/**************************************************************************/ /* rendering_shader_container.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "rendering_shader_container.h" #include "core/io/compression.h" #include "thirdparty/spirv-reflect/spirv_reflect.h" static inline uint32_t aligned_to(uint32_t p_size, uint32_t p_alignment) { if (p_size % p_alignment) { return p_size + (p_alignment - (p_size % p_alignment)); } else { return p_size; } } RenderingShaderContainer::ReflectedShaderStage::ReflectedShaderStage() : _module(memnew(SpvReflectShaderModule)) { } RenderingShaderContainer::ReflectedShaderStage::~ReflectedShaderStage() { spvReflectDestroyShaderModule(_module); memdelete(_module); } const SpvReflectShaderModule &RenderingShaderContainer::ReflectedShaderStage::module() const { return *_module; } const Span RenderingShaderContainer::ReflectedShaderStage::spirv() const { return _spirv_data.span().reinterpret(); } uint32_t RenderingShaderContainer::_from_bytes_header_extra_data(const uint8_t *p_bytes) { return 0; } uint32_t RenderingShaderContainer::_from_bytes_reflection_extra_data(const uint8_t *p_bytes) { return 0; } uint32_t RenderingShaderContainer::_from_bytes_reflection_binding_uniform_extra_data_start(const uint8_t *p_bytes) { return 0; } uint32_t RenderingShaderContainer::_from_bytes_reflection_binding_uniform_extra_data(const uint8_t *p_bytes, uint32_t p_index) { return 0; } uint32_t RenderingShaderContainer::_from_bytes_reflection_specialization_extra_data_start(const uint8_t *p_bytes) { return 0; } uint32_t RenderingShaderContainer::_from_bytes_reflection_specialization_extra_data(const uint8_t *p_bytes, uint32_t p_index) { return 0; } uint32_t RenderingShaderContainer::_from_bytes_shader_extra_data_start(const uint8_t *p_bytes) { return 0; } uint32_t RenderingShaderContainer::_from_bytes_shader_extra_data(const uint8_t *p_bytes, uint32_t p_index) { return 0; } uint32_t RenderingShaderContainer::_from_bytes_footer_extra_data(const uint8_t *p_bytes) { return 0; } uint32_t RenderingShaderContainer::_to_bytes_header_extra_data(uint8_t *) const { return 0; } uint32_t RenderingShaderContainer::_to_bytes_reflection_extra_data(uint8_t *) const { return 0; } uint32_t RenderingShaderContainer::_to_bytes_reflection_binding_uniform_extra_data(uint8_t *, uint32_t) const { return 0; } uint32_t RenderingShaderContainer::_to_bytes_reflection_specialization_extra_data(uint8_t *, uint32_t) const { return 0; } uint32_t RenderingShaderContainer::_to_bytes_shader_extra_data(uint8_t *, uint32_t) const { return 0; } uint32_t RenderingShaderContainer::_to_bytes_footer_extra_data(uint8_t *) const { return 0; } void RenderingShaderContainer::_set_from_shader_reflection_post(const RenderingDeviceCommons::ShaderReflection &p_reflection) { // Do nothing. } Error RenderingShaderContainer::reflect_spirv(const String &p_shader_name, Span p_spirv, LocalVector &r_refl) { using RDC = RenderingDeviceCommons; RDC::ShaderReflection reflection; shader_name = p_shader_name.utf8(); const uint32_t spirv_size = p_spirv.size() + 0; r_refl.resize(spirv_size); for (uint32_t i = 0; i < spirv_size; i++) { RDC::ShaderStage stage = p_spirv[i].shader_stage; RDC::ShaderStage stage_flag = (RDC::ShaderStage)(1 << p_spirv[i].shader_stage); r_refl[i].shader_stage = p_spirv[i].shader_stage; r_refl[i]._spirv_data = p_spirv[i].spirv; if (p_spirv[i].shader_stage == RDC::SHADER_STAGE_COMPUTE) { reflection.is_compute = true; ERR_FAIL_COND_V_MSG(spirv_size != 1, FAILED, "Compute shaders can only receive one stage, dedicated to compute."); } ERR_FAIL_COND_V_MSG(reflection.stages_bits.has_flag(stage_flag), FAILED, "Stage " + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + " submitted more than once."); { SpvReflectShaderModule &module = *r_refl.ptr()[i]._module; const uint8_t *spirv = p_spirv[i].spirv.ptr(); SpvReflectResult result = spvReflectCreateShaderModule2(SPV_REFLECT_MODULE_FLAG_NO_COPY, p_spirv[i].spirv.size(), spirv, &module); ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED, "Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed parsing shader."); for (uint32_t j = 0; j < module.capability_count; j++) { if (module.capabilities[j].value == SpvCapabilityMultiView) { reflection.has_multiview = true; break; } } if (reflection.is_compute) { reflection.compute_local_size[0] = module.entry_points->local_size.x; reflection.compute_local_size[1] = module.entry_points->local_size.y; reflection.compute_local_size[2] = module.entry_points->local_size.z; } uint32_t binding_count = 0; result = spvReflectEnumerateDescriptorBindings(&module, &binding_count, nullptr); ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED, "Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed enumerating descriptor bindings."); if (binding_count > 0) { // Parse bindings. Vector bindings; bindings.resize(binding_count); result = spvReflectEnumerateDescriptorBindings(&module, &binding_count, bindings.ptrw()); ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED, "Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed getting descriptor bindings."); for (uint32_t j = 0; j < binding_count; j++) { const SpvReflectDescriptorBinding &binding = *bindings[j]; RDC::ShaderUniform uniform; bool need_array_dimensions = false; bool need_block_size = false; bool may_be_writable = false; switch (binding.descriptor_type) { case SPV_REFLECT_DESCRIPTOR_TYPE_SAMPLER: { uniform.type = RDC::UNIFORM_TYPE_SAMPLER; need_array_dimensions = true; } break; case SPV_REFLECT_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: { uniform.type = RDC::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE; need_array_dimensions = true; } break; case SPV_REFLECT_DESCRIPTOR_TYPE_SAMPLED_IMAGE: { uniform.type = RDC::UNIFORM_TYPE_TEXTURE; need_array_dimensions = true; } break; case SPV_REFLECT_DESCRIPTOR_TYPE_STORAGE_IMAGE: { uniform.type = RDC::UNIFORM_TYPE_IMAGE; need_array_dimensions = true; may_be_writable = true; } break; case SPV_REFLECT_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: { uniform.type = RDC::UNIFORM_TYPE_TEXTURE_BUFFER; need_array_dimensions = true; } break; case SPV_REFLECT_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: { uniform.type = RDC::UNIFORM_TYPE_IMAGE_BUFFER; need_array_dimensions = true; may_be_writable = true; } break; case SPV_REFLECT_DESCRIPTOR_TYPE_UNIFORM_BUFFER: { uniform.type = RDC::UNIFORM_TYPE_UNIFORM_BUFFER; need_block_size = true; } break; case SPV_REFLECT_DESCRIPTOR_TYPE_STORAGE_BUFFER: { uniform.type = RDC::UNIFORM_TYPE_STORAGE_BUFFER; need_block_size = true; may_be_writable = true; } break; case SPV_REFLECT_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: { ERR_PRINT("Dynamic uniform buffer not supported."); continue; } break; case SPV_REFLECT_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: { ERR_PRINT("Dynamic storage buffer not supported."); continue; } break; case SPV_REFLECT_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: { uniform.type = RDC::UNIFORM_TYPE_INPUT_ATTACHMENT; need_array_dimensions = true; } break; case SPV_REFLECT_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR: { ERR_PRINT("Acceleration structure not supported."); continue; } break; } if (need_array_dimensions) { if (binding.array.dims_count == 0) { uniform.length = 1; } else { for (uint32_t k = 0; k < binding.array.dims_count; k++) { if (k == 0) { uniform.length = binding.array.dims[0]; } else { uniform.length *= binding.array.dims[k]; } } } } else if (need_block_size) { uniform.length = binding.block.size; } else { uniform.length = 0; } if (may_be_writable) { if (binding.descriptor_type == SPV_REFLECT_DESCRIPTOR_TYPE_STORAGE_IMAGE) { uniform.writable = !(binding.decoration_flags & SPV_REFLECT_DECORATION_NON_WRITABLE); } else { uniform.writable = !(binding.decoration_flags & SPV_REFLECT_DECORATION_NON_WRITABLE) && !(binding.block.decoration_flags & SPV_REFLECT_DECORATION_NON_WRITABLE); } } else { uniform.writable = false; } uniform.binding = binding.binding; uint32_t set = binding.set; ERR_FAIL_COND_V_MSG(set >= RDC::MAX_UNIFORM_SETS, FAILED, "On shader stage '" + String(RDC::SHADER_STAGE_NAMES[stage]) + "', uniform '" + binding.name + "' uses a set (" + itos(set) + ") index larger than what is supported (" + itos(RDC::MAX_UNIFORM_SETS) + ")."); if (set < (uint32_t)reflection.uniform_sets.size()) { // Check if this already exists. bool exists = false; for (int k = 0; k < reflection.uniform_sets[set].size(); k++) { if (reflection.uniform_sets[set][k].binding == uniform.binding) { // Already exists, verify that it's the same type. ERR_FAIL_COND_V_MSG(reflection.uniform_sets[set][k].type != uniform.type, FAILED, "On shader stage '" + String(RDC::SHADER_STAGE_NAMES[stage]) + "', uniform '" + binding.name + "' trying to reuse location for set=" + itos(set) + ", binding=" + itos(uniform.binding) + " with different uniform type."); // Also, verify that it's the same size. ERR_FAIL_COND_V_MSG(reflection.uniform_sets[set][k].length != uniform.length, FAILED, "On shader stage '" + String(RDC::SHADER_STAGE_NAMES[stage]) + "', uniform '" + binding.name + "' trying to reuse location for set=" + itos(set) + ", binding=" + itos(uniform.binding) + " with different uniform size."); // Also, verify that it has the same writability. ERR_FAIL_COND_V_MSG(reflection.uniform_sets[set][k].writable != uniform.writable, FAILED, "On shader stage '" + String(RDC::SHADER_STAGE_NAMES[stage]) + "', uniform '" + binding.name + "' trying to reuse location for set=" + itos(set) + ", binding=" + itos(uniform.binding) + " with different writability."); // Just append stage mask and return. reflection.uniform_sets.write[set].write[k].stages.set_flag(stage_flag); exists = true; break; } } if (exists) { continue; // Merged. } } uniform.stages.set_flag(stage_flag); if (set >= (uint32_t)reflection.uniform_sets.size()) { reflection.uniform_sets.resize(set + 1); } reflection.uniform_sets.write[set].push_back(uniform); } } { // Specialization constants. uint32_t sc_count = 0; result = spvReflectEnumerateSpecializationConstants(&module, &sc_count, nullptr); ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED, "Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed enumerating specialization constants."); if (sc_count) { Vector spec_constants; spec_constants.resize(sc_count); result = spvReflectEnumerateSpecializationConstants(&module, &sc_count, spec_constants.ptrw()); ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED, "Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed obtaining specialization constants."); for (uint32_t j = 0; j < sc_count; j++) { int32_t existing = -1; RDC::ShaderSpecializationConstant sconst; SpvReflectSpecializationConstant *spc = spec_constants[j]; sconst.constant_id = spc->constant_id; sconst.int_value = 0; // Clear previous value JIC. switch (spc->constant_type) { case SPV_REFLECT_SPECIALIZATION_CONSTANT_BOOL: { sconst.type = RDC::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL; sconst.bool_value = spc->default_value.int_bool_value != 0; } break; case SPV_REFLECT_SPECIALIZATION_CONSTANT_INT: { sconst.type = RDC::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_INT; sconst.int_value = spc->default_value.int_bool_value; } break; case SPV_REFLECT_SPECIALIZATION_CONSTANT_FLOAT: { sconst.type = RDC::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_FLOAT; sconst.float_value = spc->default_value.float_value; } break; } sconst.stages.set_flag(stage_flag); for (int k = 0; k < reflection.specialization_constants.size(); k++) { if (reflection.specialization_constants[k].constant_id == sconst.constant_id) { ERR_FAIL_COND_V_MSG(reflection.specialization_constants[k].type != sconst.type, FAILED, "More than one specialization constant used for id (" + itos(sconst.constant_id) + "), but their types differ."); ERR_FAIL_COND_V_MSG(reflection.specialization_constants[k].int_value != sconst.int_value, FAILED, "More than one specialization constant used for id (" + itos(sconst.constant_id) + "), but their default values differ."); existing = k; break; } } if (existing >= 0) { reflection.specialization_constants.write[existing].stages.set_flag(stage_flag); } else { reflection.specialization_constants.push_back(sconst); } } reflection.specialization_constants.sort(); } } if (stage == RDC::SHADER_STAGE_VERTEX || stage == RDC::SHADER_STAGE_FRAGMENT) { uint32_t iv_count = 0; result = spvReflectEnumerateInputVariables(&module, &iv_count, nullptr); ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED, "Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed enumerating input variables."); if (iv_count) { Vector input_vars; input_vars.resize(iv_count); result = spvReflectEnumerateInputVariables(&module, &iv_count, input_vars.ptrw()); ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED, "Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed obtaining input variables."); for (const SpvReflectInterfaceVariable *v : input_vars) { if (!v) { continue; } if (stage == RDC::SHADER_STAGE_VERTEX) { if (v->decoration_flags == 0) { // Regular input. reflection.vertex_input_mask |= (((uint64_t)1) << v->location); } } if (v->built_in == SpvBuiltInViewIndex) { reflection.has_multiview = true; } } } } if (stage == RDC::SHADER_STAGE_FRAGMENT) { uint32_t ov_count = 0; result = spvReflectEnumerateOutputVariables(&module, &ov_count, nullptr); ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED, "Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed enumerating output variables."); if (ov_count) { Vector output_vars; output_vars.resize(ov_count); result = spvReflectEnumerateOutputVariables(&module, &ov_count, output_vars.ptrw()); ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED, "Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed obtaining output variables."); for (const SpvReflectInterfaceVariable *refvar : output_vars) { if (!refvar) { continue; } if (refvar->built_in != SpvBuiltInFragDepth) { reflection.fragment_output_mask |= 1 << refvar->location; } } } } uint32_t pc_count = 0; result = spvReflectEnumeratePushConstantBlocks(&module, &pc_count, nullptr); ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED, "Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed enumerating push constants."); if (pc_count) { ERR_FAIL_COND_V_MSG(pc_count > 1, FAILED, "Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "': Only one push constant is supported, which should be the same across shader stages."); Vector pconstants; pconstants.resize(pc_count); result = spvReflectEnumeratePushConstantBlocks(&module, &pc_count, pconstants.ptrw()); ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED, "Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed obtaining push constants."); #if 0 if (pconstants[0] == nullptr) { Ref f = FileAccess::open("res://popo.spv", FileAccess::WRITE); f->store_buffer((const uint8_t *)&SpirV[0], SpirV.size() * sizeof(uint32_t)); } #endif ERR_FAIL_COND_V_MSG(reflection.push_constant_size && reflection.push_constant_size != pconstants[0]->size, FAILED, "Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "': Push constant block must be the same across shader stages."); reflection.push_constant_size = pconstants[0]->size; reflection.push_constant_stages.set_flag(stage_flag); //print_line("Stage: " + String(RDC::SHADER_STAGE_NAMES[stage]) + " push constant of size=" + itos(push_constant.push_constant_size)); } } reflection.stages_bits.set_flag(stage_flag); } // Sort all uniform_sets by binding. for (uint32_t i = 0; i < reflection.uniform_sets.size(); i++) { reflection.uniform_sets.write[i].sort(); } set_from_shader_reflection(reflection); return OK; } void RenderingShaderContainer::set_from_shader_reflection(const RenderingDeviceCommons::ShaderReflection &p_reflection) { reflection_binding_set_uniforms_count.clear(); reflection_binding_set_uniforms_data.clear(); reflection_specialization_data.clear(); reflection_shader_stages.clear(); reflection_data.vertex_input_mask = p_reflection.vertex_input_mask; reflection_data.fragment_output_mask = p_reflection.fragment_output_mask; reflection_data.specialization_constants_count = p_reflection.specialization_constants.size(); reflection_data.is_compute = p_reflection.is_compute; reflection_data.has_multiview = p_reflection.has_multiview; reflection_data.compute_local_size[0] = p_reflection.compute_local_size[0]; reflection_data.compute_local_size[1] = p_reflection.compute_local_size[1]; reflection_data.compute_local_size[2] = p_reflection.compute_local_size[2]; reflection_data.set_count = p_reflection.uniform_sets.size(); reflection_data.push_constant_size = p_reflection.push_constant_size; reflection_data.push_constant_stages_mask = uint32_t(p_reflection.push_constant_stages); reflection_data.shader_name_len = shader_name.length(); ReflectionBindingData binding_data; for (const Vector &uniform_set : p_reflection.uniform_sets) { for (const RenderingDeviceCommons::ShaderUniform &uniform : uniform_set) { binding_data.type = uint32_t(uniform.type); binding_data.binding = uniform.binding; binding_data.stages = uint32_t(uniform.stages); binding_data.length = uniform.length; binding_data.writable = uint32_t(uniform.writable); reflection_binding_set_uniforms_data.push_back(binding_data); } reflection_binding_set_uniforms_count.push_back(uniform_set.size()); } ReflectionSpecializationData specialization_data; for (const RenderingDeviceCommons::ShaderSpecializationConstant &spec : p_reflection.specialization_constants) { specialization_data.type = uint32_t(spec.type); specialization_data.constant_id = spec.constant_id; specialization_data.int_value = spec.int_value; specialization_data.stage_flags = uint32_t(spec.stages); reflection_specialization_data.push_back(specialization_data); } for (uint32_t i = 0; i < RenderingDeviceCommons::SHADER_STAGE_MAX; i++) { if (p_reflection.stages_bits.has_flag(RenderingDeviceCommons::ShaderStage(1U << i))) { reflection_shader_stages.push_back(RenderingDeviceCommons::ShaderStage(i)); } } reflection_data.stage_count = reflection_shader_stages.size(); _set_from_shader_reflection_post(p_reflection); } bool RenderingShaderContainer::set_code_from_spirv(const String &p_shader_name, Span p_spirv) { LocalVector spirv; ERR_FAIL_COND_V(reflect_spirv(p_shader_name, p_spirv, spirv) != OK, false); return _set_code_from_spirv(spirv.span()); } RenderingDeviceCommons::ShaderReflection RenderingShaderContainer::get_shader_reflection() const { RenderingDeviceCommons::ShaderReflection shader_refl; shader_refl.push_constant_size = reflection_data.push_constant_size; shader_refl.push_constant_stages = reflection_data.push_constant_stages_mask; shader_refl.vertex_input_mask = reflection_data.vertex_input_mask; shader_refl.fragment_output_mask = reflection_data.fragment_output_mask; shader_refl.is_compute = reflection_data.is_compute; shader_refl.has_multiview = reflection_data.has_multiview; shader_refl.compute_local_size[0] = reflection_data.compute_local_size[0]; shader_refl.compute_local_size[1] = reflection_data.compute_local_size[1]; shader_refl.compute_local_size[2] = reflection_data.compute_local_size[2]; shader_refl.uniform_sets.resize(reflection_data.set_count); shader_refl.specialization_constants.resize(reflection_data.specialization_constants_count); shader_refl.stages_vector.resize(reflection_data.stage_count); DEV_ASSERT(reflection_binding_set_uniforms_count.size() == reflection_data.set_count && "The amount of elements in the reflection and the shader container can't be different."); uint32_t uniform_index = 0; for (uint32_t i = 0; i < reflection_data.set_count; i++) { Vector &uniform_set = shader_refl.uniform_sets.ptrw()[i]; uint32_t uniforms_count = reflection_binding_set_uniforms_count[i]; uniform_set.resize(uniforms_count); for (uint32_t j = 0; j < uniforms_count; j++) { const ReflectionBindingData &binding = reflection_binding_set_uniforms_data[uniform_index++]; RenderingDeviceCommons::ShaderUniform &uniform = uniform_set.ptrw()[j]; uniform.type = RenderingDeviceCommons::UniformType(binding.type); uniform.writable = binding.writable; uniform.length = binding.length; uniform.binding = binding.binding; uniform.stages = binding.stages; } } shader_refl.specialization_constants.resize(reflection_data.specialization_constants_count); for (uint32_t i = 0; i < reflection_data.specialization_constants_count; i++) { const ReflectionSpecializationData &spec = reflection_specialization_data[i]; RenderingDeviceCommons::ShaderSpecializationConstant &sc = shader_refl.specialization_constants.ptrw()[i]; sc.type = RenderingDeviceCommons::PipelineSpecializationConstantType(spec.type); sc.constant_id = spec.constant_id; sc.int_value = spec.int_value; sc.stages = spec.stage_flags; } shader_refl.stages_vector.resize(reflection_data.stage_count); for (uint32_t i = 0; i < reflection_data.stage_count; i++) { shader_refl.stages_vector.set(i, reflection_shader_stages[i]); shader_refl.stages_bits.set_flag(RenderingDeviceCommons::ShaderStage(1U << reflection_shader_stages[i])); } return shader_refl; } bool RenderingShaderContainer::from_bytes(const PackedByteArray &p_bytes) { const uint64_t alignment = sizeof(uint32_t); const uint8_t *bytes_ptr = p_bytes.ptr(); uint64_t bytes_offset = 0; // Read container header. ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + sizeof(ContainerHeader)) > p_bytes.size(), false, "Not enough bytes for a container header in shader container."); const ContainerHeader &container_header = *(const ContainerHeader *)(&bytes_ptr[bytes_offset]); bytes_offset += sizeof(ContainerHeader); bytes_offset += _from_bytes_header_extra_data(&bytes_ptr[bytes_offset]); ERR_FAIL_COND_V_MSG(container_header.magic_number != CONTAINER_MAGIC_NUMBER, false, "Incorrect magic number in shader container."); ERR_FAIL_COND_V_MSG(container_header.version > CONTAINER_VERSION, false, "Unsupported version in shader container."); ERR_FAIL_COND_V_MSG(container_header.format != _format(), false, "Incorrect format in shader container."); ERR_FAIL_COND_V_MSG(container_header.format_version > _format_version(), false, "Unsupported format version in shader container."); // Adjust shaders to the size indicated by the container header. shaders.resize(container_header.shader_count); // Read reflection data. ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + sizeof(ReflectionData)) > p_bytes.size(), false, "Not enough bytes for reflection data in shader container."); reflection_data = *(const ReflectionData *)(&bytes_ptr[bytes_offset]); bytes_offset += sizeof(ReflectionData); bytes_offset += _from_bytes_reflection_extra_data(&bytes_ptr[bytes_offset]); // Read shader name. ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + reflection_data.shader_name_len) > p_bytes.size(), false, "Not enough bytes for shader name in shader container."); if (reflection_data.shader_name_len > 0) { String shader_name_str; shader_name_str.append_utf8((const char *)(&bytes_ptr[bytes_offset]), reflection_data.shader_name_len); shader_name = shader_name_str.utf8(); bytes_offset = aligned_to(bytes_offset + reflection_data.shader_name_len, alignment); } else { shader_name = CharString(); } reflection_binding_set_uniforms_count.resize(reflection_data.set_count); reflection_binding_set_uniforms_data.clear(); uint32_t uniform_index = 0; for (uint32_t i = 0; i < reflection_data.set_count; i++) { ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + sizeof(uint32_t)) > p_bytes.size(), false, "Not enough bytes for uniform set count in shader container."); uint32_t uniforms_count = *(uint32_t *)(&bytes_ptr[bytes_offset]); reflection_binding_set_uniforms_count.ptrw()[i] = uniforms_count; bytes_offset += sizeof(uint32_t); reflection_binding_set_uniforms_data.resize(reflection_binding_set_uniforms_data.size() + uniforms_count); bytes_offset += _from_bytes_reflection_binding_uniform_extra_data_start(&bytes_ptr[bytes_offset]); for (uint32_t j = 0; j < uniforms_count; j++) { ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + sizeof(ReflectionBindingData)) > p_bytes.size(), false, "Not enough bytes for uniform in shader container."); memcpy(&reflection_binding_set_uniforms_data.ptrw()[uniform_index], &bytes_ptr[bytes_offset], sizeof(ReflectionBindingData)); bytes_offset += sizeof(ReflectionBindingData); bytes_offset += _from_bytes_reflection_binding_uniform_extra_data(&bytes_ptr[bytes_offset], uniform_index); uniform_index++; } } reflection_specialization_data.resize(reflection_data.specialization_constants_count); bytes_offset += _from_bytes_reflection_specialization_extra_data_start(&bytes_ptr[bytes_offset]); for (uint32_t i = 0; i < reflection_data.specialization_constants_count; i++) { ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + sizeof(ReflectionSpecializationData)) > p_bytes.size(), false, "Not enough bytes for specialization in shader container."); memcpy(&reflection_specialization_data.ptrw()[i], &bytes_ptr[bytes_offset], sizeof(ReflectionSpecializationData)); bytes_offset += sizeof(ReflectionSpecializationData); bytes_offset += _from_bytes_reflection_specialization_extra_data(&bytes_ptr[bytes_offset], i); } const uint32_t stage_count = reflection_data.stage_count; if (stage_count > 0) { ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + stage_count * sizeof(RenderingDeviceCommons::ShaderStage)) > p_bytes.size(), false, "Not enough bytes for stages in shader container."); reflection_shader_stages.resize(stage_count); bytes_offset += _from_bytes_shader_extra_data_start(&bytes_ptr[bytes_offset]); memcpy(reflection_shader_stages.ptrw(), &bytes_ptr[bytes_offset], stage_count * sizeof(RenderingDeviceCommons::ShaderStage)); bytes_offset += stage_count * sizeof(RenderingDeviceCommons::ShaderStage); } // Read shaders. for (int64_t i = 0; i < shaders.size(); i++) { ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + sizeof(ShaderHeader)) > p_bytes.size(), false, "Not enough bytes for shader header in shader container."); const ShaderHeader &header = *(const ShaderHeader *)(&bytes_ptr[bytes_offset]); bytes_offset += sizeof(ShaderHeader); ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + header.code_compressed_size) > p_bytes.size(), false, "Not enough bytes for a shader in shader container."); Shader &shader = shaders.ptrw()[i]; shader.shader_stage = RenderingDeviceCommons::ShaderStage(header.shader_stage); shader.code_compression_flags = header.code_compression_flags; shader.code_decompressed_size = header.code_decompressed_size; shader.code_compressed_bytes.resize(header.code_compressed_size); memcpy(shader.code_compressed_bytes.ptrw(), &bytes_ptr[bytes_offset], header.code_compressed_size); bytes_offset = aligned_to(bytes_offset + header.code_compressed_size, alignment); bytes_offset += _from_bytes_shader_extra_data(&bytes_ptr[bytes_offset], i); } bytes_offset += _from_bytes_footer_extra_data(&bytes_ptr[bytes_offset]); ERR_FAIL_COND_V_MSG(bytes_offset != (uint64_t)p_bytes.size(), false, "Amount of bytes in the container does not match the amount of bytes read."); return true; } PackedByteArray RenderingShaderContainer::to_bytes() const { // Compute the exact size the container will require for writing everything out. const uint64_t alignment = sizeof(uint32_t); uint64_t total_size = 0; total_size += sizeof(ContainerHeader) + _to_bytes_header_extra_data(nullptr); total_size += sizeof(ReflectionData) + _to_bytes_reflection_extra_data(nullptr); total_size += aligned_to(reflection_data.shader_name_len, alignment); total_size += reflection_binding_set_uniforms_count.size() * sizeof(uint32_t); total_size += reflection_binding_set_uniforms_data.size() * sizeof(ReflectionBindingData); total_size += reflection_specialization_data.size() * sizeof(ReflectionSpecializationData); total_size += reflection_shader_stages.size() * sizeof(RenderingDeviceCommons::ShaderStage); for (uint32_t i = 0; i < reflection_binding_set_uniforms_data.size(); i++) { total_size += _to_bytes_reflection_binding_uniform_extra_data(nullptr, i); } for (uint32_t i = 0; i < reflection_specialization_data.size(); i++) { total_size += _to_bytes_reflection_specialization_extra_data(nullptr, i); } for (uint32_t i = 0; i < shaders.size(); i++) { total_size += sizeof(ShaderHeader); total_size += shaders[i].code_compressed_bytes.size(); total_size = aligned_to(total_size, alignment); total_size += _to_bytes_shader_extra_data(nullptr, i); } total_size += _to_bytes_footer_extra_data(nullptr); // Create the array that will hold all of the data. PackedByteArray bytes; bytes.resize_initialized(total_size); // Write out the data to the array. uint64_t bytes_offset = 0; uint8_t *bytes_ptr = bytes.ptrw(); ContainerHeader &container_header = *(ContainerHeader *)(&bytes_ptr[bytes_offset]); container_header.magic_number = CONTAINER_MAGIC_NUMBER; container_header.version = CONTAINER_VERSION; container_header.format = _format(); container_header.format_version = _format_version(); container_header.shader_count = shaders.size(); bytes_offset += sizeof(ContainerHeader); bytes_offset += _to_bytes_header_extra_data(&bytes_ptr[bytes_offset]); memcpy(&bytes_ptr[bytes_offset], &reflection_data, sizeof(ReflectionData)); bytes_offset += sizeof(ReflectionData); bytes_offset += _to_bytes_reflection_extra_data(&bytes_ptr[bytes_offset]); if (shader_name.size() > 0) { memcpy(&bytes_ptr[bytes_offset], shader_name.ptr(), reflection_data.shader_name_len); bytes_offset = aligned_to(bytes_offset + reflection_data.shader_name_len, alignment); } uint32_t uniform_index = 0; for (uint32_t uniform_count : reflection_binding_set_uniforms_count) { memcpy(&bytes_ptr[bytes_offset], &uniform_count, sizeof(uniform_count)); bytes_offset += sizeof(uint32_t); for (uint32_t i = 0; i < uniform_count; i++) { memcpy(&bytes_ptr[bytes_offset], &reflection_binding_set_uniforms_data[uniform_index], sizeof(ReflectionBindingData)); bytes_offset += sizeof(ReflectionBindingData); bytes_offset += _to_bytes_reflection_binding_uniform_extra_data(&bytes_ptr[bytes_offset], uniform_index); uniform_index++; } } for (uint32_t i = 0; i < reflection_specialization_data.size(); i++) { memcpy(&bytes_ptr[bytes_offset], &reflection_specialization_data.ptr()[i], sizeof(ReflectionSpecializationData)); bytes_offset += sizeof(ReflectionSpecializationData); bytes_offset += _to_bytes_reflection_specialization_extra_data(&bytes_ptr[bytes_offset], i); } if (!reflection_shader_stages.is_empty()) { uint32_t stage_count = reflection_shader_stages.size(); memcpy(&bytes_ptr[bytes_offset], reflection_shader_stages.ptr(), stage_count * sizeof(RenderingDeviceCommons::ShaderStage)); bytes_offset += stage_count * sizeof(RenderingDeviceCommons::ShaderStage); } for (uint32_t i = 0; i < shaders.size(); i++) { const Shader &shader = shaders[i]; ShaderHeader &header = *(ShaderHeader *)(&bytes.ptr()[bytes_offset]); header.shader_stage = shader.shader_stage; header.code_compressed_size = uint32_t(shader.code_compressed_bytes.size()); header.code_compression_flags = shader.code_compression_flags; header.code_decompressed_size = shader.code_decompressed_size; bytes_offset += sizeof(ShaderHeader); memcpy(&bytes.ptrw()[bytes_offset], shader.code_compressed_bytes.ptr(), shader.code_compressed_bytes.size()); bytes_offset = aligned_to(bytes_offset + shader.code_compressed_bytes.size(), alignment); bytes_offset += _to_bytes_shader_extra_data(&bytes_ptr[bytes_offset], i); } bytes_offset += _to_bytes_footer_extra_data(&bytes_ptr[bytes_offset]); ERR_FAIL_COND_V_MSG(bytes_offset != total_size, PackedByteArray(), "Amount of bytes written does not match the amount of bytes reserved for the container."); return bytes; } bool RenderingShaderContainer::compress_code(const uint8_t *p_decompressed_bytes, uint32_t p_decompressed_size, uint8_t *p_compressed_bytes, uint32_t *r_compressed_size, uint32_t *r_compressed_flags) const { DEV_ASSERT(p_decompressed_bytes != nullptr); DEV_ASSERT(p_decompressed_size > 0); DEV_ASSERT(p_compressed_bytes != nullptr); DEV_ASSERT(r_compressed_size != nullptr); DEV_ASSERT(r_compressed_flags != nullptr); *r_compressed_flags = 0; PackedByteArray zstd_bytes; const int64_t zstd_max_bytes = Compression::get_max_compressed_buffer_size(p_decompressed_size, Compression::MODE_ZSTD); zstd_bytes.resize(zstd_max_bytes); const int64_t zstd_size = Compression::compress(zstd_bytes.ptrw(), p_decompressed_bytes, p_decompressed_size, Compression::MODE_ZSTD); if (zstd_size > 0 && (uint32_t)(zstd_size) < p_decompressed_size) { // Only choose Zstd if it results in actual compression. memcpy(p_compressed_bytes, zstd_bytes.ptr(), zstd_size); *r_compressed_size = zstd_size; *r_compressed_flags |= COMPRESSION_FLAG_ZSTD; } else { // Just copy the input to the output directly. memcpy(p_compressed_bytes, p_decompressed_bytes, p_decompressed_size); *r_compressed_size = p_decompressed_size; } return true; } bool RenderingShaderContainer::decompress_code(const uint8_t *p_compressed_bytes, uint32_t p_compressed_size, uint32_t p_compressed_flags, uint8_t *p_decompressed_bytes, uint32_t p_decompressed_size) const { DEV_ASSERT(p_compressed_bytes != nullptr); DEV_ASSERT(p_compressed_size > 0); DEV_ASSERT(p_decompressed_bytes != nullptr); DEV_ASSERT(p_decompressed_size > 0); bool uses_zstd = p_compressed_flags & COMPRESSION_FLAG_ZSTD; if (uses_zstd) { if (!Compression::decompress(p_decompressed_bytes, p_decompressed_size, p_compressed_bytes, p_compressed_size, Compression::MODE_ZSTD)) { ERR_FAIL_V_MSG(false, "Malformed zstd input for decompressing shader code."); } } else { memcpy(p_decompressed_bytes, p_compressed_bytes, MIN(p_compressed_size, p_decompressed_size)); } return true; } RenderingShaderContainer::RenderingShaderContainer() {} RenderingShaderContainer::~RenderingShaderContainer() {}