_pre_t, float p_post_t) {
- float from_rot = fmod(p_from, (float)Math_TAU);
- float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU);
- float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff;
- float to_diff = fmod(p_to - from_rot, (float)Math_TAU);
- float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff;
- float post_diff = fmod(p_post - to_rot, (float)Math_TAU);
- float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff;
- return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
- }
- inline double bezier_interpolate(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
- /* Formula from Wikipedia article on Bezier curves. */
- double omt = (1.0 - p_t);
- double omt2 = omt * omt;
- double omt3 = omt2 * omt;
- double t2 = p_t * p_t;
- double t3 = t2 * p_t;
- return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
- }
- inline float bezier_interpolate(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) {
- /* Formula from Wikipedia article on Bezier curves. */
- float omt = (1.0f - p_t);
- float omt2 = omt * omt;
- float omt3 = omt2 * omt;
- float t2 = p_t * p_t;
- float t3 = t2 * p_t;
- return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0f + p_control_2 * omt * t2 * 3.0f + p_end * t3;
- }
- template <typename T>
- inline T clamp(T x, T minv, T maxv) {
- if (x < minv) {
- return minv;
- }
- if (x > maxv) {
- return maxv;
- }
- return x;
- }
- template <typename T>
- inline T min(T a, T b) {
- return a < b ? a : b;
- }
- template <typename T>
- inline T max(T a, T b) {
- return a > b ? a : b;
- }
- template <typename T>
- inline T sign(T x) {
- return static_cast<T>(x < 0 ? -1 : 1);
- }
- template <typename T>
- inline T abs(T x) {
- return std::abs(x);
- }
- inline double deg_to_rad(double p_y) {
- return p_y * Math_PI / 180.0;
- }
- inline float deg_to_rad(float p_y) {
- return p_y * static_cast<float>(Math_PI) / 180.f;
- }
- inline double rad_to_deg(double p_y) {
- return p_y * 180.0 / Math_PI;
- }
- inline float rad_to_deg(float p_y) {
- return p_y * 180.f / static_cast<float>(Math_PI);
- }
- inline double inverse_lerp(double p_from, double p_to, double p_value) {
- return (p_value - p_from) / (p_to - p_from);
- }
- inline float inverse_lerp(float p_from, float p_to, float p_value) {
- return (p_value - p_from) / (p_to - p_from);
- }
- inline double remap(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
- return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
- }
- inline float remap(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
- return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
- }
- inline bool is_nan(float p_val) {
- return std::isnan(p_val);
- }
- inline bool is_nan(double p_val) {
- return std::isnan(p_val);
- }
- inline bool is_inf(float p_val) {
- return std::isinf(p_val);
- }
- inline bool is_inf(double p_val) {
- return std::isinf(p_val);
- }
- inline bool is_equal_approx(float a, float b) {
- // Check for exact equality first, required to handle "infinity" values.
- if (a == b) {
- return true;
- }
- // Then check for approximate equality.
- float tolerance = (float)CMP_EPSILON * abs(a);
- if (tolerance < (float)CMP_EPSILON) {
- tolerance = (float)CMP_EPSILON;
- }
- return abs(a - b) < tolerance;
- }
- inline bool is_equal_approx(float a, float b, float tolerance) {
- // Check for exact equality first, required to handle "infinity" values.
- if (a == b) {
- return true;
- }
- // Then check for approximate equality.
- return abs(a - b) < tolerance;
- }
- inline bool is_zero_approx(float s) {
- return abs(s) < (float)CMP_EPSILON;
- }
- inline bool is_equal_approx(double a, double b) {
- // Check for exact equality first, required to handle "infinity" values.
- if (a == b) {
- return true;
- }
- // Then check for approximate equality.
- double tolerance = CMP_EPSILON * abs(a);
- if (tolerance < CMP_EPSILON) {
- tolerance = CMP_EPSILON;
- }
- return abs(a - b) < tolerance;
- }
- inline bool is_equal_approx(double a, double b, double tolerance) {
- // Check for exact equality first, required to handle "infinity" values.
- if (a == b) {
- return true;
- }
- // Then check for approximate equality.
- return abs(a - b) < tolerance;
- }
- inline bool is_zero_approx(double s) {
- return abs(s) < CMP_EPSILON;
- }
- inline float absf(float g) {
- union {
- float f;
- uint32_t i;
- } u;
- u.f = g;
- u.i &= 2147483647u;
- return u.f;
- }
- inline double absd(double g) {
- union {
- double d;
- uint64_t i;
- } u;
- u.d = g;
- u.i &= (uint64_t)9223372036854775807ull;
- return u.d;
- }
- inline double smoothstep(double p_from, double p_to, double p_weight) {
- if (is_equal_approx(static_cast<real_t>(p_from), static_cast<real_t>(p_to))) {
- return p_from;
- }
- double x = clamp((p_weight - p_from) / (p_to - p_from), 0.0, 1.0);
- return x * x * (3.0 - 2.0 * x);
- }
- inline float smoothstep(float p_from, float p_to, float p_weight) {
- if (is_equal_approx(p_from, p_to)) {
- return p_from;
- }
- float x = clamp((p_weight - p_from) / (p_to - p_from), 0.0f, 1.0f);
- return x * x * (3.0f - 2.0f * x);
- }
- inline double move_toward(double p_from, double p_to, double p_delta) {
- return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
- }
- inline float move_toward(float p_from, float p_to, float p_delta) {
- return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
- }
- inline double linear2db(double p_linear) {
- return log(p_linear) * 8.6858896380650365530225783783321;
- }
- inline float linear2db(float p_linear) {
- return log(p_linear) * 8.6858896380650365530225783783321f;
- }
- inline double db2linear(double p_db) {
- return exp(p_db * 0.11512925464970228420089957273422);
- }
- inline float db2linear(float p_db) {
- return exp(p_db * 0.11512925464970228420089957273422f);
- }
- inline double round(double p_val) {
- return (p_val >= 0) ? floor(p_val + 0.5) : -floor(-p_val + 0.5);
- }
- inline float round(float p_val) {
- return (p_val >= 0) ? floor(p_val + 0.5f) : -floor(-p_val + 0.5f);
- }
- inline int64_t wrapi(int64_t value, int64_t min, int64_t max) {
- int64_t range = max - min;
- return range == 0 ? min : min + ((((value - min) % range) + range) % range);
- }
- inline float wrapf(real_t value, real_t min, real_t max) {
- const real_t range = max - min;
- return is_zero_approx(range) ? min : value - (range * floor((value - min) / range));
- }
- inline float fract(float value) {
- return value - floor(value);
- }
- inline double fract(double value) {
- return value - floor(value);
- }
- inline float pingpong(float value, float length) {
- return (length != 0.0f) ? abs(fract((value - length) / (length * 2.0f)) * length * 2.0f - length) : 0.0f;
- }
- inline double pingpong(double value, double length) {
- return (length != 0.0) ? abs(fract((value - length) / (length * 2.0)) * length * 2.0 - length) : 0.0;
- }
- inline unsigned int next_power_of_2(unsigned int x) {
- if (x == 0)
- return 0;
- --x;
- x |= x >> 1;
- x |= x >> 2;
- x |= x >> 4;
- x |= x >> 8;
- x |= x >> 16;
- return ++x;
- }
- // This function should be as fast as possible and rounding mode should not matter.
- inline int fast_ftoi(float a) {
- static int b;
- #if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone?
- b = (int)((a > 0.0) ? (a + 0.5) : (a - 0.5));
- #elif defined(_MSC_VER) && _MSC_VER < 1800
- __asm fld a __asm fistp b
- /*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) )
- // use AT&T inline assembly style, document that
- // we use memory as output (=m) and input (m)
- __asm__ __volatile__ (
- "flds %1 \n\t"
- "fistpl %0 \n\t"
- : "=m" (b)
- : "m" (a));*/
- #else
- b = lrintf(a); // assuming everything but msvc 2012 or earlier has lrint
- #endif
- return b;
- }
- inline double snapped(double p_value, double p_step) {
- if (p_step != 0) {
- p_value = Math::floor(p_value / p_step + 0.5) * p_step;
- }
- return p_value;
- }
- inline float snap_scalar(float p_offset, float p_step, float p_target) {
- return p_step != 0 ? Math::snapped(p_target - p_offset, p_step) + p_offset : p_target;
- }
- inline float snap_scalar_separation(float p_offset, float p_step, float p_target, float p_separation) {
- if (p_step != 0) {
- float a = Math::snapped(p_target - p_offset, p_step + p_separation) + p_offset;
- float b = a;
- if (p_target >= 0) {
- b -= p_separation;
- } else {
- b += p_step;
- }
- return (Math::abs(p_target - a) < Math::abs(p_target - b)) ? a : b;
- }
- return p_target;
- }
- } // namespace Math
- } // namespace godot
- #endif // GODOT_MATH_HPP
|