2
0

sha256.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070
  1. /*
  2. * FILE: sha256.c
  3. * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
  4. *
  5. * Copyright (c) 2000-2001, Aaron D. Gifford
  6. * All rights reserved.
  7. *
  8. * Redistribution and use in source and binary forms, with or without
  9. * modification, are permitted provided that the following conditions
  10. * are met:
  11. * 1. Redistributions of source code must retain the above copyright
  12. * notice, this list of conditions and the following disclaimer.
  13. * 2. Redistributions in binary form must reproduce the above copyright
  14. * notice, this list of conditions and the following disclaimer in the
  15. * documentation and/or other materials provided w627ith the distribution.
  16. * 3. Neither the name of the copyright holder nor the names of contributors
  17. * may be used to endorse or promote products derived from this software
  18. * without specific prior written permission.
  19. *
  20. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
  21. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  22. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  23. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
  24. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  25. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  26. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  27. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  28. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  29. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  30. * SUCH DAMAGE.
  31. *
  32. * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
  33. */
  34. #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
  35. #include <assert.h> /* assert() */
  36. #include "sha256.h"
  37. /* discover byte order on solaris */
  38. #if defined(__SVR4) || defined(__sun)
  39. #include <sys/isa_defs.h>
  40. #define BYTE_ORDER _BYTE_ORDER
  41. #endif
  42. /*
  43. * ASSERT NOTE:
  44. * Some sanity checking code is included using assert(). On my FreeBSD
  45. * system, this additional code can be removed by compiling with NDEBUG
  46. * defined. Check your own systems manpage on assert() to see how to
  47. * compile WITHOUT the sanity checking code on your system.
  48. *
  49. * UNROLLED TRANSFORM LOOP NOTE:
  50. * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
  51. * loop version for the hash transform rounds (defined using macros
  52. * later in this file). Either define on the command line, for example:
  53. *
  54. * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
  55. *
  56. * or define below:
  57. *
  58. * #define SHA2_UNROLL_TRANSFORM
  59. *
  60. */
  61. /*** SHA-256/384/512 Machine Architecture Definitions *****************/
  62. /*
  63. * BYTE_ORDER NOTE:
  64. *
  65. * Please make sure that your system defines BYTE_ORDER. If your
  66. * architecture is little-endian, make sure it also defines
  67. * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
  68. * equivilent.
  69. *
  70. * If your system does not define the above, then you can do so by
  71. * hand like this:
  72. *
  73. * #define LITTLE_ENDIAN 1234
  74. * #define BIG_ENDIAN 4321
  75. *
  76. * And for little-endian machines, add:
  77. *
  78. * #define BYTE_ORDER LITTLE_ENDIAN
  79. *
  80. * Or for big-endian machines:
  81. *
  82. * #define BYTE_ORDER BIG_ENDIAN
  83. *
  84. * The FreeBSD machine this was written on defines BYTE_ORDER
  85. * appropriately by including <sys/types.h> (which in turn includes
  86. * <machine/endian.h> where the appropriate definitions are actually
  87. * made).
  88. */
  89. #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
  90. #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
  91. #endif
  92. /*
  93. * Define the followingsha2_* types to types of the correct length on
  94. * the native archtecture. Most BSD systems and Linux define u_intXX_t
  95. * types. Machines with very recent ANSI C headers, can use the
  96. * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
  97. * during compile or in the sha.h header file.
  98. *
  99. * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
  100. * will need to define these three typedefs below (and the appropriate
  101. * ones in sha.h too) by hand according to their system architecture.
  102. *
  103. * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
  104. * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
  105. */
  106. #ifdef SHA2_USE_INTTYPES_H
  107. typedef uint8_t sha2_byte; /* Exactly 1 byte */
  108. typedef uint32_t sha2_word32; /* Exactly 4 bytes */
  109. typedef uint64_t sha2_word64; /* Exactly 8 bytes */
  110. #else /* SHA2_USE_INTTYPES_H */
  111. typedef u_int8_t sha2_byte; /* Exactly 1 byte */
  112. typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
  113. typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
  114. #endif /* SHA2_USE_INTTYPES_H */
  115. /*** SHA-256/384/512 Various Length Definitions ***********************/
  116. /* NOTE: Most of these are in sha2.h */
  117. #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
  118. #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
  119. #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
  120. /*** ENDIAN REVERSAL MACROS *******************************************/
  121. #if BYTE_ORDER == LITTLE_ENDIAN
  122. #define REVERSE32(w,x) { \
  123. sha2_word32 tmp = (w); \
  124. tmp = (tmp >> 16) | (tmp << 16); \
  125. (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
  126. }
  127. #define REVERSE64(w,x) { \
  128. sha2_word64 tmp = (w); \
  129. tmp = (tmp >> 32) | (tmp << 32); \
  130. tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
  131. ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
  132. (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
  133. ((tmp & 0x0000ffff0000ffffULL) << 16); \
  134. }
  135. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  136. /*
  137. * Macro for incrementally adding the unsigned 64-bit integer n to the
  138. * unsigned 128-bit integer (represented using a two-element array of
  139. * 64-bit words):
  140. */
  141. #define ADDINC128(w,n) { \
  142. (w)[0] += (sha2_word64)(n); \
  143. if ((w)[0] < (n)) { \
  144. (w)[1]++; \
  145. } \
  146. }
  147. /*
  148. * Macros for copying blocks of memory and for zeroing out ranges
  149. * of memory. Using these macros makes it easy to switch from
  150. * using memset()/memcpy() and using bzero()/bcopy().
  151. *
  152. * Please define either SHA2_USE_MEMSET_MEMCPY or define
  153. * SHA2_USE_BZERO_BCOPY depending on which function set you
  154. * choose to use:
  155. */
  156. #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
  157. /* Default to memset()/memcpy() if no option is specified */
  158. #define SHA2_USE_MEMSET_MEMCPY 1
  159. #endif
  160. #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
  161. /* Abort with an error if BOTH options are defined */
  162. #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
  163. #endif
  164. #ifdef SHA2_USE_MEMSET_MEMCPY
  165. #define MEMSET_BZERO(p,l) memset((p), 0, (l))
  166. #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
  167. #endif
  168. #ifdef SHA2_USE_BZERO_BCOPY
  169. #define MEMSET_BZERO(p,l) bzero((p), (l))
  170. #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
  171. #endif
  172. /*** THE SIX LOGICAL FUNCTIONS ****************************************/
  173. /*
  174. * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
  175. *
  176. * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
  177. * S is a ROTATION) because the SHA-256/384/512 description document
  178. * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
  179. * same "backwards" definition.
  180. */
  181. /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
  182. #define R(b,x) ((x) >> (b))
  183. /* 32-bit Rotate-right (used in SHA-256): */
  184. #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
  185. /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
  186. #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
  187. /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
  188. #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  189. #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  190. /* Four of six logical functions used in SHA-256: */
  191. #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
  192. #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
  193. #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
  194. #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
  195. /* Four of six logical functions used in SHA-384 and SHA-512: */
  196. #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
  197. #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
  198. #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
  199. #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
  200. /*** INTERNAL FUNCTION PROTOTYPES *************************************/
  201. /* NOTE: These should not be accessed directly from outside this
  202. * library -- they are intended for private internal visibility/use
  203. * only.
  204. */
  205. void SHA512_Last(SHA512_CTX*);
  206. void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
  207. void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
  208. /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
  209. /* Hash constant words K for SHA-256: */
  210. const static sha2_word32 K256[64] = {
  211. 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
  212. 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
  213. 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
  214. 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
  215. 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  216. 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
  217. 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
  218. 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
  219. 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
  220. 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  221. 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
  222. 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
  223. 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
  224. 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
  225. 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  226. 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
  227. };
  228. /* Initial hash value H for SHA-256: */
  229. const static sha2_word32 sha256_initial_hash_value[8] = {
  230. 0x6a09e667UL,
  231. 0xbb67ae85UL,
  232. 0x3c6ef372UL,
  233. 0xa54ff53aUL,
  234. 0x510e527fUL,
  235. 0x9b05688cUL,
  236. 0x1f83d9abUL,
  237. 0x5be0cd19UL
  238. };
  239. /* Hash constant words K for SHA-384 and SHA-512: */
  240. const static sha2_word64 K512[80] = {
  241. 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
  242. 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
  243. 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
  244. 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  245. 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
  246. 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
  247. 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
  248. 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  249. 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
  250. 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
  251. 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
  252. 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  253. 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
  254. 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
  255. 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
  256. 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  257. 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
  258. 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
  259. 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
  260. 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  261. 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
  262. 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
  263. 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
  264. 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  265. 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
  266. 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
  267. 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
  268. 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  269. 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
  270. 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
  271. 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
  272. 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  273. 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
  274. 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
  275. 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
  276. 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  277. 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
  278. 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
  279. 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
  280. 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
  281. };
  282. /* Initial hash value H for SHA-384 */
  283. const static sha2_word64 sha384_initial_hash_value[8] = {
  284. 0xcbbb9d5dc1059ed8ULL,
  285. 0x629a292a367cd507ULL,
  286. 0x9159015a3070dd17ULL,
  287. 0x152fecd8f70e5939ULL,
  288. 0x67332667ffc00b31ULL,
  289. 0x8eb44a8768581511ULL,
  290. 0xdb0c2e0d64f98fa7ULL,
  291. 0x47b5481dbefa4fa4ULL
  292. };
  293. /* Initial hash value H for SHA-512 */
  294. const static sha2_word64 sha512_initial_hash_value[8] = {
  295. 0x6a09e667f3bcc908ULL,
  296. 0xbb67ae8584caa73bULL,
  297. 0x3c6ef372fe94f82bULL,
  298. 0xa54ff53a5f1d36f1ULL,
  299. 0x510e527fade682d1ULL,
  300. 0x9b05688c2b3e6c1fULL,
  301. 0x1f83d9abfb41bd6bULL,
  302. 0x5be0cd19137e2179ULL
  303. };
  304. /*
  305. * Constant used by SHA256/384/512_End() functions for converting the
  306. * digest to a readable hexadecimal character string:
  307. */
  308. static const char *sha2_hex_digits = "0123456789abcdef";
  309. /*** SHA-256: *********************************************************/
  310. void SHA256_Init(SHA256_CTX* context) {
  311. if (context == (SHA256_CTX*)0) {
  312. return;
  313. }
  314. MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
  315. MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
  316. context->bitcount = 0;
  317. }
  318. #ifdef SHA2_UNROLL_TRANSFORM
  319. /* Unrolled SHA-256 round macros: */
  320. #if BYTE_ORDER == LITTLE_ENDIAN
  321. #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
  322. REVERSE32(*data++, W256[j]); \
  323. T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  324. K256[j] + W256[j]; \
  325. (d) += T1; \
  326. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  327. j++
  328. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  329. #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
  330. T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  331. K256[j] + (W256[j] = *data++); \
  332. (d) += T1; \
  333. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  334. j++
  335. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  336. #define ROUND256(a,b,c,d,e,f,g,h) \
  337. s0 = W256[(j+1)&0x0f]; \
  338. s0 = sigma0_256(s0); \
  339. s1 = W256[(j+14)&0x0f]; \
  340. s1 = sigma1_256(s1); \
  341. T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
  342. (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
  343. (d) += T1; \
  344. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  345. j++
  346. void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  347. sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
  348. sha2_word32 T1, *W256;
  349. int j;
  350. W256 = (sha2_word32*)context->buffer;
  351. /* Initialize registers with the prev. intermediate value */
  352. a = context->state[0];
  353. b = context->state[1];
  354. c = context->state[2];
  355. d = context->state[3];
  356. e = context->state[4];
  357. f = context->state[5];
  358. g = context->state[6];
  359. h = context->state[7];
  360. j = 0;
  361. do {
  362. /* Rounds 0 to 15 (unrolled): */
  363. ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
  364. ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
  365. ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
  366. ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
  367. ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
  368. ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
  369. ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
  370. ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
  371. } while (j < 16);
  372. /* Now for the remaining rounds to 64: */
  373. do {
  374. ROUND256(a,b,c,d,e,f,g,h);
  375. ROUND256(h,a,b,c,d,e,f,g);
  376. ROUND256(g,h,a,b,c,d,e,f);
  377. ROUND256(f,g,h,a,b,c,d,e);
  378. ROUND256(e,f,g,h,a,b,c,d);
  379. ROUND256(d,e,f,g,h,a,b,c);
  380. ROUND256(c,d,e,f,g,h,a,b);
  381. ROUND256(b,c,d,e,f,g,h,a);
  382. } while (j < 64);
  383. /* Compute the current intermediate hash value */
  384. context->state[0] += a;
  385. context->state[1] += b;
  386. context->state[2] += c;
  387. context->state[3] += d;
  388. context->state[4] += e;
  389. context->state[5] += f;
  390. context->state[6] += g;
  391. context->state[7] += h;
  392. /* Clean up */
  393. a = b = c = d = e = f = g = h = T1 = 0;
  394. }
  395. #else /* SHA2_UNROLL_TRANSFORM */
  396. void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  397. sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
  398. sha2_word32 T1, T2, *W256;
  399. int j;
  400. W256 = (sha2_word32*)context->buffer;
  401. /* Initialize registers with the prev. intermediate value */
  402. a = context->state[0];
  403. b = context->state[1];
  404. c = context->state[2];
  405. d = context->state[3];
  406. e = context->state[4];
  407. f = context->state[5];
  408. g = context->state[6];
  409. h = context->state[7];
  410. j = 0;
  411. do {
  412. #if BYTE_ORDER == LITTLE_ENDIAN
  413. /* Copy data while converting to host byte order */
  414. REVERSE32(*data++,W256[j]);
  415. /* Apply the SHA-256 compression function to update a..h */
  416. T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
  417. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  418. /* Apply the SHA-256 compression function to update a..h with copy */
  419. T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
  420. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  421. T2 = Sigma0_256(a) + Maj(a, b, c);
  422. h = g;
  423. g = f;
  424. f = e;
  425. e = d + T1;
  426. d = c;
  427. c = b;
  428. b = a;
  429. a = T1 + T2;
  430. j++;
  431. } while (j < 16);
  432. do {
  433. /* Part of the message block expansion: */
  434. s0 = W256[(j+1)&0x0f];
  435. s0 = sigma0_256(s0);
  436. s1 = W256[(j+14)&0x0f];
  437. s1 = sigma1_256(s1);
  438. /* Apply the SHA-256 compression function to update a..h */
  439. T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
  440. (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
  441. T2 = Sigma0_256(a) + Maj(a, b, c);
  442. h = g;
  443. g = f;
  444. f = e;
  445. e = d + T1;
  446. d = c;
  447. c = b;
  448. b = a;
  449. a = T1 + T2;
  450. j++;
  451. } while (j < 64);
  452. /* Compute the current intermediate hash value */
  453. context->state[0] += a;
  454. context->state[1] += b;
  455. context->state[2] += c;
  456. context->state[3] += d;
  457. context->state[4] += e;
  458. context->state[5] += f;
  459. context->state[6] += g;
  460. context->state[7] += h;
  461. /* Clean up */
  462. a = b = c = d = e = f = g = h = T1 = T2 = 0;
  463. }
  464. #endif /* SHA2_UNROLL_TRANSFORM */
  465. void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
  466. unsigned int freespace, usedspace;
  467. if (len == 0) {
  468. /* Calling with no data is valid - we do nothing */
  469. return;
  470. }
  471. /* Sanity check: */
  472. assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
  473. usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  474. if (usedspace > 0) {
  475. /* Calculate how much free space is available in the buffer */
  476. freespace = SHA256_BLOCK_LENGTH - usedspace;
  477. if (len >= freespace) {
  478. /* Fill the buffer completely and process it */
  479. MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
  480. context->bitcount += freespace << 3;
  481. len -= freespace;
  482. data += freespace;
  483. SHA256_Transform(context, (sha2_word32*)context->buffer);
  484. } else {
  485. /* The buffer is not yet full */
  486. MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
  487. context->bitcount += len << 3;
  488. /* Clean up: */
  489. usedspace = freespace = 0;
  490. return;
  491. }
  492. }
  493. while (len >= SHA256_BLOCK_LENGTH) {
  494. /* Process as many complete blocks as we can */
  495. SHA256_Transform(context, (sha2_word32*)data);
  496. context->bitcount += SHA256_BLOCK_LENGTH << 3;
  497. len -= SHA256_BLOCK_LENGTH;
  498. data += SHA256_BLOCK_LENGTH;
  499. }
  500. if (len > 0) {
  501. /* There's left-overs, so save 'em */
  502. MEMCPY_BCOPY(context->buffer, data, len);
  503. context->bitcount += len << 3;
  504. }
  505. /* Clean up: */
  506. usedspace = freespace = 0;
  507. }
  508. void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
  509. sha2_word32 *d = (sha2_word32*)digest;
  510. unsigned int usedspace;
  511. /* Sanity check: */
  512. assert(context != (SHA256_CTX*)0);
  513. /* If no digest buffer is passed, we don't bother doing this: */
  514. if (digest != (sha2_byte*)0) {
  515. usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  516. #if BYTE_ORDER == LITTLE_ENDIAN
  517. /* Convert FROM host byte order */
  518. REVERSE64(context->bitcount,context->bitcount);
  519. #endif
  520. if (usedspace > 0) {
  521. /* Begin padding with a 1 bit: */
  522. context->buffer[usedspace++] = 0x80;
  523. if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
  524. /* Set-up for the last transform: */
  525. MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
  526. } else {
  527. if (usedspace < SHA256_BLOCK_LENGTH) {
  528. MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
  529. }
  530. /* Do second-to-last transform: */
  531. SHA256_Transform(context, (sha2_word32*)context->buffer);
  532. /* And set-up for the last transform: */
  533. MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
  534. }
  535. } else {
  536. /* Set-up for the last transform: */
  537. MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
  538. /* Begin padding with a 1 bit: */
  539. *context->buffer = 0x80;
  540. }
  541. /* Set the bit count: */
  542. *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
  543. /* Final transform: */
  544. SHA256_Transform(context, (sha2_word32*)context->buffer);
  545. #if BYTE_ORDER == LITTLE_ENDIAN
  546. {
  547. /* Convert TO host byte order */
  548. int j;
  549. for (j = 0; j < 8; j++) {
  550. REVERSE32(context->state[j],context->state[j]);
  551. *d++ = context->state[j];
  552. }
  553. }
  554. #else
  555. MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
  556. #endif
  557. }
  558. /* Clean up state data: */
  559. MEMSET_BZERO(context, sizeof(*context));
  560. usedspace = 0;
  561. }
  562. char *SHA256_End(SHA256_CTX* context, char buffer[]) {
  563. sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
  564. int i;
  565. /* Sanity check: */
  566. assert(context != (SHA256_CTX*)0);
  567. if (buffer != (char*)0) {
  568. SHA256_Final(digest, context);
  569. for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
  570. *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  571. *buffer++ = sha2_hex_digits[*d & 0x0f];
  572. d++;
  573. }
  574. *buffer = (char)0;
  575. } else {
  576. MEMSET_BZERO(context, sizeof(*context));
  577. }
  578. MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
  579. return buffer;
  580. }
  581. char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
  582. SHA256_CTX context;
  583. SHA256_Init(&context);
  584. SHA256_Update(&context, data, len);
  585. return SHA256_End(&context, digest);
  586. }
  587. /*** SHA-512: *********************************************************/
  588. void SHA512_Init(SHA512_CTX* context) {
  589. if (context == (SHA512_CTX*)0) {
  590. return;
  591. }
  592. MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
  593. MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
  594. context->bitcount[0] = context->bitcount[1] = 0;
  595. }
  596. #ifdef SHA2_UNROLL_TRANSFORM
  597. /* Unrolled SHA-512 round macros: */
  598. #if BYTE_ORDER == LITTLE_ENDIAN
  599. #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
  600. REVERSE64(*data++, W512[j]); \
  601. T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
  602. K512[j] + W512[j]; \
  603. (d) += T1, \
  604. (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
  605. j++
  606. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  607. #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
  608. T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
  609. K512[j] + (W512[j] = *data++); \
  610. (d) += T1; \
  611. (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  612. j++
  613. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  614. #define ROUND512(a,b,c,d,e,f,g,h) \
  615. s0 = W512[(j+1)&0x0f]; \
  616. s0 = sigma0_512(s0); \
  617. s1 = W512[(j+14)&0x0f]; \
  618. s1 = sigma1_512(s1); \
  619. T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
  620. (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
  621. (d) += T1; \
  622. (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  623. j++
  624. void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
  625. sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
  626. sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
  627. int j;
  628. /* Initialize registers with the prev. intermediate value */
  629. a = context->state[0];
  630. b = context->state[1];
  631. c = context->state[2];
  632. d = context->state[3];
  633. e = context->state[4];
  634. f = context->state[5];
  635. g = context->state[6];
  636. h = context->state[7];
  637. j = 0;
  638. do {
  639. ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
  640. ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
  641. ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
  642. ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
  643. ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
  644. ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
  645. ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
  646. ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
  647. } while (j < 16);
  648. /* Now for the remaining rounds up to 79: */
  649. do {
  650. ROUND512(a,b,c,d,e,f,g,h);
  651. ROUND512(h,a,b,c,d,e,f,g);
  652. ROUND512(g,h,a,b,c,d,e,f);
  653. ROUND512(f,g,h,a,b,c,d,e);
  654. ROUND512(e,f,g,h,a,b,c,d);
  655. ROUND512(d,e,f,g,h,a,b,c);
  656. ROUND512(c,d,e,f,g,h,a,b);
  657. ROUND512(b,c,d,e,f,g,h,a);
  658. } while (j < 80);
  659. /* Compute the current intermediate hash value */
  660. context->state[0] += a;
  661. context->state[1] += b;
  662. context->state[2] += c;
  663. context->state[3] += d;
  664. context->state[4] += e;
  665. context->state[5] += f;
  666. context->state[6] += g;
  667. context->state[7] += h;
  668. /* Clean up */
  669. a = b = c = d = e = f = g = h = T1 = 0;
  670. }
  671. #else /* SHA2_UNROLL_TRANSFORM */
  672. void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
  673. sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
  674. sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
  675. int j;
  676. /* Initialize registers with the prev. intermediate value */
  677. a = context->state[0];
  678. b = context->state[1];
  679. c = context->state[2];
  680. d = context->state[3];
  681. e = context->state[4];
  682. f = context->state[5];
  683. g = context->state[6];
  684. h = context->state[7];
  685. j = 0;
  686. do {
  687. #if BYTE_ORDER == LITTLE_ENDIAN
  688. /* Convert TO host byte order */
  689. REVERSE64(*data++, W512[j]);
  690. /* Apply the SHA-512 compression function to update a..h */
  691. T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
  692. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  693. /* Apply the SHA-512 compression function to update a..h with copy */
  694. T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
  695. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  696. T2 = Sigma0_512(a) + Maj(a, b, c);
  697. h = g;
  698. g = f;
  699. f = e;
  700. e = d + T1;
  701. d = c;
  702. c = b;
  703. b = a;
  704. a = T1 + T2;
  705. j++;
  706. } while (j < 16);
  707. do {
  708. /* Part of the message block expansion: */
  709. s0 = W512[(j+1)&0x0f];
  710. s0 = sigma0_512(s0);
  711. s1 = W512[(j+14)&0x0f];
  712. s1 = sigma1_512(s1);
  713. /* Apply the SHA-512 compression function to update a..h */
  714. T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
  715. (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
  716. T2 = Sigma0_512(a) + Maj(a, b, c);
  717. h = g;
  718. g = f;
  719. f = e;
  720. e = d + T1;
  721. d = c;
  722. c = b;
  723. b = a;
  724. a = T1 + T2;
  725. j++;
  726. } while (j < 80);
  727. /* Compute the current intermediate hash value */
  728. context->state[0] += a;
  729. context->state[1] += b;
  730. context->state[2] += c;
  731. context->state[3] += d;
  732. context->state[4] += e;
  733. context->state[5] += f;
  734. context->state[6] += g;
  735. context->state[7] += h;
  736. /* Clean up */
  737. a = b = c = d = e = f = g = h = T1 = T2 = 0;
  738. }
  739. #endif /* SHA2_UNROLL_TRANSFORM */
  740. void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
  741. unsigned int freespace, usedspace;
  742. if (len == 0) {
  743. /* Calling with no data is valid - we do nothing */
  744. return;
  745. }
  746. /* Sanity check: */
  747. assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
  748. usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  749. if (usedspace > 0) {
  750. /* Calculate how much free space is available in the buffer */
  751. freespace = SHA512_BLOCK_LENGTH - usedspace;
  752. if (len >= freespace) {
  753. /* Fill the buffer completely and process it */
  754. MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
  755. ADDINC128(context->bitcount, freespace << 3);
  756. len -= freespace;
  757. data += freespace;
  758. SHA512_Transform(context, (sha2_word64*)context->buffer);
  759. } else {
  760. /* The buffer is not yet full */
  761. MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
  762. ADDINC128(context->bitcount, len << 3);
  763. /* Clean up: */
  764. usedspace = freespace = 0;
  765. return;
  766. }
  767. }
  768. while (len >= SHA512_BLOCK_LENGTH) {
  769. /* Process as many complete blocks as we can */
  770. SHA512_Transform(context, (sha2_word64*)data);
  771. ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
  772. len -= SHA512_BLOCK_LENGTH;
  773. data += SHA512_BLOCK_LENGTH;
  774. }
  775. if (len > 0) {
  776. /* There's left-overs, so save 'em */
  777. MEMCPY_BCOPY(context->buffer, data, len);
  778. ADDINC128(context->bitcount, len << 3);
  779. }
  780. /* Clean up: */
  781. usedspace = freespace = 0;
  782. }
  783. void SHA512_Last(SHA512_CTX* context) {
  784. unsigned int usedspace;
  785. usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  786. #if BYTE_ORDER == LITTLE_ENDIAN
  787. /* Convert FROM host byte order */
  788. REVERSE64(context->bitcount[0],context->bitcount[0]);
  789. REVERSE64(context->bitcount[1],context->bitcount[1]);
  790. #endif
  791. if (usedspace > 0) {
  792. /* Begin padding with a 1 bit: */
  793. context->buffer[usedspace++] = 0x80;
  794. if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
  795. /* Set-up for the last transform: */
  796. MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
  797. } else {
  798. if (usedspace < SHA512_BLOCK_LENGTH) {
  799. MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
  800. }
  801. /* Do second-to-last transform: */
  802. SHA512_Transform(context, (sha2_word64*)context->buffer);
  803. /* And set-up for the last transform: */
  804. MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
  805. }
  806. } else {
  807. /* Prepare for final transform: */
  808. MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
  809. /* Begin padding with a 1 bit: */
  810. *context->buffer = 0x80;
  811. }
  812. /* Store the length of input data (in bits): */
  813. *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
  814. *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
  815. /* Final transform: */
  816. SHA512_Transform(context, (sha2_word64*)context->buffer);
  817. }
  818. void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
  819. sha2_word64 *d = (sha2_word64*)digest;
  820. /* Sanity check: */
  821. assert(context != (SHA512_CTX*)0);
  822. /* If no digest buffer is passed, we don't bother doing this: */
  823. if (digest != (sha2_byte*)0) {
  824. SHA512_Last(context);
  825. /* Save the hash data for output: */
  826. #if BYTE_ORDER == LITTLE_ENDIAN
  827. {
  828. /* Convert TO host byte order */
  829. int j;
  830. for (j = 0; j < 8; j++) {
  831. REVERSE64(context->state[j],context->state[j]);
  832. *d++ = context->state[j];
  833. }
  834. }
  835. #else
  836. MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
  837. #endif
  838. }
  839. /* Zero out state data */
  840. MEMSET_BZERO(context, sizeof(*context));
  841. }
  842. char *SHA512_End(SHA512_CTX* context, char buffer[]) {
  843. sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
  844. int i;
  845. /* Sanity check: */
  846. assert(context != (SHA512_CTX*)0);
  847. if (buffer != (char*)0) {
  848. SHA512_Final(digest, context);
  849. for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
  850. *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  851. *buffer++ = sha2_hex_digits[*d & 0x0f];
  852. d++;
  853. }
  854. *buffer = (char)0;
  855. } else {
  856. MEMSET_BZERO(context, sizeof(*context));
  857. }
  858. MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
  859. return buffer;
  860. }
  861. char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
  862. SHA512_CTX context;
  863. SHA512_Init(&context);
  864. SHA512_Update(&context, data, len);
  865. return SHA512_End(&context, digest);
  866. }
  867. /*** SHA-384: *********************************************************/
  868. void SHA384_Init(SHA384_CTX* context) {
  869. if (context == (SHA384_CTX*)0) {
  870. return;
  871. }
  872. MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
  873. MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
  874. context->bitcount[0] = context->bitcount[1] = 0;
  875. }
  876. void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
  877. SHA512_Update((SHA512_CTX*)context, data, len);
  878. }
  879. void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
  880. sha2_word64 *d = (sha2_word64*)digest;
  881. /* Sanity check: */
  882. assert(context != (SHA384_CTX*)0);
  883. /* If no digest buffer is passed, we don't bother doing this: */
  884. if (digest != (sha2_byte*)0) {
  885. SHA512_Last((SHA512_CTX*)context);
  886. /* Save the hash data for output: */
  887. #if BYTE_ORDER == LITTLE_ENDIAN
  888. {
  889. /* Convert TO host byte order */
  890. int j;
  891. for (j = 0; j < 6; j++) {
  892. REVERSE64(context->state[j],context->state[j]);
  893. *d++ = context->state[j];
  894. }
  895. }
  896. #else
  897. MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
  898. #endif
  899. }
  900. /* Zero out state data */
  901. MEMSET_BZERO(context, sizeof(*context));
  902. }
  903. char *SHA384_End(SHA384_CTX* context, char buffer[]) {
  904. sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
  905. int i;
  906. /* Sanity check: */
  907. assert(context != (SHA384_CTX*)0);
  908. if (buffer != (char*)0) {
  909. SHA384_Final(digest, context);
  910. for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
  911. *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  912. *buffer++ = sha2_hex_digits[*d & 0x0f];
  913. d++;
  914. }
  915. *buffer = (char)0;
  916. } else {
  917. MEMSET_BZERO(context, sizeof(*context));
  918. }
  919. MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
  920. return buffer;
  921. }
  922. char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
  923. SHA384_CTX context;
  924. SHA384_Init(&context);
  925. SHA384_Update(&context, data, len);
  926. return SHA384_End(&context, digest);
  927. }