// basisu_containers.h #pragma once #include #include #include #include #include #if defined(__linux__) && !defined(ANDROID) // Only for malloc_usable_size() in basisu_containers_impl.h #include #define HAS_MALLOC_USABLE_SIZE 1 #endif // Set to 1 to always check vector operator[], front(), and back() even in release. #define BASISU_VECTOR_FORCE_CHECKING 0 // If 1, the vector container will not query the CRT to get the size of resized memory blocks. #define BASISU_VECTOR_DETERMINISTIC 1 #ifdef _MSC_VER #define BASISU_FORCE_INLINE __forceinline #else #define BASISU_FORCE_INLINE inline #endif #define BASISU_HASHMAP_TEST 0 namespace basisu { enum { cInvalidIndex = -1 }; template inline S clamp(S value, S low, S high) { return (value < low) ? low : ((value > high) ? high : value); } template inline S maximum(S a, S b) { return (a > b) ? a : b; } template inline S maximum(S a, S b, S c) { return maximum(maximum(a, b), c); } template inline S maximum(S a, S b, S c, S d) { return maximum(maximum(maximum(a, b), c), d); } template inline S minimum(S a, S b) { return (a < b) ? a : b; } template inline S minimum(S a, S b, S c) { return minimum(minimum(a, b), c); } template inline S minimum(S a, S b, S c, S d) { return minimum(minimum(minimum(a, b), c), d); } #ifdef _MSC_VER __declspec(noreturn) #else [[noreturn]] #endif void container_abort(const char* pMsg, ...); namespace helpers { inline bool is_power_of_2(uint32_t x) { return x && ((x & (x - 1U)) == 0U); } inline bool is_power_of_2(uint64_t x) { return x && ((x & (x - 1U)) == 0U); } template const T& minimum(const T& a, const T& b) { return (b < a) ? b : a; } template const T& maximum(const T& a, const T& b) { return (a < b) ? b : a; } inline uint32_t floor_log2i(uint32_t v) { uint32_t l = 0; while (v > 1U) { v >>= 1; l++; } return l; } inline uint32_t floor_log2i(uint64_t v) { uint32_t l = 0; while (v > 1U) { v >>= 1; l++; } return l; } inline uint32_t next_pow2(uint32_t val) { val--; val |= val >> 16; val |= val >> 8; val |= val >> 4; val |= val >> 2; val |= val >> 1; return val + 1; } inline uint64_t next_pow2(uint64_t val) { val--; val |= val >> 32; val |= val >> 16; val |= val >> 8; val |= val >> 4; val |= val >> 2; val |= val >> 1; return val + 1; } } // namespace helpers template inline T* construct(T* p) { return new (static_cast(p)) T; } template inline T* construct(T* p, const U& init) { return new (static_cast(p)) T(init); } template inline void construct_array(T* p, size_t n) { T* q = p + n; for (; p != q; ++p) new (static_cast(p)) T; } template inline void construct_array(T* p, size_t n, const U& init) { T* q = p + n; for (; p != q; ++p) new (static_cast(p)) T(init); } template inline void destruct(T* p) { p->~T(); } template inline void destruct_array(T* p, size_t n) { T* q = p + n; for (; p != q; ++p) p->~T(); } template struct scalar_type { enum { cFlag = false }; static inline void construct(T* p) { basisu::construct(p); } static inline void construct(T* p, const T& init) { basisu::construct(p, init); } static inline void construct_array(T* p, size_t n) { basisu::construct_array(p, n); } static inline void destruct(T* p) { basisu::destruct(p); } static inline void destruct_array(T* p, size_t n) { basisu::destruct_array(p, n); } }; template struct scalar_type { enum { cFlag = true }; static inline void construct(T** p) { memset(p, 0, sizeof(T*)); } static inline void construct(T** p, T* init) { *p = init; } static inline void construct_array(T** p, size_t n) { memset(p, 0, sizeof(T*) * n); } static inline void destruct(T** p) { p; } static inline void destruct_array(T** p, size_t n) { p, n; } }; #define BASISU_DEFINE_BUILT_IN_TYPE(X) \ template<> struct scalar_type { \ enum { cFlag = true }; \ static inline void construct(X* p) { memset(p, 0, sizeof(X)); } \ static inline void construct(X* p, const X& init) { memcpy(p, &init, sizeof(X)); } \ static inline void construct_array(X* p, size_t n) { memset(p, 0, sizeof(X) * n); } \ static inline void destruct(X* p) { p; } \ static inline void destruct_array(X* p, size_t n) { p, n; } }; BASISU_DEFINE_BUILT_IN_TYPE(bool) BASISU_DEFINE_BUILT_IN_TYPE(char) BASISU_DEFINE_BUILT_IN_TYPE(unsigned char) BASISU_DEFINE_BUILT_IN_TYPE(short) BASISU_DEFINE_BUILT_IN_TYPE(unsigned short) BASISU_DEFINE_BUILT_IN_TYPE(int) BASISU_DEFINE_BUILT_IN_TYPE(unsigned int) BASISU_DEFINE_BUILT_IN_TYPE(long) BASISU_DEFINE_BUILT_IN_TYPE(unsigned long) #ifdef __GNUC__ BASISU_DEFINE_BUILT_IN_TYPE(long long) BASISU_DEFINE_BUILT_IN_TYPE(unsigned long long) #else BASISU_DEFINE_BUILT_IN_TYPE(__int64) BASISU_DEFINE_BUILT_IN_TYPE(unsigned __int64) #endif BASISU_DEFINE_BUILT_IN_TYPE(float) BASISU_DEFINE_BUILT_IN_TYPE(double) BASISU_DEFINE_BUILT_IN_TYPE(long double) #undef BASISU_DEFINE_BUILT_IN_TYPE template struct bitwise_movable { enum { cFlag = false }; }; #define BASISU_DEFINE_BITWISE_MOVABLE(Q) template<> struct bitwise_movable { enum { cFlag = true }; }; template struct bitwise_copyable { enum { cFlag = false }; }; #define BASISU_DEFINE_BITWISE_COPYABLE(Q) template<> struct bitwise_copyable { enum { cFlag = true }; }; #define BASISU_IS_POD(T) __is_pod(T) #define BASISU_IS_SCALAR_TYPE(T) (scalar_type::cFlag) #if !defined(BASISU_HAVE_STD_TRIVIALLY_COPYABLE) && defined(__GNUC__) && (__GNUC__ < 5) #define BASISU_IS_TRIVIALLY_COPYABLE(...) __is_trivially_copyable(__VA_ARGS__) #else #define BASISU_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value #endif // TODO: clean this up, it's still confusing (copying vs. movable). #define BASISU_IS_BITWISE_COPYABLE(T) (BASISU_IS_SCALAR_TYPE(T) || BASISU_IS_POD(T) || BASISU_IS_TRIVIALLY_COPYABLE(T) || std::is_trivial::value || (bitwise_copyable::cFlag)) #define BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) (BASISU_IS_BITWISE_COPYABLE(T) || (bitwise_movable::cFlag)) #define BASISU_HAS_DESTRUCTOR(T) ((!scalar_type::cFlag) && (!__is_pod(T)) && (!std::is_trivially_destructible::value)) typedef char(&yes_t)[1]; typedef char(&no_t)[2]; template yes_t class_test(int U::*); template no_t class_test(...); template struct is_class { enum { value = (sizeof(class_test(0)) == sizeof(yes_t)) }; }; template struct is_pointer { enum { value = false }; }; template struct is_pointer { enum { value = true }; }; struct empty_type { }; BASISU_DEFINE_BITWISE_COPYABLE(empty_type); BASISU_DEFINE_BITWISE_MOVABLE(empty_type); template struct rel_ops { friend bool operator!=(const T& x, const T& y) { return (!(x == y)); } friend bool operator> (const T& x, const T& y) { return (y < x); } friend bool operator<=(const T& x, const T& y) { return (!(y < x)); } friend bool operator>=(const T& x, const T& y) { return (!(x < y)); } }; struct elemental_vector { void* m_p; size_t m_size; size_t m_capacity; typedef void (*object_mover)(void* pDst, void* pSrc, size_t num); bool increase_capacity(size_t min_new_capacity, bool grow_hint, size_t element_size, object_mover pRelocate, bool nofail); }; // Returns true if a+b would overflow a size_t. inline bool add_overflow_check(size_t a, size_t b) { size_t c = a + b; return c < a; } // Returns false on overflow, true if OK. template inline bool can_fit_into_size_t(T val) { static_assert(std::is_integral::value, "T must be an integral type"); return (val >= 0) && (static_cast(val) == val); } // Returns true if a*b would overflow a size_t. inline bool mul_overflow_check(size_t a, size_t b) { // Avoid the division on 32-bit platforms if (sizeof(size_t) == sizeof(uint32_t)) return !can_fit_into_size_t(static_cast(a) * b); else return b && (a > (SIZE_MAX / b)); } template class writable_span; template class readable_span { public: using value_type = T; using size_type = size_t; using const_pointer = const T*; using const_reference = const T&; using const_iterator = const T*; inline readable_span() : m_p(nullptr), m_size(0) { } inline readable_span(const writable_span& other); inline readable_span& operator= (const writable_span& rhs); inline readable_span(const_pointer p, size_t n) { set(p, n); } inline readable_span(const_pointer s, const_pointer e) { set(s, e); } inline readable_span(const readable_span& other) : m_p(other.m_p), m_size(other.m_size) { assert(!m_size || m_p); } inline readable_span(readable_span&& other) : m_p(other.m_p), m_size(other.m_size) { assert(!m_size || m_p); other.m_p = nullptr; other.m_size = 0; } template inline readable_span(const T(&arr)[N]) : m_p(arr), m_size(N) { } template inline readable_span& set(const T(&arr)[N]) { m_p = arr; m_size = N; return *this; } inline readable_span& set(const_pointer p, size_t n) { if (!p && n) { assert(0); m_p = nullptr; m_size = 0; } else { m_p = p; m_size = n; } return *this; } inline readable_span& set(const_pointer s, const_pointer e) { if ((e < s) || (!s && e)) { assert(0); m_p = nullptr; m_size = 0; } else { m_p = s; m_size = e - s; } return *this; } inline bool operator== (const readable_span& rhs) const { return (m_p == rhs.m_p) && (m_size == rhs.m_size); } inline bool operator!= (const readable_span& rhs) const { return (m_p != rhs.m_p) || (m_size != rhs.m_size); } // only true if the region is totally inside the span inline bool is_inside_ptr(const_pointer p, size_t n) const { if (!is_valid()) { assert(0); return false; } if (!p) { assert(!n); return false; } return (p >= m_p) && ((p + n) <= end()); } inline bool is_inside(size_t ofs, size_t size) const { if (add_overflow_check(ofs, size)) { assert(0); return false; } if (!is_valid()) { assert(0); return false; } if ((ofs + size) > m_size) return false; return true; } inline readable_span subspan(size_t ofs, size_t n) const { if (!is_valid()) { assert(0); return readable_span((const_pointer)nullptr, (size_t)0); } if (add_overflow_check(ofs, n)) { assert(0); return readable_span((const_pointer)nullptr, (size_t)0); } if ((ofs + n) > m_size) { assert(0); return readable_span((const_pointer)nullptr, (size_t)0); } return readable_span(m_p + ofs, n); } void clear() { m_p = nullptr; m_size = 0; } inline bool empty() const { return !m_size; } // true if the span is non-nullptr and is not empty inline bool is_valid() const { return m_p && m_size; } inline bool is_nullptr() const { return m_p == nullptr; } inline size_t size() const { return m_size; } inline size_t size_in_bytes() const { assert(can_fit_into_size_t((uint64_t)m_size * sizeof(T))); return m_size * sizeof(T); } inline const_pointer get_ptr() const { return m_p; } inline const_iterator begin() const { return m_p; } inline const_iterator end() const { assert(m_p || !m_size); return m_p + m_size; } inline const_iterator cbegin() const { return m_p; } inline const_iterator cend() const { assert(m_p || !m_size); return m_p + m_size; } inline const_reference front() const { if (!(m_p && m_size)) container_abort("readable_span invalid\n"); return m_p[0]; } inline const_reference back() const { if (!(m_p && m_size)) container_abort("readable_span invalid\n"); return m_p[m_size - 1]; } inline readable_span& operator= (const readable_span& rhs) { m_p = rhs.m_p; m_size = rhs.m_size; return *this; } inline readable_span& operator= (readable_span&& rhs) { if (this != &rhs) { m_p = rhs.m_p; m_size = rhs.m_size; rhs.m_p = nullptr; rhs.m_size = 0; } return *this; } inline const_reference operator* () const { if (!(m_p && m_size)) container_abort("readable_span invalid\n"); return *m_p; } inline const_pointer operator-> () const { if (!(m_p && m_size)) container_abort("readable_span invalid\n"); return m_p; } inline readable_span& remove_prefix(size_t n) { if ((!m_p) || (n > m_size)) { assert(0); return *this; } m_p += n; m_size -= n; return *this; } inline readable_span& remove_suffix(size_t n) { if ((!m_p) || (n > m_size)) { assert(0); return *this; } m_size -= n; return *this; } inline readable_span& enlarge(size_t n) { if (!m_p) { assert(0); return *this; } if (add_overflow_check(m_size, n)) { assert(0); return *this; } m_size += n; return *this; } bool copy_from(size_t src_ofs, size_t src_size, T* pDst, size_t dst_ofs) const { if (!src_size) return true; if (!pDst) { assert(0); return false; } if (!is_inside(src_ofs, src_size)) { assert(0); return false; } const_pointer pS = m_p + src_ofs; if (BASISU_IS_BITWISE_COPYABLE(T)) { const uint64_t num_bytes = (uint64_t)src_size * sizeof(T); if (!can_fit_into_size_t(num_bytes)) { assert(0); return false; } memcpy(pDst, pS, (size_t)num_bytes); } else { T* pD = pDst + dst_ofs; T* pDst_end = pD + src_size; while (pD != pDst_end) *pD++ = *pS++; } return true; } inline const_reference operator[] (size_t idx) const { if ((!is_valid()) || (idx >= m_size)) container_abort("readable_span: invalid span or index\n"); return m_p[idx]; } inline uint16_t read_le16(size_t ofs) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(uint16_t))) { assert(0); return false; } const uint8_t a = (uint8_t)m_p[ofs]; const uint8_t b = (uint8_t)m_p[ofs + 1]; return a | (b << 8u); } template inline R read_val(size_t ofs) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(R))) { assert(0); return (R)0; } return *reinterpret_cast(&m_p[ofs]); } inline uint16_t read_be16(size_t ofs) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(uint16_t))) { assert(0); return 0; } const uint8_t b = (uint8_t)m_p[ofs]; const uint8_t a = (uint8_t)m_p[ofs + 1]; return a | (b << 8u); } inline uint32_t read_le32(size_t ofs) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(uint32_t))) { assert(0); return 0; } const uint8_t a = (uint8_t)m_p[ofs]; const uint8_t b = (uint8_t)m_p[ofs + 1]; const uint8_t c = (uint8_t)m_p[ofs + 2]; const uint8_t d = (uint8_t)m_p[ofs + 3]; return a | (b << 8u) | (c << 16u) | (d << 24u); } inline uint32_t read_be32(size_t ofs) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(uint32_t))) { assert(0); return 0; } const uint8_t d = (uint8_t)m_p[ofs]; const uint8_t c = (uint8_t)m_p[ofs + 1]; const uint8_t b = (uint8_t)m_p[ofs + 2]; const uint8_t a = (uint8_t)m_p[ofs + 3]; return a | (b << 8u) | (c << 16u) | (d << 24u); } inline uint64_t read_le64(size_t ofs) const { if (!add_overflow_check(ofs, sizeof(uint64_t))) { assert(0); return 0; } const uint64_t l = read_le32(ofs); const uint64_t h = read_le32(ofs + sizeof(uint32_t)); return l | (h << 32u); } inline uint64_t read_be64(size_t ofs) const { if (!add_overflow_check(ofs, sizeof(uint64_t))) { assert(0); return 0; } const uint64_t h = read_be32(ofs); const uint64_t l = read_be32(ofs + sizeof(uint32_t)); return l | (h << 32u); } private: const_pointer m_p; size_t m_size; }; template class writable_span { friend readable_span; public: using value_type = T; using size_type = size_t; using const_pointer = const T*; using const_reference = const T&; using const_iterator = const T*; using pointer = T*; using reference = T&; using iterator = T*; inline writable_span() : m_p(nullptr), m_size(0) { } inline writable_span(T* p, size_t n) { set(p, n); } inline writable_span(T* s, T* e) { set(s, e); } inline writable_span(const writable_span& other) : m_p(other.m_p), m_size(other.m_size) { assert(!m_size || m_p); } inline writable_span(writable_span&& other) : m_p(other.m_p), m_size(other.m_size) { assert(!m_size || m_p); other.m_p = nullptr; other.m_size = 0; } template inline writable_span(T(&arr)[N]) : m_p(arr), m_size(N) { } readable_span get_readable_span() const { return readable_span(m_p, m_size); } template inline writable_span& set(T(&arr)[N]) { m_p = arr; m_size = N; return *this; } inline writable_span& set(T* p, size_t n) { if (!p && n) { assert(0); m_p = nullptr; m_size = 0; } else { m_p = p; m_size = n; } return *this; } inline writable_span& set(T* s, T* e) { if ((e < s) || (!s && e)) { assert(0); m_p = nullptr; m_size = 0; } else { m_p = s; m_size = e - s; } return *this; } inline bool operator== (const writable_span& rhs) const { return (m_p == rhs.m_p) && (m_size == rhs.m_size); } inline bool operator== (const readable_span& rhs) const { return (m_p == rhs.m_p) && (m_size == rhs.m_size); } inline bool operator!= (const writable_span& rhs) const { return (m_p != rhs.m_p) || (m_size != rhs.m_size); } inline bool operator!= (const readable_span& rhs) const { return (m_p != rhs.m_p) || (m_size != rhs.m_size); } // only true if the region is totally inside the span inline bool is_inside_ptr(const_pointer p, size_t n) const { if (!is_valid()) { assert(0); return false; } if (!p) { assert(!n); return false; } return (p >= m_p) && ((p + n) <= end()); } inline bool is_inside(size_t ofs, size_t size) const { if (add_overflow_check(ofs, size)) { assert(0); return false; } if (!is_valid()) { assert(0); return false; } if ((ofs + size) > m_size) return false; return true; } inline writable_span subspan(size_t ofs, size_t n) const { if (!is_valid()) { assert(0); return writable_span((T*)nullptr, (size_t)0); } if (add_overflow_check(ofs, n)) { assert(0); return writable_span((T*)nullptr, (size_t)0); } if ((ofs + n) > m_size) { assert(0); return writable_span((T*)nullptr, (size_t)0); } return writable_span(m_p + ofs, n); } void clear() { m_p = nullptr; m_size = 0; } inline bool empty() const { return !m_size; } // true if the span is non-nullptr and is not empty inline bool is_valid() const { return m_p && m_size; } inline bool is_nullptr() const { return m_p == nullptr; } inline size_t size() const { return m_size; } inline size_t size_in_bytes() const { assert(can_fit_into_size_t((uint64_t)m_size * sizeof(T))); return m_size * sizeof(T); } inline T* get_ptr() const { return m_p; } inline iterator begin() const { return m_p; } inline iterator end() const { assert(m_p || !m_size); return m_p + m_size; } inline const_iterator cbegin() const { return m_p; } inline const_iterator cend() const { assert(m_p || !m_size); return m_p + m_size; } inline T& front() const { if (!(m_p && m_size)) container_abort("writable_span invalid\n"); return m_p[0]; } inline T& back() const { if (!(m_p && m_size)) container_abort("writable_span invalid\n"); return m_p[m_size - 1]; } inline writable_span& operator= (const writable_span& rhs) { m_p = rhs.m_p; m_size = rhs.m_size; return *this; } inline writable_span& operator= (writable_span&& rhs) { if (this != &rhs) { m_p = rhs.m_p; m_size = rhs.m_size; rhs.m_p = nullptr; rhs.m_size = 0; } return *this; } inline T& operator* () const { if (!(m_p && m_size)) container_abort("writable_span invalid\n"); return *m_p; } inline T* operator-> () const { if (!(m_p && m_size)) container_abort("writable_span invalid\n"); return m_p; } inline bool set_all(size_t ofs, size_t size, const_reference val) { if (!size) return true; if (!is_inside(ofs, size)) { assert(0); return false; } T* pDst = m_p + ofs; if ((sizeof(T) == sizeof(uint8_t)) && (BASISU_IS_BITWISE_COPYABLE(T))) { memset(pDst, (int)((uint8_t)val), size); } else { T* pDst_end = pDst + size; while (pDst != pDst_end) *pDst++ = val; } return true; } inline bool set_all(const_reference val) { return set_all(0, m_size, val); } inline writable_span& remove_prefix(size_t n) { if ((!m_p) || (n > m_size)) { assert(0); return *this; } m_p += n; m_size -= n; return *this; } inline writable_span& remove_suffix(size_t n) { if ((!m_p) || (n > m_size)) { assert(0); return *this; } m_size -= n; return *this; } inline writable_span& enlarge(size_t n) { if (!m_p) { assert(0); return *this; } if (add_overflow_check(m_size, n)) { assert(0); return *this; } m_size += n; return *this; } // copy from this span to the destination ptr bool copy_from(size_t src_ofs, size_t src_size, T* pDst, size_t dst_ofs) const { if (!src_size) return true; if (!pDst) { assert(0); return false; } if (!is_inside(src_ofs, src_size)) { assert(0); return false; } const_pointer pS = m_p + src_ofs; if (BASISU_IS_BITWISE_COPYABLE(T)) { const uint64_t num_bytes = (uint64_t)src_size * sizeof(T); if (!can_fit_into_size_t(num_bytes)) { assert(0); return false; } memcpy(pDst, pS, (size_t)num_bytes); } else { T* pD = pDst + dst_ofs; T* pDst_end = pD + src_size; while (pD != pDst_end) *pD++ = *pS++; } return true; } // copy from the source ptr into this span bool copy_into(const_pointer pSrc, size_t src_ofs, size_t src_size, size_t dst_ofs) const { if (!src_size) return true; if (!pSrc) { assert(0); return false; } if (add_overflow_check(src_ofs, src_size) || add_overflow_check(dst_ofs, src_size)) { assert(0); return false; } if (!is_valid()) { assert(0); return false; } if (!is_inside(dst_ofs, src_size)) { assert(0); return false; } const_pointer pS = pSrc + src_ofs; T* pD = m_p + dst_ofs; if (BASISU_IS_BITWISE_COPYABLE(T)) { const uint64_t num_bytes = (uint64_t)src_size * sizeof(T); if (!can_fit_into_size_t(num_bytes)) { assert(0); return false; } memcpy(pD, pS, (size_t)num_bytes); } else { T* pDst_end = pD + src_size; while (pD != pDst_end) *pD++ = *pS++; } return true; } // copy from a source span into this span bool copy_into(const readable_span& src, size_t src_ofs, size_t src_size, size_t dst_ofs) const { if (!src.is_inside(src_ofs, src_size)) { assert(0); return false; } return copy_into(src.get_ptr(), src_ofs, src_size, dst_ofs); } // copy from a source span into this span bool copy_into(const writable_span& src, size_t src_ofs, size_t src_size, size_t dst_ofs) const { if (!src.is_inside(src_ofs, src_size)) { assert(0); return false; } return copy_into(src.get_ptr(), src_ofs, src_size, dst_ofs); } inline T& operator[] (size_t idx) const { if ((!is_valid()) || (idx >= m_size)) container_abort("writable_span: invalid span or index\n"); return m_p[idx]; } template inline R read_val(size_t ofs) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(R))) { assert(0); return (R)0; } return *reinterpret_cast(&m_p[ofs]); } template inline bool write_val(size_t ofs, R val) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(R))) { assert(0); return false; } *reinterpret_cast(&m_p[ofs]) = val; return true; } inline bool write_le16(size_t ofs, uint16_t val) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(uint16_t))) { assert(0); return false; } m_p[ofs] = (uint8_t)val; m_p[ofs + 1] = (uint8_t)(val >> 8u); return true; } inline bool write_be16(size_t ofs, uint16_t val) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(uint16_t))) { assert(0); return false; } m_p[ofs + 1] = (uint8_t)val; m_p[ofs] = (uint8_t)(val >> 8u); return true; } inline bool write_le32(size_t ofs, uint32_t val) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(uint32_t))) { assert(0); return false; } m_p[ofs] = (uint8_t)val; m_p[ofs + 1] = (uint8_t)(val >> 8u); m_p[ofs + 2] = (uint8_t)(val >> 16u); m_p[ofs + 3] = (uint8_t)(val >> 24u); return true; } inline bool write_be32(size_t ofs, uint32_t val) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(uint32_t))) { assert(0); return false; } m_p[ofs + 3] = (uint8_t)val; m_p[ofs + 2] = (uint8_t)(val >> 8u); m_p[ofs + 1] = (uint8_t)(val >> 16u); m_p[ofs] = (uint8_t)(val >> 24u); return true; } inline bool write_le64(size_t ofs, uint64_t val) const { if (!add_overflow_check(ofs, sizeof(uint64_t))) { assert(0); return false; } return write_le32(ofs, (uint32_t)val) && write_le32(ofs + sizeof(uint32_t), (uint32_t)(val >> 32u)); } inline bool write_be64(size_t ofs, uint64_t val) const { if (!add_overflow_check(ofs, sizeof(uint64_t))) { assert(0); return false; } return write_be32(ofs + sizeof(uint32_t), (uint32_t)val) && write_be32(ofs, (uint32_t)(val >> 32u)); } inline uint16_t read_le16(size_t ofs) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(uint16_t))) { assert(0); return 0; } const uint8_t a = (uint8_t)m_p[ofs]; const uint8_t b = (uint8_t)m_p[ofs + 1]; return a | (b << 8u); } inline uint16_t read_be16(size_t ofs) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(uint16_t))) { assert(0); return 0; } const uint8_t b = (uint8_t)m_p[ofs]; const uint8_t a = (uint8_t)m_p[ofs + 1]; return a | (b << 8u); } inline uint32_t read_le32(size_t ofs) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(uint32_t))) { assert(0); return 0; } const uint8_t a = (uint8_t)m_p[ofs]; const uint8_t b = (uint8_t)m_p[ofs + 1]; const uint8_t c = (uint8_t)m_p[ofs + 2]; const uint8_t d = (uint8_t)m_p[ofs + 3]; return a | (b << 8u) | (c << 16u) | (d << 24u); } inline uint32_t read_be32(size_t ofs) const { static_assert(sizeof(T) == 1, "T must be byte size"); if (!is_inside(ofs, sizeof(uint32_t))) { assert(0); return 0; } const uint8_t d = (uint8_t)m_p[ofs]; const uint8_t c = (uint8_t)m_p[ofs + 1]; const uint8_t b = (uint8_t)m_p[ofs + 2]; const uint8_t a = (uint8_t)m_p[ofs + 3]; return a | (b << 8u) | (c << 16u) | (d << 24u); } inline uint64_t read_le64(size_t ofs) const { if (!add_overflow_check(ofs, sizeof(uint64_t))) { assert(0); return 0; } const uint64_t l = read_le32(ofs); const uint64_t h = read_le32(ofs + sizeof(uint32_t)); return l | (h << 32u); } inline uint64_t read_be64(size_t ofs) const { if (!add_overflow_check(ofs, sizeof(uint64_t))) { assert(0); return 0; } const uint64_t h = read_be32(ofs); const uint64_t l = read_be32(ofs + sizeof(uint32_t)); return l | (h << 32u); } private: T* m_p; size_t m_size; }; template inline readable_span::readable_span(const writable_span& other) : m_p(other.m_p), m_size(other.m_size) { } template inline readable_span& readable_span::operator= (const writable_span& rhs) { m_p = rhs.m_p; m_size = rhs.m_size; return *this; } template inline bool span_copy(const writable_span& dst, const readable_span& src) { return dst.copy_into(src, 0, src.size(), 0); } template inline bool span_copy(const writable_span& dst, const writable_span& src) { return dst.copy_into(src, 0, src.size(), 0); } template inline bool span_copy(const writable_span& dst, size_t dst_ofs, const writable_span& src, size_t src_ofs, size_t len) { return dst.copy_into(src, src_ofs, len, dst_ofs); } template inline bool span_copy(const writable_span& dst, size_t dst_ofs, const readable_span& src, size_t src_ofs, size_t len) { return dst.copy_into(src, src_ofs, len, dst_ofs); } template class vector : public rel_ops< vector > { public: typedef T* iterator; typedef const T* const_iterator; typedef T value_type; typedef T& reference; typedef const T& const_reference; typedef T* pointer; typedef const T* const_pointer; inline vector() : m_p(nullptr), m_size(0), m_capacity(0) { } inline vector(size_t n, const T& init) : m_p(nullptr), m_size(0), m_capacity(0) { increase_capacity(n, false); construct_array(m_p, n, init); m_size = n; } inline vector(vector&& other) : m_p(other.m_p), m_size(other.m_size), m_capacity(other.m_capacity) { other.m_p = nullptr; other.m_size = 0; other.m_capacity = 0; } inline vector(const vector& other) : m_p(nullptr), m_size(0), m_capacity(0) { increase_capacity(other.m_size, false); m_size = other.m_size; if (BASISU_IS_BITWISE_COPYABLE(T)) { #ifndef __EMSCRIPTEN__ #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wclass-memaccess" #endif #endif if ((m_p) && (other.m_p)) { memcpy(m_p, other.m_p, m_size * sizeof(T)); } #ifndef __EMSCRIPTEN__ #ifdef __GNUC__ #pragma GCC diagnostic pop #endif #endif } else { T* pDst = m_p; const T* pSrc = other.m_p; for (size_t i = m_size; i > 0; i--) construct(pDst++, *pSrc++); } } inline explicit vector(size_t size) : m_p(nullptr), m_size(0), m_capacity(0) { resize(size); } inline explicit vector(std::initializer_list init_list) : m_p(nullptr), m_size(0), m_capacity(0) { resize(init_list.size()); size_t idx = 0; for (const T& elem : init_list) m_p[idx++] = elem; assert(idx == m_size); } inline vector(const readable_span& rs) : m_p(nullptr), m_size(0), m_capacity(0) { set(rs); } inline vector(const writable_span& ws) : m_p(nullptr), m_size(0), m_capacity(0) { set(ws); } // Set contents of vector to contents of the readable span bool set(const readable_span& rs) { if (!rs.is_valid()) { assert(0); return false; } const size_t new_size = rs.size(); // Could call resize(), but it'll redundantly construct trivial types. if (m_size != new_size) { if (new_size < m_size) { if (BASISU_HAS_DESTRUCTOR(T)) { scalar_type::destruct_array(m_p + new_size, m_size - new_size); } } else { if (new_size > m_capacity) { if (!increase_capacity(new_size, false, true)) return false; } } // Don't bother constructing trivial types, because we're going to memcpy() over them anyway. if (!BASISU_IS_BITWISE_COPYABLE(T)) { scalar_type::construct_array(m_p + m_size, new_size - m_size); } m_size = new_size; } if (!rs.copy_from(0, rs.size(), m_p, 0)) { assert(0); return false; } return true; } // Set contents of vector to contents of the writable span inline bool set(const writable_span& ws) { return set(ws.get_readable_span()); } inline ~vector() { if (m_p) { if (BASISU_HAS_DESTRUCTOR(T)) { scalar_type::destruct_array(m_p, m_size); } free(m_p); } } inline vector& operator= (const vector& other) { if (this == &other) return *this; if (m_capacity >= other.m_size) resize(0); else { clear(); increase_capacity(other.m_size, false); } if (BASISU_IS_BITWISE_COPYABLE(T)) { #ifndef __EMSCRIPTEN__ #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wclass-memaccess" #endif #endif if ((m_p) && (other.m_p)) memcpy(m_p, other.m_p, other.m_size * sizeof(T)); #ifndef __EMSCRIPTEN__ #ifdef __GNUC__ #pragma GCC diagnostic pop #endif #endif } else { T* pDst = m_p; const T* pSrc = other.m_p; for (size_t i = other.m_size; i > 0; i--) construct(pDst++, *pSrc++); } m_size = other.m_size; return *this; } inline vector& operator= (vector&& rhs) { if (this != &rhs) { clear(); m_p = rhs.m_p; m_size = rhs.m_size; m_capacity = rhs.m_capacity; rhs.m_p = nullptr; rhs.m_size = 0; rhs.m_capacity = 0; } return *this; } BASISU_FORCE_INLINE const T* begin() const { return m_p; } BASISU_FORCE_INLINE T* begin() { return m_p; } BASISU_FORCE_INLINE const T* end() const { return m_p + m_size; } BASISU_FORCE_INLINE T* end() { return m_p + m_size; } BASISU_FORCE_INLINE bool empty() const { return !m_size; } BASISU_FORCE_INLINE size_t size() const { return m_size; } BASISU_FORCE_INLINE uint32_t size_u32() const { assert(m_size <= UINT32_MAX); return static_cast(m_size); } BASISU_FORCE_INLINE size_t size_in_bytes() const { return m_size * sizeof(T); } BASISU_FORCE_INLINE uint32_t size_in_bytes_u32() const { assert((m_size * sizeof(T)) <= UINT32_MAX); return static_cast(m_size * sizeof(T)); } BASISU_FORCE_INLINE size_t capacity() const { return m_capacity; } #if !BASISU_VECTOR_FORCE_CHECKING BASISU_FORCE_INLINE const T& operator[] (size_t i) const { assert(i < m_size); return m_p[i]; } BASISU_FORCE_INLINE T& operator[] (size_t i) { assert(i < m_size); return m_p[i]; } #else BASISU_FORCE_INLINE const T& operator[] (size_t i) const { if (i >= m_size) container_abort("vector::operator[] invalid index: %zu, max entries %u, type size %zu\n", i, m_size, sizeof(T)); return m_p[i]; } BASISU_FORCE_INLINE T& operator[] (size_t i) { if (i >= m_size) container_abort("vector::operator[] invalid index: %zu, max entries %u, type size %zu\n", i, m_size, sizeof(T)); return m_p[i]; } #endif // at() always includes range checking, even in final builds, unlike operator []. BASISU_FORCE_INLINE const T& at(size_t i) const { if (i >= m_size) container_abort("vector::at() invalid index: %zu, max entries %u, type size %zu\n", i, m_size, sizeof(T)); return m_p[i]; } BASISU_FORCE_INLINE T& at(size_t i) { if (i >= m_size) container_abort("vector::at() invalid index: %zu, max entries %u, type size %zu\n", i, m_size, sizeof(T)); return m_p[i]; } #if !BASISU_VECTOR_FORCE_CHECKING BASISU_FORCE_INLINE const T& front() const { assert(m_size); return m_p[0]; } BASISU_FORCE_INLINE T& front() { assert(m_size); return m_p[0]; } BASISU_FORCE_INLINE const T& back() const { assert(m_size); return m_p[m_size - 1]; } BASISU_FORCE_INLINE T& back() { assert(m_size); return m_p[m_size - 1]; } #else BASISU_FORCE_INLINE const T& front() const { if (!m_size) container_abort("front: vector is empty, type size %zu\n", sizeof(T)); return m_p[0]; } BASISU_FORCE_INLINE T& front() { if (!m_size) container_abort("front: vector is empty, type size %zu\n", sizeof(T)); return m_p[0]; } BASISU_FORCE_INLINE const T& back() const { if (!m_size) container_abort("back: vector is empty, type size %zu\n", sizeof(T)); return m_p[m_size - 1]; } BASISU_FORCE_INLINE T& back() { if (!m_size) container_abort("back: vector is empty, type size %zu\n", sizeof(T)); return m_p[m_size - 1]; } #endif BASISU_FORCE_INLINE const T* get_ptr() const { return m_p; } BASISU_FORCE_INLINE T* get_ptr() { return m_p; } BASISU_FORCE_INLINE const T* data() const { return m_p; } BASISU_FORCE_INLINE T* data() { return m_p; } // clear() sets the container to empty, then frees the allocated block. inline void clear() { if (m_p) { if (BASISU_HAS_DESTRUCTOR(T)) { scalar_type::destruct_array(m_p, m_size); } free(m_p); m_p = nullptr; m_size = 0; m_capacity = 0; } } inline void clear_no_destruction() { if (m_p) { free(m_p); m_p = nullptr; m_size = 0; m_capacity = 0; } } inline void reserve(size_t new_capacity) { if (!try_reserve(new_capacity)) container_abort("vector:reserve: try_reserve failed!\n"); } inline bool try_reserve(size_t new_capacity) { if (new_capacity > m_capacity) { if (!increase_capacity(new_capacity, false, true)) return false; } else if (new_capacity < m_capacity) { // Must work around the lack of a "decrease_capacity()" method. // This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize. vector tmp; if (!tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false, true)) return false; tmp = *this; swap(tmp); } return true; } // try_resize(0) sets the container to empty, but does not free the allocated block. inline bool try_resize(size_t new_size, bool grow_hint = false) { if (m_size != new_size) { if (new_size < m_size) { if (BASISU_HAS_DESTRUCTOR(T)) { scalar_type::destruct_array(m_p + new_size, m_size - new_size); } } else { if (new_size > m_capacity) { if (!increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint, true)) return false; } scalar_type::construct_array(m_p + m_size, new_size - m_size); } m_size = new_size; } return true; } // resize(0) sets the container to empty, but does not free the allocated block. inline void resize(size_t new_size, bool grow_hint = false) { if (!try_resize(new_size, grow_hint)) container_abort("vector::resize failed, new size %zu\n", new_size); } // If size >= capacity/2, reset() sets the container's size to 0 but doesn't free the allocated block (because the container may be similarly loaded in the future). // Otherwise it blows away the allocated block. See http://www.codercorner.com/blog/?p=494 inline void reset() { if (m_size >= (m_capacity >> 1)) resize(0); else clear(); } inline T* try_enlarge(size_t i) { size_t cur_size = m_size; if (add_overflow_check(cur_size, i)) return nullptr; if (!try_resize(cur_size + i, true)) return nullptr; return get_ptr() + cur_size; } inline T* enlarge(size_t i) { T* p = try_enlarge(i); if (!p) container_abort("vector::enlarge failed, amount %zu!\n", i); return p; } BASISU_FORCE_INLINE void push_back(const T& obj) { assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size))); if (m_size >= m_capacity) { if (add_overflow_check(m_size, 1)) container_abort("vector::push_back: vector too large\n"); increase_capacity(m_size + 1, true); } scalar_type::construct(m_p + m_size, obj); m_size++; } BASISU_FORCE_INLINE void push_back_value(T&& obj) { assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size))); if (m_size >= m_capacity) { if (add_overflow_check(m_size, 1)) container_abort("vector::push_back_value: vector too large\n"); increase_capacity(m_size + 1, true); } new ((void*)(m_p + m_size)) T(std::move(obj)); m_size++; } inline bool try_push_back(const T& obj) { assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size))); if (m_size >= m_capacity) { if (add_overflow_check(m_size, 1)) return false; if (!increase_capacity(m_size + 1, true, true)) return false; } scalar_type::construct(m_p + m_size, obj); m_size++; return true; } inline bool try_push_back(T&& obj) { assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size))); if (m_size >= m_capacity) { if (add_overflow_check(m_size, 1)) return false; if (!increase_capacity(m_size + 1, true, true)) return false; } new ((void*)(m_p + m_size)) T(std::move(obj)); m_size++; return true; } // obj is explictly passed in by value, not ref inline void push_back_value(T obj) { if (m_size >= m_capacity) { if (add_overflow_check(m_size, 1)) container_abort("vector::push_back_value: vector too large\n"); increase_capacity(m_size + 1, true); } scalar_type::construct(m_p + m_size, obj); m_size++; } // obj is explictly passed in by value, not ref inline bool try_push_back_value(T obj) { if (m_size >= m_capacity) { if (add_overflow_check(m_size, 1)) return false; if (!increase_capacity(m_size + 1, true, true)) return false; } scalar_type::construct(m_p + m_size, obj); m_size++; return true; } template BASISU_FORCE_INLINE void emplace_back(Args&&... args) { if (m_size >= m_capacity) { if (add_overflow_check(m_size, 1)) container_abort("vector::enlarge: vector too large\n"); increase_capacity(m_size + 1, true); } new ((void*)(m_p + m_size)) T(std::forward(args)...); // perfect forwarding m_size++; } template BASISU_FORCE_INLINE bool try_emplace_back(Args&&... args) { if (m_size >= m_capacity) { if (add_overflow_check(m_size, 1)) return false; if (!increase_capacity(m_size + 1, true, true)) return false; } new ((void*)(m_p + m_size)) T(std::forward(args)...); // perfect forwarding m_size++; return true; } inline void pop_back() { assert(m_size); if (m_size) { m_size--; scalar_type::destruct(&m_p[m_size]); } } inline bool try_insert(size_t index, const T* p, size_t n) { assert(index <= m_size); if (index > m_size) return false; if (!n) return true; const size_t orig_size = m_size; if (add_overflow_check(m_size, n)) return false; if (!try_resize(m_size + n, true)) return false; const size_t num_to_move = orig_size - index; if (BASISU_IS_BITWISE_COPYABLE(T)) { // This overwrites the destination object bits, but bitwise copyable means we don't need to worry about destruction. memmove(m_p + index + n, m_p + index, sizeof(T) * num_to_move); } else { const T* pSrc = m_p + orig_size - 1; T* pDst = const_cast(pSrc) + n; for (size_t i = 0; i < num_to_move; i++) { assert((uint64_t)(pDst - m_p) < (uint64_t)m_size); *pDst = std::move(*pSrc); pDst--; pSrc--; } } T* pDst = m_p + index; if (BASISU_IS_BITWISE_COPYABLE(T)) { // This copies in the new bits, overwriting the existing objects, which is OK for copyable types that don't need destruction. memcpy(pDst, p, sizeof(T) * n); } else { for (size_t i = 0; i < n; i++) { assert((uint64_t)(pDst - m_p) < (uint64_t)m_size); *pDst++ = *p++; } } return true; } inline void insert(size_t index, const T* p, size_t n) { if (!try_insert(index, p, n)) container_abort("vector::insert() failed!\n"); } inline bool try_insert(T* p, const T& obj) { if (p < begin()) { assert(0); return false; } uint64_t ofs = p - begin(); if (ofs > m_size) { assert(0); return false; } if ((size_t)ofs != ofs) { assert(0); return false; } return try_insert((size_t)ofs, &obj, 1); } inline void insert(T* p, const T& obj) { if (!try_insert(p, obj)) container_abort("vector::insert() failed!\n"); } // push_front() isn't going to be very fast - it's only here for usability. inline void push_front(const T& obj) { insert(0, &obj, 1); } inline bool try_push_front(const T& obj) { return try_insert(0, &obj, 1); } vector& append(const vector& other) { if (other.m_size) insert(m_size, &other[0], other.m_size); return *this; } bool try_append(const vector& other) { if (other.m_size) return try_insert(m_size, &other[0], other.m_size); return true; } vector& append(const T* p, size_t n) { if (n) insert(m_size, p, n); return *this; } bool try_append(const T* p, size_t n) { if (n) return try_insert(m_size, p, n); return true; } inline bool erase(size_t start, size_t n) { if (add_overflow_check(start, n)) { assert(0); return false; } assert((start + n) <= m_size); if ((start + n) > m_size) { assert(0); return false; } if (!n) return true; const size_t num_to_move = m_size - (start + n); T* pDst = m_p + start; const T* pSrc = m_p + start + n; if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T)) { // This test is overly cautious. if ((!BASISU_IS_BITWISE_COPYABLE(T)) || (BASISU_HAS_DESTRUCTOR(T))) { // Type has been marked explictly as bitwise movable, which means we can move them around but they may need to be destructed. // First destroy the erased objects. scalar_type::destruct_array(pDst, n); } // Copy "down" the objects to preserve, filling in the empty slots. #ifndef __EMSCRIPTEN__ #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wclass-memaccess" #endif #endif memmove(pDst, pSrc, num_to_move * sizeof(T)); #ifndef __EMSCRIPTEN__ #ifdef __GNUC__ #pragma GCC diagnostic pop #endif #endif } else { // Type is not bitwise copyable or movable. // Move them down one at a time by using the equals operator, and destroying anything that's left over at the end. T* pDst_end = pDst + num_to_move; while (pDst != pDst_end) { *pDst = std::move(*pSrc); ++pDst; ++pSrc; } scalar_type::destruct_array(pDst_end, n); } m_size -= n; return true; } inline bool erase_index(size_t index) { return erase(index, 1); } inline bool erase(T* p) { assert((p >= m_p) && (p < (m_p + m_size))); if (p < m_p) return false; return erase_index(static_cast(p - m_p)); } inline bool erase(T* pFirst, T* pEnd) { assert(pFirst <= pEnd); assert(pFirst >= begin() && pFirst <= end()); assert(pEnd >= begin() && pEnd <= end()); if ((pFirst < begin()) || (pEnd < pFirst)) { assert(0); return false; } uint64_t ofs = pFirst - begin(); if ((size_t)ofs != ofs) { assert(0); return false; } uint64_t n = pEnd - pFirst; if ((size_t)n != n) { assert(0); return false; } return erase((size_t)ofs, (size_t)n); } bool erase_unordered(size_t index) { if (index >= m_size) { assert(0); return false; } if ((index + 1) < m_size) { (*this)[index] = std::move(back()); } pop_back(); return true; } inline bool operator== (const vector& rhs) const { if (m_size != rhs.m_size) return false; else if (m_size) { if (scalar_type::cFlag) return memcmp(m_p, rhs.m_p, sizeof(T) * m_size) == 0; else { const T* pSrc = m_p; const T* pDst = rhs.m_p; for (size_t i = m_size; i; i--) if (!(*pSrc++ == *pDst++)) return false; } } return true; } inline bool operator< (const vector& rhs) const { const size_t min_size = helpers::minimum(m_size, rhs.m_size); const T* pSrc = m_p; const T* pSrc_end = m_p + min_size; const T* pDst = rhs.m_p; while ((pSrc < pSrc_end) && (*pSrc == *pDst)) { pSrc++; pDst++; } if (pSrc < pSrc_end) return *pSrc < *pDst; return m_size < rhs.m_size; } inline void swap(vector& other) { std::swap(m_p, other.m_p); std::swap(m_size, other.m_size); std::swap(m_capacity, other.m_capacity); } inline void sort() { std::sort(begin(), end()); } inline void unique() { if (!empty()) { sort(); resize(std::unique(begin(), end()) - begin()); } } inline void reverse() { const size_t j = m_size >> 1; for (size_t i = 0; i < j; i++) std::swap(m_p[i], m_p[m_size - 1 - i]); } inline bool find(const T& key, size_t &idx) const { idx = 0; const T* p = m_p; const T* p_end = m_p + m_size; size_t index = 0; while (p != p_end) { if (key == *p) { idx = index; return true; } p++; index++; } return false; } inline bool find_sorted(const T& key, size_t& idx) const { idx = 0; if (!m_size) return false; // Inclusive range size_t low = 0, high = m_size - 1; while (low <= high) { size_t mid = (size_t)(((uint64_t)low + (uint64_t)high) >> 1); const T* pTrial_key = m_p + mid; // Sanity check comparison operator assert(!((*pTrial_key < key) && (key < *pTrial_key))); if (*pTrial_key < key) { if (add_overflow_check(mid, 1)) break; low = mid + 1; } else if (key < *pTrial_key) { if (!mid) break; high = mid - 1; } else { idx = mid; return true; } } return false; } inline size_t count_occurences(const T& key) const { size_t c = 0; const T* p = m_p; const T* p_end = m_p + m_size; while (p != p_end) { if (key == *p) c++; p++; } return c; } inline void set_all(const T& o) { if ((sizeof(T) == 1) && (scalar_type::cFlag)) { #ifndef __EMSCRIPTEN__ #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wclass-memaccess" #endif #endif memset(m_p, *reinterpret_cast(&o), m_size); #ifndef __EMSCRIPTEN__ #ifdef __GNUC__ #pragma GCC diagnostic pop #endif #endif } else { T* pDst = m_p; T* pDst_end = pDst + m_size; while (pDst != pDst_end) *pDst++ = o; } } // Caller assumes ownership of the heap block associated with the container. Container is cleared. // Caller must use free() on the returned pointer. inline void* assume_ownership() { T* p = m_p; m_p = nullptr; m_size = 0; m_capacity = 0; return p; } // Caller is granting ownership of the indicated heap block. // Block must have size constructed elements, and have enough room for capacity elements. // The block must have been allocated using malloc(). // Important: This method is used in Basis Universal. If you change how this container allocates memory, you'll need to change any users of this method. inline bool grant_ownership(T* p, size_t size, size_t capacity) { // To prevent the caller from obviously shooting themselves in the foot. if (((p + capacity) > m_p) && (p < (m_p + m_capacity))) { // Can grant ownership of a block inside the container itself! assert(0); return false; } if (size > capacity) { assert(0); return false; } if (!p) { if (capacity) { assert(0); return false; } } else if (!capacity) { assert(0); return false; } clear(); m_p = p; m_size = size; m_capacity = capacity; return true; } readable_span get_readable_span() const { return readable_span(m_p, m_size); } writable_span get_writable_span() { return writable_span(m_p, m_size); } private: T* m_p; size_t m_size; // the number of constructed objects size_t m_capacity; // the size of the allocation template struct is_vector { enum { cFlag = false }; }; template struct is_vector< vector > { enum { cFlag = true }; }; static void object_mover(void* pDst_void, void* pSrc_void, size_t num) { T* pSrc = static_cast(pSrc_void); T* const pSrc_end = pSrc + num; T* pDst = static_cast(pDst_void); while (pSrc != pSrc_end) { new ((void*)(pDst)) T(std::move(*pSrc)); scalar_type::destruct(pSrc); ++pSrc; ++pDst; } } inline bool increase_capacity(size_t min_new_capacity, bool grow_hint, bool nofail = false) { return reinterpret_cast(this)->increase_capacity( min_new_capacity, grow_hint, sizeof(T), (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) || (is_vector::cFlag)) ? nullptr : object_mover, nofail); } }; template struct bitwise_movable< vector > { enum { cFlag = true }; }; // Hash map // rg TODO 9/8/2024: I've upgraded this class to support 64-bit size_t, and it needs a lot more testing. const uint32_t SIZE_T_BITS = sizeof(size_t) * 8U; inline uint32_t safe_shift_left(uint32_t v, uint32_t l) { return (l < 32U) ? (v << l) : 0; } inline uint64_t safe_shift_left(uint64_t v, uint32_t l) { return (l < 64U) ? (v << l) : 0; } template struct hasher { inline size_t operator() (const T& key) const { return static_cast(key); } }; template struct equal_to { inline bool operator()(const T& a, const T& b) const { return a == b; } }; // Important: The Hasher and Equals objects must be bitwise movable! template, typename Equals = equal_to > class hash_map { public: class iterator; class const_iterator; private: friend class iterator; friend class const_iterator; enum state { cStateInvalid = 0, cStateValid = 1 }; enum { cMinHashSize = 4U }; public: typedef hash_map hash_map_type; typedef std::pair value_type; typedef Key key_type; typedef Value referent_type; typedef Hasher hasher_type; typedef Equals equals_type; hash_map() : m_num_valid(0), m_grow_threshold(0), m_hash_shift(SIZE_T_BITS) { static_assert((SIZE_T_BITS == 32) || (SIZE_T_BITS == 64), "SIZE_T_BITS must be 32 or 64"); } hash_map(const hash_map& other) : m_values(other.m_values), m_num_valid(other.m_num_valid), m_grow_threshold(other.m_grow_threshold), m_hash_shift(other.m_hash_shift), m_hasher(other.m_hasher), m_equals(other.m_equals) { static_assert((SIZE_T_BITS == 32) || (SIZE_T_BITS == 64), "SIZE_T_BITS must be 32 or 64"); } hash_map(hash_map&& other) : m_values(std::move(other.m_values)), m_num_valid(other.m_num_valid), m_grow_threshold(other.m_grow_threshold), m_hash_shift(other.m_hash_shift), m_hasher(std::move(other.m_hasher)), m_equals(std::move(other.m_equals)) { static_assert((SIZE_T_BITS == 32) || (SIZE_T_BITS == 64), "SIZE_T_BITS must be 32 or 64"); other.m_hash_shift = SIZE_T_BITS; other.m_num_valid = 0; other.m_grow_threshold = 0; } hash_map& operator= (const hash_map& other) { if (this == &other) return *this; clear(); m_values = other.m_values; m_hash_shift = other.m_hash_shift; m_num_valid = other.m_num_valid; m_grow_threshold = other.m_grow_threshold; m_hasher = other.m_hasher; m_equals = other.m_equals; return *this; } hash_map& operator= (hash_map&& other) { if (this == &other) return *this; clear(); m_values = std::move(other.m_values); m_hash_shift = other.m_hash_shift; m_num_valid = other.m_num_valid; m_grow_threshold = other.m_grow_threshold; m_hasher = std::move(other.m_hasher); m_equals = std::move(other.m_equals); other.m_hash_shift = SIZE_T_BITS; other.m_num_valid = 0; other.m_grow_threshold = 0; return *this; } inline ~hash_map() { clear(); } inline const Equals& get_equals() const { return m_equals; } inline Equals& get_equals() { return m_equals; } inline void set_equals(const Equals& equals) { m_equals = equals; } inline const Hasher& get_hasher() const { return m_hasher; } inline Hasher& get_hasher() { return m_hasher; } inline void set_hasher(const Hasher& hasher) { m_hasher = hasher; } inline void clear() { if (m_values.empty()) return; if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value)) { node* p = &get_node(0); node* p_end = p + m_values.size(); size_t num_remaining = m_num_valid; while (p != p_end) { if (p->state) { destruct_value_type(p); num_remaining--; if (!num_remaining) break; } p++; } } m_values.clear_no_destruction(); m_hash_shift = SIZE_T_BITS; m_num_valid = 0; m_grow_threshold = 0; } inline void reset() { if (!m_num_valid) return; if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value)) { node* p = &get_node(0); node* p_end = p + m_values.size(); size_t num_remaining = m_num_valid; while (p != p_end) { if (p->state) { destruct_value_type(p); p->state = cStateInvalid; num_remaining--; if (!num_remaining) break; } p++; } } else if (sizeof(node) <= 16) { memset(&m_values[0], 0, m_values.size_in_bytes()); } else { node* p = &get_node(0); node* p_end = p + m_values.size(); size_t num_remaining = m_num_valid; while (p != p_end) { if (p->state) { p->state = cStateInvalid; num_remaining--; if (!num_remaining) break; } p++; } } m_num_valid = 0; } inline size_t size() { return m_num_valid; } inline size_t get_table_size() { return m_values.size(); } inline bool empty() { return !m_num_valid; } inline bool reserve(size_t new_capacity) { if (!new_capacity) return true; uint64_t new_hash_size = new_capacity; new_hash_size = new_hash_size * 2ULL; if (!helpers::is_power_of_2(new_hash_size)) new_hash_size = helpers::next_pow2(new_hash_size); new_hash_size = helpers::maximum(cMinHashSize, new_hash_size); if (!can_fit_into_size_t(new_hash_size)) { assert(0); return false; } assert(new_hash_size >= new_capacity); if (new_hash_size <= m_values.size()) return true; return rehash((size_t)new_hash_size); } class iterator { friend class hash_map; friend class hash_map::const_iterator; public: inline iterator() : m_pTable(nullptr), m_index(0) { } inline iterator(hash_map_type& table, size_t index) : m_pTable(&table), m_index(index) { } inline iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } inline iterator& operator= (const iterator& other) { m_pTable = other.m_pTable; m_index = other.m_index; return *this; } // post-increment inline iterator operator++(int) { iterator result(*this); ++*this; return result; } // pre-increment inline iterator& operator++() { probe(); return *this; } inline value_type& operator*() const { return *get_cur(); } inline value_type* operator->() const { return get_cur(); } inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } inline bool operator != (const iterator& b) const { return !(*this == b); } inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } inline bool operator != (const const_iterator& b) const { return !(*this == b); } private: hash_map_type* m_pTable; size_t m_index; inline value_type* get_cur() const { assert(m_pTable && (m_index < m_pTable->m_values.size())); assert(m_pTable->get_node_state(m_index) == cStateValid); return &m_pTable->get_node(m_index); } inline void probe() { assert(m_pTable); m_index = m_pTable->find_next(m_index); } }; class const_iterator { friend class hash_map; friend class hash_map::iterator; public: inline const_iterator() : m_pTable(nullptr), m_index(0) { } inline const_iterator(const hash_map_type& table, size_t index) : m_pTable(&table), m_index(index) { } inline const_iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } inline const_iterator(const const_iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } inline const_iterator& operator= (const const_iterator& other) { m_pTable = other.m_pTable; m_index = other.m_index; return *this; } inline const_iterator& operator= (const iterator& other) { m_pTable = other.m_pTable; m_index = other.m_index; return *this; } // post-increment inline const_iterator operator++(int) { const_iterator result(*this); ++*this; return result; } // pre-increment inline const_iterator& operator++() { probe(); return *this; } inline const value_type& operator*() const { return *get_cur(); } inline const value_type* operator->() const { return get_cur(); } inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } inline bool operator != (const const_iterator& b) const { return !(*this == b); } inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } inline bool operator != (const iterator& b) const { return !(*this == b); } private: const hash_map_type* m_pTable; size_t m_index; inline const value_type* get_cur() const { assert(m_pTable && (m_index < m_pTable->m_values.size())); assert(m_pTable->get_node_state(m_index) == cStateValid); return &m_pTable->get_node(m_index); } inline void probe() { assert(m_pTable); m_index = m_pTable->find_next(m_index); } }; inline const_iterator begin() const { if (!m_num_valid) return end(); return const_iterator(*this, find_next(std::numeric_limits::max())); } inline const_iterator end() const { return const_iterator(*this, m_values.size()); } inline iterator begin() { if (!m_num_valid) return end(); return iterator(*this, find_next(std::numeric_limits::max())); } inline iterator end() { return iterator(*this, m_values.size()); } // insert_result.first will always point to inserted key/value (or the already existing key/value). // insert_result.second will be true if a new key/value was inserted, or false if the key already existed (in which case first will point to the already existing value). typedef std::pair insert_result; inline insert_result insert(const Key& k, const Value& v = Value()) { insert_result result; if (!insert_no_grow(result, k, v)) { if (!try_grow()) container_abort("hash_map::try_grow() failed"); // This must succeed. if (!insert_no_grow(result, k, v)) container_abort("hash_map::insert() failed"); } return result; } inline bool try_insert(insert_result& result, const Key& k, const Value& v = Value()) { if (!insert_no_grow(result, k, v)) { if (!try_grow()) return false; if (!insert_no_grow(result, k, v)) return false; } return true; } inline insert_result insert(Key&& k, Value&& v = Value()) { insert_result result; if (!insert_no_grow_move(result, std::move(k), std::move(v))) { if (!try_grow()) container_abort("hash_map::try_grow() failed"); // This must succeed. if (!insert_no_grow_move(result, std::move(k), std::move(v))) container_abort("hash_map::insert() failed"); } return result; } inline bool try_insert(insert_result& result, Key&& k, Value&& v = Value()) { if (!insert_no_grow_move(result, std::move(k), std::move(v))) { if (!try_grow()) return false; if (!insert_no_grow_move(result, std::move(k), std::move(v))) return false; } return true; } inline insert_result insert(const value_type& v) { return insert(v.first, v.second); } inline bool try_insert(insert_result& result, const value_type& v) { return try_insert(result, v.first, v.second); } inline insert_result insert(value_type&& v) { return insert(std::move(v.first), std::move(v.second)); } inline bool try_insert(insert_result& result, value_type&& v) { return try_insert(result, std::move(v.first), std::move(v.second)); } inline const_iterator find(const Key& k) const { return const_iterator(*this, find_index(k)); } inline iterator find(const Key& k) { return iterator(*this, find_index(k)); } inline bool contains(const Key& k) const { const size_t idx = find_index(k); return idx != m_values.size(); } inline bool erase(const Key& k) { size_t i = find_index(k); if (i >= m_values.size()) return false; node* pDst = &get_node(i); destruct_value_type(pDst); pDst->state = cStateInvalid; m_num_valid--; for (; ; ) { size_t r, j = i; node* pSrc = pDst; do { if (!i) { i = m_values.size() - 1; pSrc = &get_node(i); } else { i--; pSrc--; } if (!pSrc->state) return true; r = hash_key(pSrc->first); } while ((i <= r && r < j) || (r < j && j < i) || (j < i && i <= r)); move_node(pDst, pSrc); pDst = pSrc; } } inline void swap(hash_map_type& other) { m_values.swap(other.m_values); std::swap(m_hash_shift, other.m_hash_shift); std::swap(m_num_valid, other.m_num_valid); std::swap(m_grow_threshold, other.m_grow_threshold); std::swap(m_hasher, other.m_hasher); std::swap(m_equals, other.m_equals); } private: struct node : public value_type { uint8_t state; }; static inline void construct_value_type(value_type* pDst, const Key& k, const Value& v) { if (BASISU_IS_BITWISE_COPYABLE(Key)) memcpy(&pDst->first, &k, sizeof(Key)); else scalar_type::construct(&pDst->first, k); if (BASISU_IS_BITWISE_COPYABLE(Value)) memcpy(&pDst->second, &v, sizeof(Value)); else scalar_type::construct(&pDst->second, v); } static inline void construct_value_type(value_type* pDst, const value_type* pSrc) { if ((BASISU_IS_BITWISE_COPYABLE(Key)) && (BASISU_IS_BITWISE_COPYABLE(Value))) { memcpy(pDst, pSrc, sizeof(value_type)); } else { if (BASISU_IS_BITWISE_COPYABLE(Key)) memcpy(&pDst->first, &pSrc->first, sizeof(Key)); else scalar_type::construct(&pDst->first, pSrc->first); if (BASISU_IS_BITWISE_COPYABLE(Value)) memcpy(&pDst->second, &pSrc->second, sizeof(Value)); else scalar_type::construct(&pDst->second, pSrc->second); } } static inline void destruct_value_type(value_type* p) { scalar_type::destruct(&p->first); scalar_type::destruct(&p->second); } // Moves nodes *pSrc to *pDst efficiently from one hashmap to another. // pDst should NOT be constructed on entry. static inline void move_node(node* pDst, node* pSrc, bool update_src_state = true) { assert(!pDst->state); if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key) && BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value)) { memcpy(pDst, pSrc, sizeof(node)); assert(pDst->state == cStateValid); } else { if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key)) memcpy(&pDst->first, &pSrc->first, sizeof(Key)); else { new ((void*)&pDst->first) Key(std::move(pSrc->first)); scalar_type::destruct(&pSrc->first); } if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value)) memcpy(&pDst->second, &pSrc->second, sizeof(Value)); else { new ((void*)&pDst->second) Value(std::move(pSrc->second)); scalar_type::destruct(&pSrc->second); } pDst->state = cStateValid; } if (update_src_state) pSrc->state = cStateInvalid; } struct raw_node { inline raw_node() { node* p = reinterpret_cast(this); p->state = cStateInvalid; } // In practice, this should never be called (right?). We manage destruction ourselves. inline ~raw_node() { node* p = reinterpret_cast(this); if (p->state) hash_map_type::destruct_value_type(p); } inline raw_node(const raw_node& other) { node* pDst = reinterpret_cast(this); const node* pSrc = reinterpret_cast(&other); if (pSrc->state) { hash_map_type::construct_value_type(pDst, pSrc); pDst->state = cStateValid; } else pDst->state = cStateInvalid; } inline raw_node& operator= (const raw_node& rhs) { if (this == &rhs) return *this; node* pDst = reinterpret_cast(this); const node* pSrc = reinterpret_cast(&rhs); if (pSrc->state) { if (pDst->state) { pDst->first = pSrc->first; pDst->second = pSrc->second; } else { hash_map_type::construct_value_type(pDst, pSrc); pDst->state = cStateValid; } } else if (pDst->state) { hash_map_type::destruct_value_type(pDst); pDst->state = cStateInvalid; } return *this; } uint8_t m_bits[sizeof(node)]; }; typedef basisu::vector node_vector; node_vector m_values; size_t m_num_valid; size_t m_grow_threshold; uint32_t m_hash_shift; Hasher m_hasher; Equals m_equals; inline size_t hash_key(const Key& k) const { assert((safe_shift_left(static_cast(1), (SIZE_T_BITS - m_hash_shift))) == m_values.size()); // Fibonacci hashing if (SIZE_T_BITS == 32) { assert(m_hash_shift != 32); uint32_t hash = static_cast(m_hasher(k)); hash = (2654435769U * hash) >> m_hash_shift; assert(hash < m_values.size()); return (size_t)hash; } else { assert(m_hash_shift != 64); uint64_t hash = static_cast(m_hasher(k)); hash = (0x9E3779B97F4A7C15ULL * hash) >> m_hash_shift; assert(hash < m_values.size()); return (size_t)hash; } } inline const node& get_node(size_t index) const { return *reinterpret_cast(&m_values[index]); } inline node& get_node(size_t index) { return *reinterpret_cast(&m_values[index]); } inline state get_node_state(size_t index) const { return static_cast(get_node(index).state); } inline void set_node_state(size_t index, bool valid) { get_node(index).state = valid; } inline bool try_grow() { uint64_t n = m_values.size() * 2ULL; if (!helpers::is_power_of_2(n)) n = helpers::next_pow2(n); if (!can_fit_into_size_t(n)) { assert(0); return false; } return rehash(helpers::maximum(cMinHashSize, (size_t)n)); } // new_hash_size must be a power of 2. inline bool rehash(size_t new_hash_size) { if (!helpers::is_power_of_2((uint64_t)new_hash_size)) { assert(0); return false; } if (new_hash_size < m_num_valid) { assert(0); return false; } if (new_hash_size == m_values.size()) return true; hash_map new_map; if (!new_map.m_values.try_resize(new_hash_size)) return false; new_map.m_hash_shift = SIZE_T_BITS - helpers::floor_log2i((uint64_t)new_hash_size); assert(new_hash_size == safe_shift_left(static_cast(1), SIZE_T_BITS - new_map.m_hash_shift)); new_map.m_grow_threshold = std::numeric_limits::max(); node* pNode = reinterpret_cast(m_values.begin()); node* pNode_end = pNode + m_values.size(); while (pNode != pNode_end) { if (pNode->state) { new_map.move_into(pNode); if (new_map.m_num_valid == m_num_valid) break; } pNode++; } new_map.m_grow_threshold = new_hash_size >> 1U; if (new_hash_size & 1) new_map.m_grow_threshold++; m_values.clear_no_destruction(); m_hash_shift = SIZE_T_BITS; swap(new_map); return true; } inline size_t find_next(size_t index) const { index++; if (index >= m_values.size()) return index; const node* pNode = &get_node(index); for (; ; ) { if (pNode->state) break; if (++index >= m_values.size()) break; pNode++; } return index; } inline size_t find_index(const Key& k) const { if (m_num_valid) { size_t index = hash_key(k); const node* pNode = &get_node(index); if (pNode->state) { if (m_equals(pNode->first, k)) return index; const size_t orig_index = index; for (; ; ) { if (!index) { index = m_values.size() - 1; pNode = &get_node(index); } else { index--; pNode--; } if (index == orig_index) break; if (!pNode->state) break; if (m_equals(pNode->first, k)) return index; } } } return m_values.size(); } inline bool insert_no_grow(insert_result& result, const Key& k, const Value& v) { if (!m_values.size()) return false; size_t index = hash_key(k); node* pNode = &get_node(index); if (pNode->state) { if (m_equals(pNode->first, k)) { result.first = iterator(*this, index); result.second = false; return true; } const size_t orig_index = index; for (; ; ) { if (!index) { index = m_values.size() - 1; pNode = &get_node(index); } else { index--; pNode--; } if (orig_index == index) return false; if (!pNode->state) break; if (m_equals(pNode->first, k)) { result.first = iterator(*this, index); result.second = false; return true; } } } if (m_num_valid >= m_grow_threshold) return false; construct_value_type(pNode, k, v); pNode->state = cStateValid; m_num_valid++; assert(m_num_valid <= m_values.size()); result.first = iterator(*this, index); result.second = true; return true; } // Move user supplied key/value into a node. static inline void move_value_type(value_type* pDst, Key&& k, Value&& v) { // Not checking for is MOVABLE because the caller could later destruct k and/or v (what state do we set them to?) if (BASISU_IS_BITWISE_COPYABLE(Key)) { memcpy(&pDst->first, &k, sizeof(Key)); } else { new ((void*)&pDst->first) Key(std::move(k)); // No destruction - user will do that (we don't own k). } if (BASISU_IS_BITWISE_COPYABLE(Value)) { memcpy(&pDst->second, &v, sizeof(Value)); } else { new ((void*)&pDst->second) Value(std::move(v)); // No destruction - user will do that (we don't own v). } } // Insert user provided k/v, by moving, into the current hash table inline bool insert_no_grow_move(insert_result& result, Key&& k, Value&& v) { if (!m_values.size()) return false; size_t index = hash_key(k); node* pNode = &get_node(index); if (pNode->state) { if (m_equals(pNode->first, k)) { result.first = iterator(*this, index); result.second = false; return true; } const size_t orig_index = index; for (; ; ) { if (!index) { index = m_values.size() - 1; pNode = &get_node(index); } else { index--; pNode--; } if (orig_index == index) return false; if (!pNode->state) break; if (m_equals(pNode->first, k)) { result.first = iterator(*this, index); result.second = false; return true; } } } if (m_num_valid >= m_grow_threshold) return false; move_value_type(pNode, std::move(k), std::move(v)); pNode->state = cStateValid; m_num_valid++; assert(m_num_valid <= m_values.size()); result.first = iterator(*this, index); result.second = true; return true; } // Insert pNode by moving into the current hash table inline void move_into(node* pNode) { size_t index = hash_key(pNode->first); node* pDst_node = &get_node(index); if (pDst_node->state) { const size_t orig_index = index; for (; ; ) { if (!index) { index = m_values.size() - 1; pDst_node = &get_node(index); } else { index--; pDst_node--; } if (index == orig_index) { assert(false); return; } if (!pDst_node->state) break; } } // No need to update the source node's state (it's going away) move_node(pDst_node, pNode, false); m_num_valid++; } }; template struct bitwise_movable< hash_map > { enum { cFlag = true }; }; #if BASISU_HASHMAP_TEST extern void hash_map_test(); #endif // String formatting inline std::string string_format(const char* pFmt, ...) { char buf[2048]; va_list args; va_start(args, pFmt); #ifdef _WIN32 vsprintf_s(buf, sizeof(buf), pFmt, args); #else vsnprintf(buf, sizeof(buf), pFmt, args); #endif va_end(args); return std::string(buf); } enum class variant_type { cInvalid, cI32, cU32, cI64, cU64, cFlt, cDbl, cBool, cStrPtr, cStdStr }; struct fmt_variant { union { int32_t m_i32; uint32_t m_u32; int64_t m_i64; uint64_t m_u64; float m_flt; double m_dbl; bool m_bool; const char* m_pStr; }; std::string m_str; variant_type m_type; inline fmt_variant() : m_u64(0), m_type(variant_type::cInvalid) { } inline fmt_variant(const fmt_variant& other) : m_u64(other.m_u64), m_str(other.m_str), m_type(other.m_type) { } inline fmt_variant(fmt_variant&& other) : m_u64(other.m_u64), m_str(std::move(other.m_str)), m_type(other.m_type) { other.m_type = variant_type::cInvalid; other.m_u64 = 0; } inline fmt_variant& operator= (fmt_variant&& other) { if (this == &other) return *this; m_type = other.m_type; m_u64 = other.m_u64; m_str = std::move(other.m_str); other.m_type = variant_type::cInvalid; other.m_u64 = 0; return *this; } inline fmt_variant& operator= (const fmt_variant& rhs) { if (this == &rhs) return *this; m_u64 = rhs.m_u64; m_type = rhs.m_type; m_str = rhs.m_str; return *this; } inline fmt_variant(int32_t v) : m_i32(v), m_type(variant_type::cI32) { } inline fmt_variant(uint32_t v) : m_u32(v), m_type(variant_type::cU32) { } inline fmt_variant(int64_t v) : m_i64(v), m_type(variant_type::cI64) { } inline fmt_variant(uint64_t v) : m_u64(v), m_type(variant_type::cU64) { } #ifdef _MSC_VER inline fmt_variant(unsigned long v) : m_u64(v), m_type(variant_type::cU64) {} inline fmt_variant(long v) : m_i64(v), m_type(variant_type::cI64) {} #endif inline fmt_variant(float v) : m_flt(v), m_type(variant_type::cFlt) { } inline fmt_variant(double v) : m_dbl(v), m_type(variant_type::cDbl) { } inline fmt_variant(const char* pStr) : m_pStr(pStr), m_type(variant_type::cStrPtr) { } inline fmt_variant(const std::string& str) : m_u64(0), m_str(str), m_type(variant_type::cStdStr) { } inline fmt_variant(bool val) : m_bool(val), m_type(variant_type::cBool) { } bool to_string(std::string& res, std::string& fmt) const; }; typedef basisu::vector fmt_variant_vec; bool fmt_variants(std::string& res, const char* pFmt, const fmt_variant_vec& variants); template inline bool fmt_string(std::string& res, const char* pFmt, Args&&... args) { return fmt_variants(res, pFmt, fmt_variant_vec{ fmt_variant(std::forward(args))... }); } template inline std::string fmt_string(const char* pFmt, Args&&... args) { std::string res; fmt_variants(res, pFmt, fmt_variant_vec{ fmt_variant(std::forward(args))... }); return res; } template inline int fmt_printf(const char* pFmt, Args&&... args) { std::string res; if (!fmt_variants(res, pFmt, fmt_variant_vec{ fmt_variant(std::forward(args))... })) return EOF; return fputs(res.c_str(), stdout); } template inline int fmt_fprintf(FILE* pFile, const char* pFmt, Args&&... args) { std::string res; if (!fmt_variants(res, pFmt, fmt_variant_vec{ fmt_variant(std::forward(args))... })) return EOF; return fputs(res.c_str(), pFile); } // fixed_array - zero initialized by default, operator[] is always bounds checked. template class fixed_array { static_assert(N >= 1, "fixed_array size must be at least 1"); public: using value_type = T; using size_type = std::size_t; using difference_type = std::ptrdiff_t; using reference = T&; using const_reference = const T&; using pointer = T*; using const_pointer = const T*; using iterator = T*; using const_iterator = const T*; T m_data[N]; BASISU_FORCE_INLINE fixed_array() { initialize_array(); } BASISU_FORCE_INLINE fixed_array(std::initializer_list list) { assert(list.size() <= N); std::size_t copy_size = std::min(list.size(), N); std::copy_n(list.begin(), copy_size, m_data); // Copy up to min(list.size(), N) if (list.size() < N) { // Initialize the rest of the array std::fill(m_data + copy_size, m_data + N, T{}); } } BASISU_FORCE_INLINE T& operator[](std::size_t index) { if (index >= N) container_abort("fixed_array: Index out of bounds."); return m_data[index]; } BASISU_FORCE_INLINE const T& operator[](std::size_t index) const { if (index >= N) container_abort("fixed_array: Index out of bounds."); return m_data[index]; } BASISU_FORCE_INLINE T* begin() { return m_data; } BASISU_FORCE_INLINE const T* begin() const { return m_data; } BASISU_FORCE_INLINE T* end() { return m_data + N; } BASISU_FORCE_INLINE const T* end() const { return m_data + N; } BASISU_FORCE_INLINE const T* data() const { return m_data; } BASISU_FORCE_INLINE T* data() { return m_data; } BASISU_FORCE_INLINE const T& front() const { return m_data[0]; } BASISU_FORCE_INLINE T& front() { return m_data[0]; } BASISU_FORCE_INLINE const T& back() const { return m_data[N - 1]; } BASISU_FORCE_INLINE T& back() { return m_data[N - 1]; } BASISU_FORCE_INLINE constexpr std::size_t size() const { return N; } BASISU_FORCE_INLINE void clear() { initialize_array(); // Reinitialize the array } BASISU_FORCE_INLINE void set_all(const T& value) { std::fill(m_data, m_data + N, value); } BASISU_FORCE_INLINE readable_span get_readable_span() const { return readable_span(m_data, N); } BASISU_FORCE_INLINE writable_span get_writable_span() { return writable_span(m_data, N); } private: BASISU_FORCE_INLINE void initialize_array() { if constexpr (std::is_integral::value || std::is_floating_point::value) memset(m_data, 0, sizeof(m_data)); else std::fill(m_data, m_data + N, T{}); } BASISU_FORCE_INLINE T& access_element(std::size_t index) { if (index >= N) container_abort("fixed_array: Index out of bounds."); return m_data[index]; } BASISU_FORCE_INLINE const T& access_element(std::size_t index) const { if (index >= N) container_abort("fixed_array: Index out of bounds."); return m_data[index]; } }; // 2D array template class vector2D { typedef basisu::vector vec_type; uint32_t m_width, m_height; vec_type m_values; public: vector2D() : m_width(0), m_height(0) { } vector2D(uint32_t w, uint32_t h) : m_width(0), m_height(0) { resize(w, h); } vector2D(const vector2D& other) { *this = other; } vector2D(vector2D&& other) : m_width(0), m_height(0) { *this = std::move(other); } vector2D& operator= (const vector2D& other) { if (this != &other) { m_width = other.m_width; m_height = other.m_height; m_values = other.m_values; } return *this; } vector2D& operator= (vector2D&& other) { if (this != &other) { m_width = other.m_width; m_height = other.m_height; m_values = std::move(other.m_values); other.m_width = 0; other.m_height = 0; } return *this; } inline bool operator== (const vector2D& rhs) const { return (m_width == rhs.m_width) && (m_height == rhs.m_height) && (m_values == rhs.m_values); } inline size_t size_in_bytes() const { return m_values.size_in_bytes(); } inline uint32_t get_width() const { return m_width; } inline uint32_t get_height() const { return m_height; } inline const T& operator() (uint32_t x, uint32_t y) const { assert(x < m_width && y < m_height); return m_values[x + y * m_width]; } inline T& operator() (uint32_t x, uint32_t y) { assert(x < m_width && y < m_height); return m_values[x + y * m_width]; } inline size_t size() const { return m_values.size(); } inline const T& operator[] (uint32_t i) const { return m_values[i]; } inline T& operator[] (uint32_t i) { return m_values[i]; } inline const T& at_clamped(int x, int y) const { return (*this)(clamp(x, 0, m_width - 1), clamp(y, 0, m_height - 1)); } inline T& at_clamped(int x, int y) { return (*this)(clamp(x, 0, m_width - 1), clamp(y, 0, m_height - 1)); } void clear() { m_width = 0; m_height = 0; m_values.clear(); } void set_all(const T& val) { vector_set_all(m_values, val); } inline const T* get_ptr() const { return m_values.data(); } inline T* get_ptr() { return m_values.data(); } vector2D& resize(uint32_t new_width, uint32_t new_height) { if ((m_width == new_width) && (m_height == new_height)) return *this; const uint64_t total_vals = (uint64_t)new_width * new_height; if (!can_fit_into_size_t(total_vals)) { // What can we do? assert(0); return *this; } vec_type oldVals((size_t)total_vals); oldVals.swap(m_values); const uint32_t w = minimum(m_width, new_width); const uint32_t h = minimum(m_height, new_height); if ((w) && (h)) { for (uint32_t y = 0; y < h; y++) for (uint32_t x = 0; x < w; x++) m_values[x + y * new_width] = oldVals[x + y * m_width]; } m_width = new_width; m_height = new_height; return *this; } bool try_resize(uint32_t new_width, uint32_t new_height) { if ((m_width == new_width) && (m_height == new_height)) return true; const uint64_t total_vals = (uint64_t)new_width * new_height; if (!can_fit_into_size_t(total_vals)) { // What can we do? assert(0); return false; } vec_type oldVals; if (!oldVals.try_resize((size_t)total_vals)) return false; oldVals.swap(m_values); const uint32_t w = minimum(m_width, new_width); const uint32_t h = minimum(m_height, new_height); if ((w) && (h)) { for (uint32_t y = 0; y < h; y++) for (uint32_t x = 0; x < w; x++) m_values[x + y * new_width] = oldVals[x + y * m_width]; } m_width = new_width; m_height = new_height; return true; } const vector2D& extract_block_clamped(T* pDst, uint32_t src_x, uint32_t src_y, uint32_t w, uint32_t h) const { // HACK HACK if (((src_x + w) > m_width) || ((src_y + h) > m_height)) { // Slower clamping case for (uint32_t y = 0; y < h; y++) for (uint32_t x = 0; x < w; x++) *pDst++ = at_clamped(src_x + x, src_y + y); } else { const T* pSrc = &m_values[src_x + src_y * m_width]; for (uint32_t y = 0; y < h; y++) { memcpy(pDst, pSrc, w * sizeof(T)); pSrc += m_width; pDst += w; } } return *this; } }; } // namespace basisu namespace std { template inline void swap(basisu::vector& a, basisu::vector& b) { a.swap(b); } template inline void swap(basisu::hash_map& a, basisu::hash_map& b) { a.swap(b); } } // namespace std