2
0
Эх сурвалжийг харах

Physics interpolation docs

lawnjelly 3 жил өмнө
parent
commit
0166fee016

+ 1 - 0
tutorials/physics/index.rst

@@ -14,3 +14,4 @@ Physics
    kinematic_character_2d
    kinematic_character_2d
    soft_body
    soft_body
    collision_shapes_3d
    collision_shapes_3d
+   interpolation/index

+ 119 - 0
tutorials/physics/interpolation/advanced_physics_interpolation.rst

@@ -0,0 +1,119 @@
+.. _doc_advanced_physics_interpolation:
+
+Advanced physics interpolation
+==============================
+
+Although the previous instructions will give satisfactory results in a lot of games, in some cases you will want to go a stage further to get the best possible results and the smoothest possible experience.
+
+Exceptions to automatic physics interpolation
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Even with physics interpolation active, there may be some local situations where you would benefit from disabling automatic interpolation for a :ref:`Node<class_Node>` (or branch of the :ref:`SceneTree<class_SceneTree>`), and have the finer control of performing interpolation manually.
+
+This is possible using the :ref:`Node.set_physics_interpolated<class_Node_method_set_physics_interpolated>` function which is present in all Nodes. If you for example, set this interpolated flag to false for a Node, the children will recursively also be affected. This means you can easily disable interpolation for an entire subscene.
+
+The most common situation where you may want to perform your own interpolation is Cameras.
+
+Cameras
+^^^^^^^
+
+In many cases, a :ref:`Camera<class_Camera>` can use automatic interpolation just like any other node. However, for best results, especially at low physics tick rates, it is recommended that you take a manual approach to Camera interpolation.
+
+This is because viewers are very sensitive to Camera movement. For instance, a Camera that realigns slightly every 1/10th of a second (at 10tps tick rate) will often be noticeable. You can get a much smoother result by moving the Camera each frame in ``_process``, and following an interpolated target manually.
+
+Manual Camera interpolation
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+**Ensure the Camera is using global coordinate space**
+
+The very first step when performing manual Camera interpolation is to make sure the Camera transform is specified in *global space* rather than inheriting the transform of a moving parent. This is because feedback can occur between the movement of a parent node of a Camera and the movement of the Camera Node itself, which can mess up the interpolation.
+
+There are two ways of doing this:
+
+1) Move the Camera so it is independent on its own branch, rather than being a child of a moving object.
+
+.. image:: img/fti_camera_worldspace.png
+
+2) Call :ref:`Spatial.set_as_toplevel<class_Spatial_method_set_as_toplevel>` and set this to ``true``, which will make the Camera ignore the transform of its parent.
+
+Typical example
+^^^^^^^^^^^^^^^
+
+A typical example of a custom approach is to use the ``look_at`` function in the Camera every frame in ``_process()`` to look at a target node (such as the player).
+
+But there is a problem. If we use the traditional ``get_global_transform()`` on a Camera "target" Node, this transform will only focus the Camera on the target *at the current physics tick*. This is *not* what we want, as the Camera will jump about on each physics tick as the target moves. Even though the Camera may be updated each frame, this does not help give smooth motion if the *target* is only changing each physics tick.
+
+get_global_transform_interpolated()
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+What we really want to focus the Camera on, is not the position of the target on the physics tick, but the *interpolated* position, i.e. the position at which the target will be rendered.
+
+We can do this using the :ref:`Spatial.get_global_transform_interpolated<class_Spatial_method_get_global_transform_interpolated>` function. This acts exactly like getting :ref:`Spatial.global_transform<class_Spatial_property_global_transform>` but it gives you the *interpolated* transform (during a ``_process()`` call).
+
+.. important:: ``get_global_transform_interpolated()`` should only be used once or twice for special cases such as Cameras. It should **not** be used all over the place in your code (both for performance reasons, and to give correct gameplay).
+
+.. note:: Aside from exceptions like the Camera, in most cases, your game logic should be in ``_physics_process()``. In game logic you should be calling ``get_global_transform()`` or ``get_transform()``, which will give the current physics transform (in global or local space respectively), which is usually what you will want for gameplay code.
+
+Example manual Camera script
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Here is an example of a simple fixed Camera which follows an interpolated target:
+
+.. code-block:: python
+
+	extends Camera
+		
+	# Node that the camera will follow
+	var _target
+		
+	# We will smoothly lerp to follow the target
+	# rather than follow exactly
+	var _target_pos : Vector3 = Vector3()
+		
+	func _ready() -> void:
+		# Find the target node
+		_target = get_node("../Player")
+		
+		# Turn off automatic physics interpolation for the Camera,
+		# we will be doing this manually
+		set_physics_interpolated(false)
+		
+	func _process(delta: float) -> void:
+		# Find the current interpolated transform of the target
+		var tr : Transform = _target.get_global_transform_interpolated()
+		
+		# Provide some delayed smoothed lerping towards the target position 
+		_target_pos = lerp(_target_pos, tr.origin, min(delta, 1.0))
+		
+		# Fixed camera position, but it will follow the target
+		look_at(_target_pos, Vector3(0, 1, 0))
+
+Mouse look
+^^^^^^^^^^
+
+Mouse look is a very common way of controlling Cameras. But there is a problem. Unlike keyboard input which can be sampled periodically on the physics tick, mouse move events can come in continuously. The Camera will be expected to react and follow these mouse movements on the next frame, rather than waiting until the next physics tick.
+
+In this situation, it can be better to disable physics interpolation for the Camera node (using :ref:`Node.set_physics_interpolated<class_Node_method_set_physics_interpolated>`) and directly apply the mouse input to the Camera rotation, rather than apply it in ``_physics_process``.
+
+Sometimes, especially with Cameras, you will want to use a combination of interpolation and non-interpolation:
+
+* A first person camera may position the camera at a player location (perhaps using :ref:`Spatial.get_global_transform_interpolated<class_Spatial_method_get_global_transform_interpolated>`), but control the Camera rotation from mouse look *without* interpolation.
+* A third person camera may similarly determine the look at (target location) of the camera using :ref:`Spatial.get_global_transform_interpolated<class_Spatial_method_get_global_transform_interpolated>`, but position the camera using mouse look *without* interpolation.
+
+There are many permutations and variations of Camera types, but it should be clear that in many cases, disabling automatic physics interpolation and handling this yourself can give a better result.
+
+Disabling interpolation on other nodes
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Although Cameras are the most common example, there are a number of cases when you may wish other nodes to control their own interpolation, or be non-interpolated. Consider for example, a player in a top view game whose rotation is controlled by mouse look. Disabling physics rotation allows the player rotation to match the mouse in real-time.
+
+
+MultiMeshes
+^^^^^^^^^^^
+
+Although most visual Nodes follow the single Node single visual instance paradigm, MultiMeshes can control several instances from the same Node. Therefore, they have some extra functions for controlling interpolation functionality on a *per-instance* basis. You should explore these functions if you are using interpolated MultiMeshes.
+
+- :ref:`MultiMesh.reset_instance_physics_interpolation<class_MultiMesh_method_reset_instance_physics_interpolation>`
+- :ref:`MultiMesh.set_as_bulk_array_interpolated<class_MultiMesh_method_set_as_bulk_array_interpolated>`
+
+Full details are in the :ref:`MultiMesh<class_MultiMesh>` documentation.

BIN
tutorials/physics/interpolation/img/fti_camera_worldspace.png


BIN
tutorials/physics/interpolation/img/fti_graph_fixed_ticks.png


BIN
tutorials/physics/interpolation/img/fti_graph_interpolated.png


+ 13 - 0
tutorials/physics/interpolation/index.rst

@@ -0,0 +1,13 @@
+.. _doc_physics_interpolation:
+
+Physics Interpolation
+=====================
+
+.. toctree::
+   :maxdepth: 1
+   :name: toc-physics-interpolation
+
+   physics_interpolation_quick_start_guide
+   physics_interpolation_introduction
+   using_physics_interpolation
+   advanced_physics_interpolation

+ 132 - 0
tutorials/physics/interpolation/physics_interpolation_introduction.rst

@@ -0,0 +1,132 @@
+.. _doc_physics_interpolation_introduction:
+
+Introduction
+============
+
+Physics ticks and rendered frames
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+One key concept to understand in Godot is the distinction between physics ticks (sometimes referred to as iterations or physics frames), and rendered frames. The physics proceeds at a fixed tick rate (set in :ref:`ProjectSettings.physics/common/physics_fps<class_ProjectSettings_property_physics/common/physics_fps>`), which defaults to 60 ticks per second.
+
+However, the engine does not necessarily **render** at the same rate. Although many monitors refresh at 60 Hz (cycles per second), many refresh at completely different frequencies (e.g. 75 Hz, 144 Hz, 240 Hz or more). Even though a monitor may be able to show a new frame e.g. 60 times a second, there is no guarantee that the CPU and GPU will be able to *supply* frames at this rate. For instance, when running with V-Sync, the computer may be too slow for 60 and only reach the deadlines for 30 FPS, in which case the frames you see will change at 30 FPS (resulting in stuttering).
+
+But there is a problem here. What happens if the physics ticks do not coincide with frames? What happens if the physics tick rate is out of phase with the frame rate? Or worse, what happens if the physics tick rate is *lower* than the rendered frame rate?
+
+This problem is easier to understand if we consider an extreme scenario. If you set the physics tick rate to 10 ticks per second, in a simple game with a rendered frame rate of 60 FPS. If we plot a graph of the positions of an object against the rendered frames, you can see that the positions will appear to "jump" every 1/10th of a second, rather than giving a smooth motion. When the physics calculates a new position for a new object, it is not rendered in this position for just one frame, but for 6 frames.
+
+.. image:: img/fti_graph_fixed_ticks.png
+
+This jump can be seen in other combinations of tick / frame rate as glitches, or jitter, caused by this staircasing effect due to the discrepancy between physics tick time and rendered frame time.
+
+What can we do about frames and ticks being out of sync?
+--------------------------------------------------------
+
+Lock the tick / frame rate together?
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The most obvious solution is to get rid of the problem, by ensuring there is a physics tick that coincides with every frame. This used to be the approach on old consoles and fixed hardware computers. If you know that every player will be using the same hardware, you can ensure it is fast enough to calculate ticks and frames at e.g. 50 FPS, and you will be sure it will work great for everybody.
+
+However, modern games are often no longer made for fixed hardware. You will often be planning to release on desktop computers, mobiles and more, all of which have huge variations in performance, as well as different monitor refresh rates. We need to come up with a better way of dealing with the problem.
+
+Adapt the tick rate?
+^^^^^^^^^^^^^^^^^^^^
+
+Instead of designing the game at a fixed physics tick rate, we could allow the tick rate to scale according to the end users hardware. We could for example use a fixed tick rate that works for that hardware, or even vary the duration of each physics tick to match a particular frame duration.
+
+This works, but there is a problem. Physics (*and game logic*, which is often also run in the ``_physics_process``) work best and most consistently when run at a **fixed**, predetermined tick rate. If you attempt to run a racing game physics that has been designed for 60 TPS (ticks per second) at e.g. 10 TPS, the physics will behave completely differently. Controls may be less responsive, collisions / trajectories can be completely different. You may test your game thoroughly at 60 TPS, then find it breaks on end users machines when it runs at a different tick rate.
+
+This can make quality assurance difficult with hard to reproduce bugs, especially in AAA games where problems of this sort can be very costly. This can also be problematic for multiplayer games for competitive integrity, as running the game at certain tick rates may be more advantageous than others.
+
+Lock the tick rate, but use interpolation to smooth frames in between physics ticks
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+This has become one of the most popular approaches to dealing with the problem. It is supported by Godot 3.5 and later in 3D (although it is optional and disabled by default).
+
+We have established that the most desirable physics/game logic arrangement for consistency and predictability is a physics tick rate that is fixed at design-time. The problem is the discrepancy between the physics position recorded, and where we "want" a physics object to be shown on a frame to give smooth motion.
+
+The answer turns out to be simple, but can be a little hard to get your head around at first.
+
+Instead of keeping track of just the current position of a physics object in the engine, we keep track of *both the current position of the object, and the previous position* on the previous physics tick.
+
+Why do we need the previous position *(in fact the entire transform, including rotation and scaling)*? By using a little math magic, we can use **interpolation** to calculate what the transform of the object would be between those two points, in our ideal world of smooth continuous movement.
+
+.. image:: img/fti_graph_interpolated.png
+
+Linear interpolation
+^^^^^^^^^^^^^^^^^^^^
+
+The simplest way to achieve this is linear interpolation, or lerping, which you may have used before.
+
+Let us consider only the position, and a situation where we know that the previous physics tick X coordinate was 10 units, and the current physics tick X coordinate is 30 units.
+
+.. note:: Although the maths is explained here, you do not have to worry about the details, as this step will be performed for you. Under the hood, Godot may use more complex forms of interpolation, but linear interpolation is the easiest in terms of explanation.
+
+The physics interpolation fraction
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+If our physics ticks are happening 10 times per second (for this example), what happens if our rendered frame takes place at time 0.12 seconds? We can do some math to figure out where the object would be to obtain a smooth motion between the two ticks.
+
+First of all, we have to calculate how far through the physics tick we want the object to be. If the last physics tick took place at 0.1 seconds, we are 0.02 seconds *(0.12 - 0.1)* through a tick that we know will take 0.1 seconds (10 ticks per second). The fraction through the tick is thus:
+
+.. code-block:: python
+
+	fraction = 0.02 / 0.10
+	fraction = 0.2
+
+This is called the **physics interpolation fraction**, and is handily calculated for you by Godot. It can be retrieved on any frame by calling :ref:`Engine.get_physics_interpolation_fraction<class_Engine_method_get_physics_interpolation_fraction>`.
+
+Calculating the interpolated position
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Once we have the interpolation fraction, we can insert it into a standard linear interpolation equation. The X coordinate would thus be:
+
+.. code-block:: python
+
+	x_interpolated = x_prev + ((x_curr - x_prev) * 0.2)
+
+So substituting our ``x_prev`` as 10, and ``x_curr`` as 30:
+
+.. code-block:: python
+
+	x_interpolated = 10 + ((30 - 10) * 0.2)
+	x_interpolated = 10 + 4
+	x_interpolated = 14
+
+Let's break that down:
+
+- We know the X starts from the coordinate on the previous tick (``x_prev``) which is 10 units.
+- We know that after the full tick, the difference between the current tick and the previous tick will have been added (``x_curr - x_prev``) (which is 20 units).
+- The only thing we need to vary is the proportion of this difference we add, according to how far we are through the physics tick.
+
+.. note:: Although this example interpolates the position, the same thing can be done with the rotation and scale of objects. It is not necessary to know the details as Godot will do all this for you.
+
+Smoothed transformations between physics ticks?
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Putting all this together shows that it should be possible to have a nice smooth estimation of the transform of objects between the current and previous physics tick.
+
+But wait, you may have noticed something. If we are interpolating between the current and previous ticks, we are not estimating the position of the object *now*, we are estimating the position of the object in the past. To be exact, we are estimating the position of the object *between 1 and 2 ticks* into the past.
+
+In the past
+^^^^^^^^^^^
+
+What does this mean? This scheme does work, but it does mean we are effectively introducing a delay between what we see on the screen, and where the objects *should* be.
+
+In practice, most people won't notice this delay, or rather, it is typically not *objectionable*. There are already significant delays involved in games, we just don't typically notice them. The most significant effect is there can be a slight delay to input, which can be a factor in fast twitch games. In some of these fast input situations, you may wish to turn off physics interpolation and use a different scheme, or use a high tick rate, which mitigates these delays.
+
+Why look into the past? Why not predict the future?
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+There is an alternative to this scheme, which is: instead of interpolating between the previous and current tick, we use maths to *extrapolate* into the future. We try to predict where the object *will be*, rather than show it where it was. This can be done and may be offered as an option in future, but there are some significant downsides:
+
+- The prediction may not be correct, especially when an object collides with another object during the physics tick.
+- Where a prediction was incorrect, the object may extrapolate into an "impossible" position, like inside a wall.
+- Providing the movement speed is slow, these incorrect predictions may not be too much of a problem.
+- When a prediction was incorrect, the object may have to jump or snap back onto the corrected path. This can be visually jarring.
+
+Fixed timestep interpolation
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+In Godot this whole system is referred to as physics interpolation, but you may also hear it referred to as **"fixed timestep interpolation"**, as it is interpolating between objects moved with a fixed timestep (physics ticks per second). In some ways the second term is more accurate, because it can also be used to interpolate objects that are not driven by physics.
+
+.. tip:: Although physics interpolation is usually a good choice, there are exceptions where you may choose not to use Godot's built-in physics interpolation (or use it in a limited fashion). An example category is internet multiplayer games. Multiplayer games often receive tick or timing based information from other players or a server and these may not coincide with local physics ticks, so a custom interpolation technique can often be a better fit.

+ 9 - 0
tutorials/physics/interpolation/physics_interpolation_quick_start_guide.rst

@@ -0,0 +1,9 @@
+.. _doc_physics_interpolation_quick_start_guide:
+
+Quick start guide
+=================
+
+- Turn on physics interpolation: :ref:`ProjectSettings.physics/common/physics_interpolation<class_ProjectSettings_property_physics/common/physics_interpolation>`
+- Make sure you move objects and run your game logic in ``_physics_process()`` rather than ``_process()``. This includes moving objects directly *and indirectly* (by e.g. moving a parent, or using another mechanism to automatically move nodes).
+- Be sure to call :ref:`Node.reset_physics_interpolation<class_Node_method_reset_physics_interpolation>` on nodes *after* you first position or teleport them, to prevent "streaking"
+- Temporarily try setting :ref:`ProjectSettings.physics/common/physics_fps<class_ProjectSettings_property_physics/common/physics_fps>` to 10 to see the difference with and without interpolation.

+ 74 - 0
tutorials/physics/interpolation/using_physics_interpolation.rst

@@ -0,0 +1,74 @@
+.. _doc_using_physics_interpolation:
+
+Using physics interpolation
+===========================
+How do we incorporate physics interpolation into a Godot game? Are there any caveats?
+
+We have tried to make the system as easy to use as possible, and many existing games will work with few changes. That said there are some situations which require special treatment, and these will be described.
+
+Turn on the physics interpolation setting
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The first step is to turn on physics interpolation in :ref:`ProjectSettings.physics/common/physics_interpolation<class_ProjectSettings_property_physics/common/physics_interpolation>`. You can now run your game.
+
+It is likely that nothing looks hugely different, particularly if you are running physics at 60 TPS or a multiple of it. However, quite a bit more is happening behind the scenes.
+
+.. tip::
+
+	To convert an existing game to use interpolation, it is highly recommended that you temporarily set :ref:`ProjectSettings.physics/common/physics_fps<class_ProjectSettings_property_physics/common/physics_fps>` to a low value such as 10, which will make interpolation problems more obvious.
+
+Move (almost) all game logic from _process to _physics_process
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The most fundamental requirement for physics interpolation (which you may be doing already) is that you should be moving and performing game logic on your objects within ``_physics_process`` (which runs at a physics tick) rather than ``_process`` (which runs on a rendered frame). This means your scripts should typically be doing the bulk of their processing within ``_physics_process``, including responding to input and AI.
+
+Setting the transform of objects only within physics ticks allows the automatic interpolation to deal with transforms *between* physics ticks, and ensures the game will run the same whatever machine it is run on. As a bonus, this also reduces CPU usage if the game is rendering at high FPS, since AI logic (for example) will no longer run on every rendered frame.
+
+.. note:: If you attempt to set the transform of interpolated objects *outside* the physics tick, the calculations for the interpolated position will be incorrect, and you will get jitter. This jitter may not be visible on your machine, but it *will* occur for some players. For this reason, setting the transform of interpolated objects should be avoided outside of the physics tick. Godot will attempt to produce warnings in the editor if this case is detected.
+
+.. tip:: This is only a *soft-rule*. There are some occasions where you might want to teleport objects outside of the physics tick (for instance when starting a level, or respawning objects). Still, in general, you should be applying transforms from the physics tick.
+
+
+Ensure that all indirect movement happens during physics ticks
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Consider that in Godot, Nodes can be moved not just directly in your own scripts, but also by automatic methods such as tweening, animation, and navigation. All these methods should also have their timing set to operate on the physics tick rather than each frame ("idle"), **if** you are using them to move objects (*these methods can also be used to control properties that are not interpolated*).
+
+.. note:: Also consider that nodes can be moved not just by moving themselves, but also by moving parent nodes in the :ref:`SceneTree<class_SceneTree>`. The movement of parents should therefore also only occur during physics ticks.
+
+Choose a physics tick rate
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+When using physics interpolation, the rendering is decoupled from physics, and you can choose any value that makes sense for your game. You are no longer limited to values that are multiples of the user's monitor refresh rate (for stutter-free gameplay if the target FPS is reached).
+
+As a rough guide:
+
+.. csv-table::
+    :header: "Low tick rates (10-30)", "Medium tick rates (30-60)", "High tick rates (60+)"
+    :widths: 20, 20, 20
+    
+    "Better CPU performance","Good physics behaviour in complex scenes","Good with fast physics"
+    "Add some delay to input","Good for first person games","Good for racing games"
+    "Simple physics behaviour"
+
+.. note:: You can always change the tick rate as you develop, it is as simple as changing the project setting.
+
+Call reset_physics_interpolation() when teleporting objects
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Most of the time, interpolation is what you want between two physics ticks. However, there is one situation in which it may *not* be what you want. That is when you are initially placing objects, or moving them to a new location. Here, you don't want a smooth motion between the two - you want an instantaneous move.
+
+The solution to this is to call the :ref:`Node.reset_physics_interpolation<class_Node_method_reset_physics_interpolation>` function. You should call this function on a Node *after* setting the position/transform. The rest is done for you automatically.
+
+Even if you forget to call this, it is not usually a problem in most situations (especially at high tick rates). This is something you can easily leave to the polishing phase of your game. The worst that will happen is seeing a streaking motion for a frame or so when you move them - you will know when you need it!
+
+.. important:: You should call ``reset_physics_interpolation()`` *after* setting the new position, rather than before. Otherwise, you will still see the unwanted streaking motion.
+
+Testing and debugging tips
+--------------------------
+
+Even if you intend to run physics at 60 TPS, in order to thoroughly test your interpolation and get the smoothest gameplay, it is highly recommended to temporarily set the physics tick rate to a low value such as 10 TPS.
+
+The gameplay may not work perfectly, but it should enable you to more easily see cases where you should be calling :ref:`Node.reset_physics_interpolation<class_Node_method_reset_physics_interpolation>`, or where you should be using your own custom interpolation on e.g. a :ref:`Camera<class_Camera>`. Once you have these cases fixed, you can set the physics tick rate back to the desired setting.
+
+The other great advantage to testing at a low tick rate is you can often notice other game systems that are synchronized to the physics tick and creating glitches which you may want to work around. Typical examples include setting animation blend values, which you may decide to set in ``_process()`` and interpolate manually.