123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 |
- Working with 3D skeletons
- =========================
- Godot 3D skeleton support is currently quite rudimentary. Skeleton node
- and class were disigned mainly to support importing skeletal animations
- as set of transformation matrices.
- Skeleton node
- -------------
- Skeleton node can be directly added anywhere you want on scene. Usually
- mesh is a child of Skeleton, as it easier to manipulate this way, as
- Transforms within skeleton are relative to where Skeleton is. But you
- can specify Skeleton node in every MeshInstance.
- Being obvious, Skeleton is intended to deform meshes, and consists of
- structures called "bones". Each "bone" is represented as Transform,
- which is applied to a group of vertices within a mesh. You can directly
- control a group of vertices from Godot. For that please reference
- MeshDataTool class, method set\_vertex\_bones. This class is very
- powerful but not documented.
- The "bones" are organized in hierarchy, every bone, except for root
- bone(s) have parent. Every bone have associated name you can use to
- refer to it (e.g. "root" or "hand.L", etc). Also bones are all numbered,
- these numbers are bone IDs. Bone parents are referred by their numbered
- IDs.
- For the rest of the article we consider the following scene
- ::
- main (Spatial) - script is always here
- == skel (Skeleton)
- ==== mesh (MeshInstance)
- This scene is imported from Blender. It contains arm mesh with 2 bones -
- upperarm and lowerarm, with lowerarm parented to upperarm
- Skeleton class
- --------------
- You can view Godot internal help for descriptions of every function.
- Basically all operations on bones are done using their numeric ID. You
- can convert from name to numeric ID and vise versa.
- **To find number of bones in skeleton we use get\_bone\_count()
- function**
- ::
- extends Spatial
- var skel
- func _ready():
- skel = get_node("skel")
- var id = skel.find_bone("upperarm")
- print("bone id:", id)
- var parent = skel.get_bone_parent(id)
- print("bone parent id:", id)
- **to find ID for the bone, use find\_bone() function**
- ::
- extends Spatial
- var skel
- func _ready():
- skel = get_node("skel")
- var id = skel.find_bone("upperarm")
- print("bone id:", id)
- Now, we want to do something interesting with ID except for printing it.
- Also, we might need additional information - to find bone parents to
- complete chain, etc. This all is done with get/set\_bone\_\* functions.
- **To find bone parent we use get\_bone\_parent(id) function**
- ::
- extends Spatial
- var skel
- func _ready():
- skel = get_node("skel")
- var id = skel.find_bone("upperarm")
- print("bone id:", id)
- var parent = skel.get_bone_parent(id)
- print("bone parent id:", id)
- Bone transforms is the thing why we're here at all. There are 3 kind of
- transforms - local, global, custom.
- **To find bone local Transform we use get\_bone\_pose(id) function**
- ::
- extends Spatial
- var skel
- func _ready():
- skel = get_node("skel")
- var id = skel.find_bone("upperarm")
- print("bone id:", id)
- var parent = skel.get_bone_parent(id)
- print("bone parent id:", id)
- var t = skel.get_bone_pose(id)
- print("bone transform: ", t)
- So we see 3x4 matrix there, with first column of 1s. What can we do
- about that? it is Transform, so we can do everything we can do with
- Transform, basically translate, rotate and scale. Also we can multiply
- transforms to have complex transforms. Remember, "bones" in Godot are
- just Transforms over a group of vertices. Also we can copy Transforms of
- other objects there. So lets rotate our "upperarm" bone:
- ::
- extends Spatial
- var skel
- var id
- func _ready():
- skel = get_node("skel")
- id = skel.find_bone("upperarm")
- print("bone id:", id)
- var parent = skel.get_bone_parent(id)
- print("bone parent id:", id)
- var t = skel.get_bone_pose(id)
- print("bone transform: ", t)
- set_process(true)
- func _process(dt):
- var t = skel.get_bone_pose(id)
- t = t.rotated(Vector3(0.0, 1.0, 0.0), 0.1 * dt)
- skel.set_bone_pose(id, t)
- Now we can rotate individual bones. The same happens for scale and
- translate - try these on your own and see results.
- What we used now was local pose. By default all bones are not modified.
- But this Transform tells us nothing about relationship between bones.
- This information is needed for quite a number of tasks. How can we get
- it? here comes global transform:
- **To find bone global Transform we use get\_bone\_global\_pose(id)
- function**
- We will find global Transform for lowerarm bone
- ::
- extends Spatial
- var skel
- func _ready():
- skel = get_node("skel")
- var id = skel.find_bone("lowerarm")
- print("bone id:", id)
- var parent = skel.get_bone_parent(id)
- print("bone parent id:", id)
- var t = skel.get_bone_global_pose(id)
- print("bone transform: ", t)
- As you see, this transform is not zeroed. While being called global, it
- is actually relative to Skeleton origin. For root bone, origin is always
- at 0 if not modified. Lets print origin for our lowerarm bone:
- ::
- extends Spatial
- var skel
- func _ready():
- skel = get_node("skel")
- var id = skel.find_bone("lowerarm")
- print("bone id:", id)
- var parent = skel.get_bone_parent(id)
- print("bone parent id:", id)
- var t = skel.get_bone_global_pose(id)
- print("bone origin: ", t.origin)
- You will see a number. What does this number mean? It is a rotation
- point of Transform. So it is base part of the bone. In Blender you can
- go to Pose mode and try there to rotate bones - they will rotate around
- their origin. But what about tip? We can't know things like bone length,
- which we need for many things, without knowing tip location. For all
- bones in chain except for last one we can calculate tip location - it is
- simply a child bone origin. Yes, there are situations when this is not
- true, for non-connected bones. But that is OK for us for now, as it is
- not important regarding Transforms. But the leaf bone tip is nowhere to
- be found. Leaf bone is a bone without children. So you don't have any
- information about its tip. But this is not a showstopper. You can
- overcome this by either adding extra bone to the chain or just
- calculating leaf bone length in Blender and store the value in your
- script.
- Using 3D "bones" for mesh control
- ---------------------------------
- Now as you know basics we can apply these to make full FK-control of our
- arm (FK is forward-kinematics)
- To fully control our arm we need the following parameters:
- - Upperarm angle x, y, z
- - Lowerarm angle x, y, z
- All of these parameters can be set, incremented and decremented.
- Create the following node tree:
- ::
- main (Spatial) <- script is here
- +-arm (arm scene)
- + DirectionLight (DirectionLight)
- + Camera
- | Set up Camera so that arm is properly visible. Rotate DirectionLight
- so that arm is properly lit
- | while in scene play mode.
- Now we need to create new script under main:
- First we setup parameters:
- ::
- var lowerarm_angle = Vector3()
- var upperarm_angle = Vector3()
- | Now we need to setup way to change them. Just lets use keys for that.
- | Please create 7 actions under project settings:
- - **selext\_x** - bind to X key
- - **selext\_y** - bind to Y key
- - **selext\_z** - bind to Z key
- - **select\_upperarm** - bind to key 1
- - **select\_lowerarm** - bind to key 2
- - **increment** - bind to key numpad +
- - **decrement** - bind to key numpad -
- So now we want to adjust the above parameters. Therefore we create code
- which does that:
- ::
- func _ready():
- set_process(true)
- var bone = "upperarm"
- var coordinate = 0
- func _process(dt):
- if Input.is_action_pressed("select_x"):
- coordinate = 0
- elif Input.is_action_pressed("select_y"):
- coordinate = 1
- elif Input.is_action_pressed("select_z"):
- coordinate = 2
- elif Input.is_action_pressed("select_upperarm"):
- bone = "upperarm"
- elif Input.is_action_pressed("select_lowerarm"):
- bone = "lowerarm"
- elif Input.is_action_pressed("increment"):
- if bone == "lowerarm":
- lowerarm_angle[coordinate] += 1
- elif bone == "upperarm":
- upperarm_angle[coordinate] += 1
- The full code for arm control is this:
- ::
- extends Spatial
- # member variables here, example:
- # var a=2
- # var b="textvar"
- var upperarm_angle = Vector3()
- var lowerarm_angle = Vector3()
- var skel
- func _ready():
- skel = get_node("arm/Armature/Skeleton")
- set_process(true)
- var bone = "upperarm"
- var coordinate = 0
- func set_bone_rot(bone, ang):
- var b = skel.find_bone(bone)
- var rest = skel.get_bone_rest(b)
- var newpose = rest.rotated(Vector3(1.0, 0.0, 0.0), ang.x)
- var newpose = newpose.rotated(Vector3(0.0, 1.0, 0.0), ang.y)
- var newpose = newpose.rotated(Vector3(0.0, 0.0, 1.0), ang.z)
- skel.set_bone_pose(b, newpose)
- func _process(dt):
- if Input.is_action_pressed("select_x"):
- coordinate = 0
- elif Input.is_action_pressed("select_y"):
- coordinate = 1
- elif Input.is_action_pressed("select_z"):
- coordinate = 2
- elif Input.is_action_pressed("select_upperarm"):
- bone = "upperarm"
- elif Input.is_action_pressed("select_lowerarm"):
- bone = "lowerarm"
- elif Input.is_action_pressed("increment"):
- if bone == "lowerarm":
- lowerarm_angle[coordinate] += 1
- elif bone == "upperarm":
- upperarm_angle[coordinate] += 1
- elif Input.is_action_pressed("decrement"):
- if bone == "lowerarm":
- lowerarm_angle[coordinate] -= 1
- elif bone == "upperarm":
- upperarm_angle[coordinate] -= 1
- set_bone_rot("lowerarm", lowerarm_angle)
- set_bone_rot("upperarm", upperarm_angle)
- Pressing keys 1/2 select upperarm/lowerarm, select axis by pressing x,
- y, z, rotate using numpad "+"/"-"
- | This way you fully control your arm in FK mode using 2 bones. You can
- add additional bones and/or improve "feel" of the interface by using
- coefficients for the change. I recommend you play with this example a
- lot before going to next part.
- | You can clone the demo code for this chapter using
- ::
- git clone [email protected]:slapin/godot-skel3d.git
- cd demo1
- | Or you can browse it using web-interface:
- | https://github.com/slapin/godot-skel3d
- Using 3D "bones" to implement Inverse Kinematics
- ------------------------------------------------
- {{include(Inverse Kinematics)}}
- Using 3D "bones" to implement ragdoll-like physics
- --------------------------------------------------
- TBD
|