// Functions related to lighting // This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V. // We're dividing this factor off because the overall term we'll end up looks like // (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012): // // F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V) // // We're basically regouping this as // // F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)] // // and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V. // // The contents of the D and G (G1) functions (GGX) are taken from // E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014). // Eqns 71-72 and 85-86 (see also Eqns 43 and 80). float G_GGX_2cos(float cos_theta_m, float alpha) { // Schlick's approximation // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994) // Eq. (19), although see Heitz (2014) the about the problems with his derivation. // It nevertheless approximates GGX well with k = alpha/2. float k = 0.5 * alpha; return 0.5 / (cos_theta_m * (1.0 - k) + k); // float cos2 = cos_theta_m * cos_theta_m; // float sin2 = (1.0 - cos2); // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2)); } float D_GGX(float cos_theta_m, float alpha) { float alpha2 = alpha * alpha; float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m; return alpha2 / (M_PI * d * d); } float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float cos2 = cos_theta_m * cos_theta_m; float sin2 = (1.0 - cos2); float s_x = alpha_x * cos_phi; float s_y = alpha_y * sin_phi; return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001); } float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float cos2 = cos_theta_m * cos_theta_m; float sin2 = (1.0 - cos2); float r_x = cos_phi / alpha_x; float r_y = sin_phi / alpha_y; float d = cos2 + sin2 * (r_x * r_x + r_y * r_y); return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); } float SchlickFresnel(float u) { float m = 1.0 - u; float m2 = m * m; return m2 * m2 * m; // pow(m,5) } float GTR1(float NdotH, float a) { if (a >= 1.0) return 1.0 / M_PI; float a2 = a * a; float t = 1.0 + (a2 - 1.0) * NdotH * NdotH; return (a2 - 1.0) / (M_PI * log(a2) * t); } vec3 F0(float metallic, float specular, vec3 albedo) { float dielectric = 0.16 * specular * specular; // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials; // see https://google.github.io/filament/Filament.md.html return mix(vec3(dielectric), albedo, vec3(metallic)); } void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float attenuation, vec3 f0, uint orms, float specular_amount, #ifdef LIGHT_BACKLIGHT_USED vec3 backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED vec4 transmittance_color, float transmittance_depth, float transmittance_boost, float transmittance_z, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, vec3 rim_color, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 B, vec3 T, float anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY inout float alpha, #endif inout vec3 diffuse_light, inout vec3 specular_light) { vec4 orms_unpacked = unpackUnorm4x8(orms); float roughness = orms_unpacked.y; float metallic = orms_unpacked.z; #if defined(LIGHT_CODE_USED) // light is written by the light shader vec3 normal = N; vec3 light = L; vec3 view = V; #CODE : LIGHT #else float NdotL = min(A + dot(N, L), 1.0); float cNdotL = max(NdotL, 0.0); // clamped NdotL float NdotV = dot(N, V); float cNdotV = max(NdotV, 0.0); #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) vec3 H = normalize(V + L); #endif #if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) float cNdotH = clamp(A + dot(N, H), 0.0, 1.0); #endif #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) float cLdotH = clamp(A + dot(L, H), 0.0, 1.0); #endif if (metallic < 1.0) { float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance #if defined(DIFFUSE_LAMBERT_WRAP) // energy conserving lambert wrap shader diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); #elif defined(DIFFUSE_TOON) diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); #elif defined(DIFFUSE_BURLEY) { float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5; float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV); float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL); diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; /* float energyBias = mix(roughness, 0.0, 0.5); float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); float fd90 = energyBias + 2.0 * VoH * VoH * roughness; float f0 = 1.0; float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0); float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0); diffuse_brdf_NL = lightScatter * viewScatter * energyFactor; */ } #else // lambert diffuse_brdf_NL = cNdotL * (1.0 / M_PI); #endif diffuse_light += light_color * diffuse_brdf_NL * attenuation; #if defined(LIGHT_BACKLIGHT_USED) diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation; #endif #if defined(LIGHT_RIM_USED) float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); diffuse_light += rim_light * rim * mix(vec3(1.0), rim_color, rim_tint) * light_color; #endif #ifdef LIGHT_TRANSMITTANCE_USED { #ifdef SSS_MODE_SKIN float scale = 8.25 / transmittance_depth; float d = scale * abs(transmittance_z); float dd = -d * d; vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) + vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) + vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) + vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) + vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) + vec3(0.078, 0.0, 0.0) * exp(dd / 7.41); diffuse_light += profile * transmittance_color.a * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI); #else float scale = 8.25 / transmittance_depth; float d = scale * abs(transmittance_z); float dd = -d * d; diffuse_light += exp(dd) * transmittance_color.rgb * transmittance_color.a * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI); #endif } #else #endif //LIGHT_TRANSMITTANCE_USED } if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely // D #if defined(SPECULAR_BLINN) //normalized blinn float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; float blinn = pow(cNdotH, shininess); blinn *= (shininess + 2.0) * (1.0 / (8.0 * M_PI)); specular_light += light_color * attenuation * specular_amount * blinn * f0 * orms_unpacked.w; #elif defined(SPECULAR_PHONG) vec3 R = normalize(-reflect(L, N)); float cRdotV = clamp(A + dot(R, V), 0.0, 1.0); float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; float phong = pow(cRdotV, shininess); phong *= (shininess + 1.0) * (1.0 / (8.0 * M_PI)); specular_light += light_color * attenuation * specular_amount * phong * f0 * orms_unpacked.w; #elif defined(SPECULAR_TOON) vec3 R = normalize(-reflect(L, N)); float RdotV = dot(R, V); float mid = 1.0 - roughness; mid *= mid; float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection #elif defined(SPECULAR_DISABLED) // none.. #elif defined(SPECULAR_SCHLICK_GGX) // shlick+ggx as default #if defined(LIGHT_ANISOTROPY_USED) float alpha_ggx = roughness * roughness; float aspect = sqrt(1.0 - anisotropy * 0.9); float ax = alpha_ggx / aspect; float ay = alpha_ggx * aspect; float XdotH = dot(T, H); float YdotH = dot(B, H); float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH); float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH); #else float alpha_ggx = roughness * roughness; float D = D_GGX(cNdotH, alpha_ggx); float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx); #endif // F float cLdotH5 = SchlickFresnel(cLdotH); vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0); vec3 specular_brdf_NL = cNdotL * D * F * G; specular_light += specular_brdf_NL * light_color * attenuation * specular_amount; #endif #if defined(LIGHT_CLEARCOAT_USED) #if !defined(SPECULAR_SCHLICK_GGX) float cLdotH5 = SchlickFresnel(cLdotH); #endif float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss)); float Fr = mix(.04, 1.0, cLdotH5); float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25); float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount; #endif } #ifdef USE_SHADOW_TO_OPACITY alpha = min(alpha, clamp(1.0 - attenuation, 0.0, 1.0)); #endif #endif //defined(LIGHT_CODE_USED) } #ifndef SHADOWS_DISABLED // Interleaved Gradient Noise // https://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare float quick_hash(vec2 pos) { const vec3 magic = vec3(0.06711056f, 0.00583715f, 52.9829189f); return fract(magic.z * fract(dot(pos, magic.xy))); } float sample_directional_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) { vec2 pos = coord.xy; float depth = coord.z; //if only one sample is taken, take it from the center if (sc_directional_soft_shadow_samples == 0) { return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0)); } mat2 disk_rotation; { float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; float sr = sin(r); float cr = cos(r); disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); } float avg = 0.0; for (uint i = 0; i < sc_directional_soft_shadow_samples; i++) { avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.directional_soft_shadow_kernel[i].xy), depth, 1.0)); } return avg * (1.0 / float(sc_directional_soft_shadow_samples)); } float sample_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec3 coord) { vec2 pos = coord.xy; float depth = coord.z; //if only one sample is taken, take it from the center if (sc_soft_shadow_samples == 0) { return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0)); } mat2 disk_rotation; { float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; float sr = sin(r); float cr = cos(r); disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); } float avg = 0.0; for (uint i = 0; i < sc_soft_shadow_samples; i++) { avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.soft_shadow_kernel[i].xy), depth, 1.0)); } return avg * (1.0 / float(sc_soft_shadow_samples)); } float sample_omni_pcf_shadow(texture2D shadow, float blur_scale, vec2 coord, vec4 uv_rect, vec2 flip_offset, float depth) { //if only one sample is taken, take it from the center if (sc_soft_shadow_samples == 0) { vec2 pos = coord * 0.5 + 0.5; pos = uv_rect.xy + pos * uv_rect.zw; return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0)); } mat2 disk_rotation; { float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; float sr = sin(r); float cr = cos(r); disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); } float avg = 0.0; vec2 offset_scale = blur_scale * 2.0 * scene_data.shadow_atlas_pixel_size / uv_rect.zw; for (uint i = 0; i < sc_soft_shadow_samples; i++) { vec2 offset = offset_scale * (disk_rotation * scene_data.soft_shadow_kernel[i].xy); vec2 sample_coord = coord + offset; float sample_coord_length_sqaured = dot(sample_coord, sample_coord); bool do_flip = sample_coord_length_sqaured > 1.0; if (do_flip) { float len = sqrt(sample_coord_length_sqaured); sample_coord = sample_coord * (2.0 / len - 1.0); } sample_coord = sample_coord * 0.5 + 0.5; sample_coord = uv_rect.xy + sample_coord * uv_rect.zw; if (do_flip) { sample_coord += flip_offset; } avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(sample_coord, depth, 1.0)); } return avg * (1.0 / float(sc_soft_shadow_samples)); } float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex_scale) { //find blocker float blocker_count = 0.0; float blocker_average = 0.0; mat2 disk_rotation; { float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; float sr = sin(r); float cr = cos(r); disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); } for (uint i = 0; i < sc_directional_penumbra_shadow_samples; i++) { vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale; float d = textureLod(sampler2D(shadow, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r; if (d < pssm_coord.z) { blocker_average += d; blocker_count += 1.0; } } if (blocker_count > 0.0) { //blockers found, do soft shadow blocker_average /= blocker_count; float penumbra = (pssm_coord.z - blocker_average) / blocker_average; tex_scale *= penumbra; float s = 0.0; for (uint i = 0; i < sc_directional_penumbra_shadow_samples; i++) { vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale; s += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(suv, pssm_coord.z, 1.0)); } return s / float(sc_directional_penumbra_shadow_samples); } else { //no blockers found, so no shadow return 1.0; } } #endif // SHADOWS_DISABLED float get_omni_attenuation(float distance, float inv_range, float decay) { float nd = distance * inv_range; nd *= nd; nd *= nd; // nd^4 nd = max(1.0 - nd, 0.0); nd *= nd; // nd^2 return nd * pow(max(distance, 0.0001), -decay); } float light_process_omni_shadow(uint idx, vec3 vertex, vec3 normal) { #ifndef SHADOWS_DISABLED if (omni_lights.data[idx].shadow_enabled) { // there is a shadowmap vec2 texel_size = scene_data.shadow_atlas_pixel_size; vec4 base_uv_rect = omni_lights.data[idx].atlas_rect; base_uv_rect.xy += texel_size; base_uv_rect.zw -= texel_size * 2.0; // Omni lights use direction.xy to store to store the offset between the two paraboloid regions vec2 flip_offset = omni_lights.data[idx].direction.xy; vec3 local_vert = (omni_lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz; float shadow_len = length(local_vert); //need to remember shadow len from here vec3 shadow_dir = normalize(local_vert); vec3 local_normal = normalize(mat3(omni_lights.data[idx].shadow_matrix) * normal); vec3 normal_bias = local_normal * omni_lights.data[idx].shadow_normal_bias * (1.0 - abs(dot(local_normal, shadow_dir))); float shadow; if (sc_use_light_soft_shadows && omni_lights.data[idx].soft_shadow_size > 0.0) { //soft shadow //find blocker float blocker_count = 0.0; float blocker_average = 0.0; mat2 disk_rotation; { float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; float sr = sin(r); float cr = cos(r); disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); } vec3 basis_normal = shadow_dir; vec3 v0 = abs(basis_normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); vec3 tangent = normalize(cross(v0, basis_normal)); vec3 bitangent = normalize(cross(tangent, basis_normal)); float z_norm = shadow_len * omni_lights.data[idx].inv_radius; tangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale; bitangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale; for (uint i = 0; i < sc_penumbra_shadow_samples; i++) { vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy; vec3 pos = local_vert + tangent * disk.x + bitangent * disk.y; pos = normalize(pos); vec4 uv_rect = base_uv_rect; if (pos.z >= 0.0) { uv_rect.xy += flip_offset; } pos.z = 1.0 + abs(pos.z); pos.xy /= pos.z; pos.xy = pos.xy * 0.5 + 0.5; pos.xy = uv_rect.xy + pos.xy * uv_rect.zw; float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), pos.xy, 0.0).r; if (d < z_norm) { blocker_average += d; blocker_count += 1.0; } } if (blocker_count > 0.0) { //blockers found, do soft shadow blocker_average /= blocker_count; float penumbra = (z_norm - blocker_average) / blocker_average; tangent *= penumbra; bitangent *= penumbra; z_norm -= omni_lights.data[idx].inv_radius * omni_lights.data[idx].shadow_bias; shadow = 0.0; for (uint i = 0; i < sc_penumbra_shadow_samples; i++) { vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy; vec3 pos = local_vert + tangent * disk.x + bitangent * disk.y; pos = normalize(pos); pos = normalize(pos + normal_bias); vec4 uv_rect = base_uv_rect; if (pos.z >= 0.0) { uv_rect.xy += flip_offset; } pos.z = 1.0 + abs(pos.z); pos.xy /= pos.z; pos.xy = pos.xy * 0.5 + 0.5; pos.xy = uv_rect.xy + pos.xy * uv_rect.zw; shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(pos.xy, z_norm, 1.0)); } shadow /= float(sc_penumbra_shadow_samples); } else { //no blockers found, so no shadow shadow = 1.0; } } else { vec4 uv_rect = base_uv_rect; vec3 shadow_sample = normalize(shadow_dir + normal_bias); if (shadow_sample.z >= 0.0) { uv_rect.xy += flip_offset; flip_offset *= -1.0; } shadow_sample.z = 1.0 + abs(shadow_sample.z); vec2 pos = shadow_sample.xy / shadow_sample.z; float depth = shadow_len - omni_lights.data[idx].shadow_bias; depth *= omni_lights.data[idx].inv_radius; shadow = sample_omni_pcf_shadow(shadow_atlas, omni_lights.data[idx].soft_shadow_scale / shadow_sample.z, pos, uv_rect, flip_offset, depth); } return shadow; } #endif return 1.0; } void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow, #ifdef LIGHT_BACKLIGHT_USED vec3 backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED vec4 transmittance_color, float transmittance_depth, float transmittance_boost, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, vec3 rim_color, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 binormal, vec3 tangent, float anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY inout float alpha, #endif inout vec3 diffuse_light, inout vec3 specular_light) { vec3 light_rel_vec = omni_lights.data[idx].position - vertex; float light_length = length(light_rel_vec); float omni_attenuation = get_omni_attenuation(light_length, omni_lights.data[idx].inv_radius, omni_lights.data[idx].attenuation); float light_attenuation = omni_attenuation; vec3 color = omni_lights.data[idx].color; float size_A = 0.0; if (sc_use_light_soft_shadows && omni_lights.data[idx].size > 0.0) { float t = omni_lights.data[idx].size / max(0.001, light_length); size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t)); } #ifdef LIGHT_TRANSMITTANCE_USED float transmittance_z = transmittance_depth; //no transmittance by default transmittance_color.a *= light_attenuation; { vec4 clamp_rect = omni_lights.data[idx].atlas_rect; //redo shadowmapping, but shrink the model a bit to avoid arctifacts vec4 splane = (omni_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * omni_lights.data[idx].transmittance_bias, 1.0)); float shadow_len = length(splane.xyz); splane.xyz = normalize(splane.xyz); if (splane.z >= 0.0) { splane.z += 1.0; clamp_rect.y += clamp_rect.w; } else { splane.z = 1.0 - splane.z; } splane.xy /= splane.z; splane.xy = splane.xy * 0.5 + 0.5; splane.z = shadow_len * omni_lights.data[idx].inv_radius; splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; // splane.xy = clamp(splane.xy,clamp_rect.xy + scene_data.shadow_atlas_pixel_size,clamp_rect.xy + clamp_rect.zw - scene_data.shadow_atlas_pixel_size ); splane.w = 1.0; //needed? i think it should be 1 already float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r; transmittance_z = (splane.z - shadow_z) / omni_lights.data[idx].inv_radius; } #endif if (sc_use_light_projector && omni_lights.data[idx].projector_rect != vec4(0.0)) { vec3 local_v = (omni_lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz; local_v = normalize(local_v); vec4 atlas_rect = omni_lights.data[idx].projector_rect; if (local_v.z >= 0.0) { atlas_rect.y += atlas_rect.w; } local_v.z = 1.0 + abs(local_v.z); local_v.xy /= local_v.z; local_v.xy = local_v.xy * 0.5 + 0.5; vec2 proj_uv = local_v.xy * atlas_rect.zw; if (sc_projector_use_mipmaps) { vec2 proj_uv_ddx; vec2 proj_uv_ddy; { vec3 local_v_ddx = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz; local_v_ddx = normalize(local_v_ddx); if (local_v_ddx.z >= 0.0) { local_v_ddx.z += 1.0; } else { local_v_ddx.z = 1.0 - local_v_ddx.z; } local_v_ddx.xy /= local_v_ddx.z; local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5; proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv; vec3 local_v_ddy = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz; local_v_ddy = normalize(local_v_ddy); if (local_v_ddy.z >= 0.0) { local_v_ddy.z += 1.0; } else { local_v_ddy.z = 1.0 - local_v_ddy.z; } local_v_ddy.xy /= local_v_ddy.z; local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5; proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv; } vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, light_projector_sampler), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy); color *= proj.rgb * proj.a; } else { vec4 proj = textureLod(sampler2D(decal_atlas_srgb, light_projector_sampler), proj_uv + atlas_rect.xy, 0.0); color *= proj.rgb * proj.a; } } light_attenuation *= shadow; light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, light_attenuation, f0, orms, omni_lights.data[idx].specular_amount, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED transmittance_color, transmittance_depth, transmittance_boost, transmittance_z, #endif #ifdef LIGHT_RIM_USED rim * omni_attenuation, rim_tint, rim_color, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif diffuse_light, specular_light); } float light_process_spot_shadow(uint idx, vec3 vertex, vec3 normal) { #ifndef SHADOWS_DISABLED if (spot_lights.data[idx].shadow_enabled) { vec3 light_rel_vec = spot_lights.data[idx].position - vertex; float light_length = length(light_rel_vec); vec3 spot_dir = spot_lights.data[idx].direction; vec3 shadow_dir = light_rel_vec / light_length; vec3 normal_bias = normal * light_length * spot_lights.data[idx].shadow_normal_bias * (1.0 - abs(dot(normal, shadow_dir))); //there is a shadowmap vec4 v = vec4(vertex + normal_bias, 1.0); vec4 splane = (spot_lights.data[idx].shadow_matrix * v); splane.z -= spot_lights.data[idx].shadow_bias / (light_length * spot_lights.data[idx].inv_radius); splane /= splane.w; float shadow; if (sc_use_light_soft_shadows && spot_lights.data[idx].soft_shadow_size > 0.0) { //soft shadow //find blocker float z_norm = dot(spot_dir, -light_rel_vec) * spot_lights.data[idx].inv_radius; vec2 shadow_uv = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy; float blocker_count = 0.0; float blocker_average = 0.0; mat2 disk_rotation; { float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; float sr = sin(r); float cr = cos(r); disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); } float uv_size = spot_lights.data[idx].soft_shadow_size * z_norm * spot_lights.data[idx].soft_shadow_scale; vec2 clamp_max = spot_lights.data[idx].atlas_rect.xy + spot_lights.data[idx].atlas_rect.zw; for (uint i = 0; i < sc_penumbra_shadow_samples; i++) { vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size; suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max); float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r; if (d < splane.z) { blocker_average += d; blocker_count += 1.0; } } if (blocker_count > 0.0) { //blockers found, do soft shadow blocker_average /= blocker_count; float penumbra = (z_norm - blocker_average) / blocker_average; uv_size *= penumbra; shadow = 0.0; for (uint i = 0; i < sc_penumbra_shadow_samples; i++) { vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size; suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max); shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, splane.z, 1.0)); } shadow /= float(sc_penumbra_shadow_samples); } else { //no blockers found, so no shadow shadow = 1.0; } } else { //hard shadow vec3 shadow_uv = vec3(splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy, splane.z); shadow = sample_pcf_shadow(shadow_atlas, spot_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, shadow_uv); } return shadow; } #endif // SHADOWS_DISABLED return 1.0; } vec2 normal_to_panorama(vec3 n) { n = normalize(n); vec2 panorama_coords = vec2(atan(n.x, n.z), acos(-n.y)); if (panorama_coords.x < 0.0) { panorama_coords.x += M_PI * 2.0; } panorama_coords /= vec2(M_PI * 2.0, M_PI); return panorama_coords; } void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow, #ifdef LIGHT_BACKLIGHT_USED vec3 backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED vec4 transmittance_color, float transmittance_depth, float transmittance_boost, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, vec3 rim_color, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 binormal, vec3 tangent, float anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY inout float alpha, #endif inout vec3 diffuse_light, inout vec3 specular_light) { vec3 light_rel_vec = spot_lights.data[idx].position - vertex; float light_length = length(light_rel_vec); float spot_attenuation = get_omni_attenuation(light_length, spot_lights.data[idx].inv_radius, spot_lights.data[idx].attenuation); vec3 spot_dir = spot_lights.data[idx].direction; float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights.data[idx].cone_angle); float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights.data[idx].cone_angle)); spot_attenuation *= 1.0 - pow(spot_rim, spot_lights.data[idx].cone_attenuation); float light_attenuation = spot_attenuation; vec3 color = spot_lights.data[idx].color; float specular_amount = spot_lights.data[idx].specular_amount; float size_A = 0.0; if (sc_use_light_soft_shadows && spot_lights.data[idx].size > 0.0) { float t = spot_lights.data[idx].size / max(0.001, light_length); size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t)); } #ifdef LIGHT_TRANSMITTANCE_USED float transmittance_z = transmittance_depth; transmittance_color.a *= light_attenuation; { vec4 splane = (spot_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * spot_lights.data[idx].transmittance_bias, 1.0)); splane /= splane.w; splane.xy = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy; float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r; shadow_z = shadow_z * 2.0 - 1.0; float z_far = 1.0 / spot_lights.data[idx].inv_radius; float z_near = 0.01; shadow_z = 2.0 * z_near * z_far / (z_far + z_near - shadow_z * (z_far - z_near)); //distance to light plane float z = dot(spot_dir, -light_rel_vec); transmittance_z = z - shadow_z; } #endif //LIGHT_TRANSMITTANCE_USED if (sc_use_light_projector && spot_lights.data[idx].projector_rect != vec4(0.0)) { vec4 splane = (spot_lights.data[idx].shadow_matrix * vec4(vertex, 1.0)); splane /= splane.w; vec2 proj_uv = normal_to_panorama(splane.xyz) * spot_lights.data[idx].projector_rect.zw; if (sc_projector_use_mipmaps) { //ensure we have proper mipmaps vec4 splane_ddx = (spot_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)); splane_ddx /= splane_ddx.w; vec2 proj_uv_ddx = normal_to_panorama(splane_ddx.xyz) * spot_lights.data[idx].projector_rect.zw - proj_uv; vec4 splane_ddy = (spot_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)); splane_ddy /= splane_ddy.w; vec2 proj_uv_ddy = normal_to_panorama(splane_ddy.xyz) * spot_lights.data[idx].projector_rect.zw - proj_uv; vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, light_projector_sampler), proj_uv + spot_lights.data[idx].projector_rect.xy, proj_uv_ddx, proj_uv_ddy); color *= proj.rgb * proj.a; } else { vec4 proj = textureLod(sampler2D(decal_atlas_srgb, light_projector_sampler), proj_uv + spot_lights.data[idx].projector_rect.xy, 0.0); color *= proj.rgb * proj.a; } } light_attenuation *= shadow; light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, light_attenuation, f0, orms, spot_lights.data[idx].specular_amount, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED transmittance_color, transmittance_depth, transmittance_boost, transmittance_z, #endif #ifdef LIGHT_RIM_USED rim * spot_attenuation, rim_tint, rim_color, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif diffuse_light, specular_light); } void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughness, vec3 ambient_light, vec3 specular_light, inout vec4 ambient_accum, inout vec4 reflection_accum) { vec3 box_extents = reflections.data[ref_index].box_extents; vec3 local_pos = (reflections.data[ref_index].local_matrix * vec4(vertex, 1.0)).xyz; if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box return; } vec3 ref_vec = normalize(reflect(vertex, normal)); vec3 inner_pos = abs(local_pos / box_extents); float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); //make blend more rounded blend = mix(length(inner_pos), blend, blend); blend *= blend; blend = max(0.0, 1.0 - blend); if (reflections.data[ref_index].intensity > 0.0) { // compute reflection vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz; if (reflections.data[ref_index].box_project) { //box project vec3 nrdir = normalize(local_ref_vec); vec3 rbmax = (box_extents - local_pos) / nrdir; vec3 rbmin = (-box_extents - local_pos) / nrdir; vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0))); float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); vec3 posonbox = local_pos + nrdir * fa; local_ref_vec = posonbox - reflections.data[ref_index].box_offset; } vec4 reflection; reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_ref_vec, reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb * sc_luminance_multiplier; if (reflections.data[ref_index].exterior) { reflection.rgb = mix(specular_light, reflection.rgb, blend); } reflection.rgb *= reflections.data[ref_index].intensity; //intensity reflection.a = blend; reflection.rgb *= reflection.a; reflection_accum += reflection; } switch (reflections.data[ref_index].ambient_mode) { case REFLECTION_AMBIENT_DISABLED: { //do nothing } break; case REFLECTION_AMBIENT_ENVIRONMENT: { //do nothing vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz; vec4 ambient_out; ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb; ambient_out.a = blend; if (reflections.data[ref_index].exterior) { ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend); } ambient_out.rgb *= ambient_out.a; ambient_accum += ambient_out; } break; case REFLECTION_AMBIENT_COLOR: { vec4 ambient_out; ambient_out.a = blend; ambient_out.rgb = reflections.data[ref_index].ambient; if (reflections.data[ref_index].exterior) { ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend); } ambient_out.rgb *= ambient_out.a; ambient_accum += ambient_out; } break; } } float blur_shadow(float shadow) { return shadow; #if 0 //disabling for now, will investigate later float interp_shadow = shadow; if (gl_HelperInvocation) { interp_shadow = -4.0; // technically anything below -4 will do but just to make sure } uvec2 fc2 = uvec2(gl_FragCoord.xy); interp_shadow -= dFdx(interp_shadow) * (float(fc2.x & 1) - 0.5); interp_shadow -= dFdy(interp_shadow) * (float(fc2.y & 1) - 0.5); if (interp_shadow >= 0.0) { shadow = interp_shadow; } return shadow; #endif }