123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- /*************************************************************************/
- /* quaternion.cpp */
- /*************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /*************************************************************************/
- /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
- /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #include <godot_cpp/variant/quaternion.hpp>
- #include <godot_cpp/variant/basis.hpp>
- #include <godot_cpp/variant/string.hpp>
- namespace godot {
- // get_euler_xyz returns a vector containing the Euler angles in the format
- // (ax,ay,az), where ax is the angle of rotation around x axis,
- // and similar for other axes.
- // This implementation uses XYZ convention (Z is the first rotation).
- Vector3 Quaternion::get_euler_xyz() const {
- Basis m(*this);
- return m.get_euler_xyz();
- }
- // get_euler_yxz returns a vector containing the Euler angles in the format
- // (ax,ay,az), where ax is the angle of rotation around x axis,
- // and similar for other axes.
- // This implementation uses YXZ convention (Z is the first rotation).
- Vector3 Quaternion::get_euler_yxz() const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V(!is_normalized(), Vector3(0, 0, 0));
- #endif
- Basis m(*this);
- return m.get_euler_yxz();
- }
- void Quaternion::operator*=(const Quaternion &p_q) {
- x = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y;
- y = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z;
- z = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x;
- w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z;
- }
- Quaternion Quaternion::operator*(const Quaternion &p_q) const {
- Quaternion r = *this;
- r *= p_q;
- return r;
- }
- bool Quaternion::is_equal_approx(const Quaternion &p_quat) const {
- return Math::is_equal_approx(x, p_quat.x) && Math::is_equal_approx(y, p_quat.y) && Math::is_equal_approx(z, p_quat.z) && Math::is_equal_approx(w, p_quat.w);
- }
- real_t Quaternion::length() const {
- return Math::sqrt(length_squared());
- }
- void Quaternion::normalize() {
- *this /= length();
- }
- Quaternion Quaternion::normalized() const {
- return *this / length();
- }
- bool Quaternion::is_normalized() const {
- return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); //use less epsilon
- }
- Quaternion Quaternion::inverse() const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V(!is_normalized(), Quaternion());
- #endif
- return Quaternion(-x, -y, -z, w);
- }
- Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V(!is_normalized(), Quaternion());
- ERR_FAIL_COND_V(!p_to.is_normalized(), Quaternion());
- #endif
- Quaternion to1;
- real_t omega, cosom, sinom, scale0, scale1;
- // calc cosine
- cosom = dot(p_to);
- // adjust signs (if necessary)
- if (cosom < 0.0) {
- cosom = -cosom;
- to1.x = -p_to.x;
- to1.y = -p_to.y;
- to1.z = -p_to.z;
- to1.w = -p_to.w;
- } else {
- to1.x = p_to.x;
- to1.y = p_to.y;
- to1.z = p_to.z;
- to1.w = p_to.w;
- }
- // calculate coefficients
- if ((1.0 - cosom) > CMP_EPSILON) {
- // standard case (slerp)
- omega = Math::acos(cosom);
- sinom = Math::sin(omega);
- scale0 = Math::sin((1.0 - p_weight) * omega) / sinom;
- scale1 = Math::sin(p_weight * omega) / sinom;
- } else {
- // "from" and "to" quaternions are very close
- // ... so we can do a linear interpolation
- scale0 = 1.0 - p_weight;
- scale1 = p_weight;
- }
- // calculate final values
- return Quaternion(
- scale0 * x + scale1 * to1.x,
- scale0 * y + scale1 * to1.y,
- scale0 * z + scale1 * to1.z,
- scale0 * w + scale1 * to1.w);
- }
- Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V(!is_normalized(), Quaternion());
- ERR_FAIL_COND_V(!p_to.is_normalized(), Quaternion());
- #endif
- const Quaternion &from = *this;
- real_t dot = from.dot(p_to);
- if (Math::abs(dot) > 0.9999) {
- return from;
- }
- real_t theta = Math::acos(dot),
- sinT = 1.0 / Math::sin(theta),
- newFactor = Math::sin(p_weight * theta) * sinT,
- invFactor = Math::sin((1.0 - p_weight) * theta) * sinT;
- return Quaternion(invFactor * from.x + newFactor * p_to.x,
- invFactor * from.y + newFactor * p_to.y,
- invFactor * from.z + newFactor * p_to.z,
- invFactor * from.w + newFactor * p_to.w);
- }
- Quaternion Quaternion::cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V(!is_normalized(), Quaternion());
- ERR_FAIL_COND_V(!p_b.is_normalized(), Quaternion());
- #endif
- //the only way to do slerp :|
- real_t t2 = (1.0 - p_weight) * p_weight * 2;
- Quaternion sp = this->slerp(p_b, p_weight);
- Quaternion sq = p_pre_a.slerpni(p_post_b, p_weight);
- return sp.slerpni(sq, t2);
- }
- Quaternion::operator String() const {
- return String::num(x, 5) + ", " + String::num(y, 5) + ", " + String::num(z, 5) + ", " + String::num(w, 5);
- }
- Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND(!p_axis.is_normalized());
- #endif
- real_t d = p_axis.length();
- if (d == 0) {
- x = 0;
- y = 0;
- z = 0;
- w = 0;
- } else {
- real_t sin_angle = Math::sin(p_angle * 0.5);
- real_t cos_angle = Math::cos(p_angle * 0.5);
- real_t s = sin_angle / d;
- x = p_axis.x * s;
- y = p_axis.y * s;
- z = p_axis.z * s;
- w = cos_angle;
- }
- }
- // Euler constructor expects a vector containing the Euler angles in the format
- // (ax, ay, az), where ax is the angle of rotation around x axis,
- // and similar for other axes.
- // This implementation uses YXZ convention (Z is the first rotation).
- Quaternion::Quaternion(const Vector3 &p_euler) {
- real_t half_a1 = p_euler.y * 0.5;
- real_t half_a2 = p_euler.x * 0.5;
- real_t half_a3 = p_euler.z * 0.5;
- // R = Y(a1).X(a2).Z(a3) convention for Euler angles.
- // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
- // a3 is the angle of the first rotation, following the notation in this reference.
- real_t cos_a1 = Math::cos(half_a1);
- real_t sin_a1 = Math::sin(half_a1);
- real_t cos_a2 = Math::cos(half_a2);
- real_t sin_a2 = Math::sin(half_a2);
- real_t cos_a3 = Math::cos(half_a3);
- real_t sin_a3 = Math::sin(half_a3);
- x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3;
- y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3;
- z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3;
- w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3;
- }
- } // namespace godot
|