sha256.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064
  1. /*
  2. * FILE: sha256.c
  3. * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
  4. *
  5. * Copyright (c) 2000-2001, Aaron D. Gifford
  6. * All rights reserved.
  7. *
  8. * Redistribution and use in source and binary forms, with or without
  9. * modification, are permitted provided that the following conditions
  10. * are met:
  11. * 1. Redistributions of source code must retain the above copyright
  12. * notice, this list of conditions and the following disclaimer.
  13. * 2. Redistributions in binary form must reproduce the above copyright
  14. * notice, this list of conditions and the following disclaimer in the
  15. * documentation and/or other materials provided w627ith the distribution.
  16. * 3. Neither the name of the copyright holder nor the names of contributors
  17. * may be used to endorse or promote products derived from this software
  18. * without specific prior written permission.
  19. *
  20. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
  21. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  22. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  23. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
  24. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  25. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  26. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  27. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  28. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  29. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  30. * SUCH DAMAGE.
  31. *
  32. * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
  33. */
  34. #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
  35. #include <assert.h> /* assert() */
  36. #include "sha256.h"
  37. /*
  38. * ASSERT NOTE:
  39. * Some sanity checking code is included using assert(). On my FreeBSD
  40. * system, this additional code can be removed by compiling with NDEBUG
  41. * defined. Check your own systems manpage on assert() to see how to
  42. * compile WITHOUT the sanity checking code on your system.
  43. *
  44. * UNROLLED TRANSFORM LOOP NOTE:
  45. * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
  46. * loop version for the hash transform rounds (defined using macros
  47. * later in this file). Either define on the command line, for example:
  48. *
  49. * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
  50. *
  51. * or define below:
  52. *
  53. * #define SHA2_UNROLL_TRANSFORM
  54. *
  55. */
  56. /*** SHA-256/384/512 Machine Architecture Definitions *****************/
  57. /*
  58. * BYTE_ORDER NOTE:
  59. *
  60. * Please make sure that your system defines BYTE_ORDER. If your
  61. * architecture is little-endian, make sure it also defines
  62. * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
  63. * equivilent.
  64. *
  65. * If your system does not define the above, then you can do so by
  66. * hand like this:
  67. *
  68. * #define LITTLE_ENDIAN 1234
  69. * #define BIG_ENDIAN 4321
  70. *
  71. * And for little-endian machines, add:
  72. *
  73. * #define BYTE_ORDER LITTLE_ENDIAN
  74. *
  75. * Or for big-endian machines:
  76. *
  77. * #define BYTE_ORDER BIG_ENDIAN
  78. *
  79. * The FreeBSD machine this was written on defines BYTE_ORDER
  80. * appropriately by including <sys/types.h> (which in turn includes
  81. * <machine/endian.h> where the appropriate definitions are actually
  82. * made).
  83. */
  84. #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
  85. #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
  86. #endif
  87. /*
  88. * Define the followingsha2_* types to types of the correct length on
  89. * the native archtecture. Most BSD systems and Linux define u_intXX_t
  90. * types. Machines with very recent ANSI C headers, can use the
  91. * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
  92. * during compile or in the sha.h header file.
  93. *
  94. * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
  95. * will need to define these three typedefs below (and the appropriate
  96. * ones in sha.h too) by hand according to their system architecture.
  97. *
  98. * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
  99. * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
  100. */
  101. #ifdef SHA2_USE_INTTYPES_H
  102. typedef uint8_t sha2_byte; /* Exactly 1 byte */
  103. typedef uint32_t sha2_word32; /* Exactly 4 bytes */
  104. typedef uint64_t sha2_word64; /* Exactly 8 bytes */
  105. #else /* SHA2_USE_INTTYPES_H */
  106. typedef u_int8_t sha2_byte; /* Exactly 1 byte */
  107. typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
  108. typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
  109. #endif /* SHA2_USE_INTTYPES_H */
  110. /*** SHA-256/384/512 Various Length Definitions ***********************/
  111. /* NOTE: Most of these are in sha2.h */
  112. #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
  113. #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
  114. #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
  115. /*** ENDIAN REVERSAL MACROS *******************************************/
  116. #if BYTE_ORDER == LITTLE_ENDIAN
  117. #define REVERSE32(w,x) { \
  118. sha2_word32 tmp = (w); \
  119. tmp = (tmp >> 16) | (tmp << 16); \
  120. (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
  121. }
  122. #define REVERSE64(w,x) { \
  123. sha2_word64 tmp = (w); \
  124. tmp = (tmp >> 32) | (tmp << 32); \
  125. tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
  126. ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
  127. (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
  128. ((tmp & 0x0000ffff0000ffffULL) << 16); \
  129. }
  130. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  131. /*
  132. * Macro for incrementally adding the unsigned 64-bit integer n to the
  133. * unsigned 128-bit integer (represented using a two-element array of
  134. * 64-bit words):
  135. */
  136. #define ADDINC128(w,n) { \
  137. (w)[0] += (sha2_word64)(n); \
  138. if ((w)[0] < (n)) { \
  139. (w)[1]++; \
  140. } \
  141. }
  142. /*
  143. * Macros for copying blocks of memory and for zeroing out ranges
  144. * of memory. Using these macros makes it easy to switch from
  145. * using memset()/memcpy() and using bzero()/bcopy().
  146. *
  147. * Please define either SHA2_USE_MEMSET_MEMCPY or define
  148. * SHA2_USE_BZERO_BCOPY depending on which function set you
  149. * choose to use:
  150. */
  151. #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
  152. /* Default to memset()/memcpy() if no option is specified */
  153. #define SHA2_USE_MEMSET_MEMCPY 1
  154. #endif
  155. #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
  156. /* Abort with an error if BOTH options are defined */
  157. #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
  158. #endif
  159. #ifdef SHA2_USE_MEMSET_MEMCPY
  160. #define MEMSET_BZERO(p,l) memset((p), 0, (l))
  161. #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
  162. #endif
  163. #ifdef SHA2_USE_BZERO_BCOPY
  164. #define MEMSET_BZERO(p,l) bzero((p), (l))
  165. #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
  166. #endif
  167. /*** THE SIX LOGICAL FUNCTIONS ****************************************/
  168. /*
  169. * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
  170. *
  171. * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
  172. * S is a ROTATION) because the SHA-256/384/512 description document
  173. * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
  174. * same "backwards" definition.
  175. */
  176. /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
  177. #define R(b,x) ((x) >> (b))
  178. /* 32-bit Rotate-right (used in SHA-256): */
  179. #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
  180. /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
  181. #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
  182. /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
  183. #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  184. #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  185. /* Four of six logical functions used in SHA-256: */
  186. #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
  187. #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
  188. #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
  189. #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
  190. /* Four of six logical functions used in SHA-384 and SHA-512: */
  191. #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
  192. #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
  193. #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
  194. #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
  195. /*** INTERNAL FUNCTION PROTOTYPES *************************************/
  196. /* NOTE: These should not be accessed directly from outside this
  197. * library -- they are intended for private internal visibility/use
  198. * only.
  199. */
  200. void SHA512_Last(SHA512_CTX*);
  201. void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
  202. void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
  203. /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
  204. /* Hash constant words K for SHA-256: */
  205. const static sha2_word32 K256[64] = {
  206. 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
  207. 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
  208. 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
  209. 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
  210. 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  211. 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
  212. 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
  213. 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
  214. 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
  215. 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  216. 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
  217. 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
  218. 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
  219. 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
  220. 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  221. 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
  222. };
  223. /* Initial hash value H for SHA-256: */
  224. const static sha2_word32 sha256_initial_hash_value[8] = {
  225. 0x6a09e667UL,
  226. 0xbb67ae85UL,
  227. 0x3c6ef372UL,
  228. 0xa54ff53aUL,
  229. 0x510e527fUL,
  230. 0x9b05688cUL,
  231. 0x1f83d9abUL,
  232. 0x5be0cd19UL
  233. };
  234. /* Hash constant words K for SHA-384 and SHA-512: */
  235. const static sha2_word64 K512[80] = {
  236. 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
  237. 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
  238. 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
  239. 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  240. 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
  241. 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
  242. 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
  243. 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  244. 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
  245. 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
  246. 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
  247. 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  248. 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
  249. 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
  250. 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
  251. 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  252. 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
  253. 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
  254. 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
  255. 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  256. 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
  257. 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
  258. 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
  259. 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  260. 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
  261. 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
  262. 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
  263. 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  264. 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
  265. 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
  266. 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
  267. 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  268. 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
  269. 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
  270. 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
  271. 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  272. 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
  273. 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
  274. 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
  275. 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
  276. };
  277. /* Initial hash value H for SHA-384 */
  278. const static sha2_word64 sha384_initial_hash_value[8] = {
  279. 0xcbbb9d5dc1059ed8ULL,
  280. 0x629a292a367cd507ULL,
  281. 0x9159015a3070dd17ULL,
  282. 0x152fecd8f70e5939ULL,
  283. 0x67332667ffc00b31ULL,
  284. 0x8eb44a8768581511ULL,
  285. 0xdb0c2e0d64f98fa7ULL,
  286. 0x47b5481dbefa4fa4ULL
  287. };
  288. /* Initial hash value H for SHA-512 */
  289. const static sha2_word64 sha512_initial_hash_value[8] = {
  290. 0x6a09e667f3bcc908ULL,
  291. 0xbb67ae8584caa73bULL,
  292. 0x3c6ef372fe94f82bULL,
  293. 0xa54ff53a5f1d36f1ULL,
  294. 0x510e527fade682d1ULL,
  295. 0x9b05688c2b3e6c1fULL,
  296. 0x1f83d9abfb41bd6bULL,
  297. 0x5be0cd19137e2179ULL
  298. };
  299. /*
  300. * Constant used by SHA256/384/512_End() functions for converting the
  301. * digest to a readable hexadecimal character string:
  302. */
  303. static const char *sha2_hex_digits = "0123456789abcdef";
  304. /*** SHA-256: *********************************************************/
  305. void SHA256_Init(SHA256_CTX* context) {
  306. if (context == (SHA256_CTX*)0) {
  307. return;
  308. }
  309. MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
  310. MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
  311. context->bitcount = 0;
  312. }
  313. #ifdef SHA2_UNROLL_TRANSFORM
  314. /* Unrolled SHA-256 round macros: */
  315. #if BYTE_ORDER == LITTLE_ENDIAN
  316. #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
  317. REVERSE32(*data++, W256[j]); \
  318. T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  319. K256[j] + W256[j]; \
  320. (d) += T1; \
  321. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  322. j++
  323. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  324. #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
  325. T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  326. K256[j] + (W256[j] = *data++); \
  327. (d) += T1; \
  328. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  329. j++
  330. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  331. #define ROUND256(a,b,c,d,e,f,g,h) \
  332. s0 = W256[(j+1)&0x0f]; \
  333. s0 = sigma0_256(s0); \
  334. s1 = W256[(j+14)&0x0f]; \
  335. s1 = sigma1_256(s1); \
  336. T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
  337. (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
  338. (d) += T1; \
  339. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  340. j++
  341. void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  342. sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
  343. sha2_word32 T1, *W256;
  344. int j;
  345. W256 = (sha2_word32*)context->buffer;
  346. /* Initialize registers with the prev. intermediate value */
  347. a = context->state[0];
  348. b = context->state[1];
  349. c = context->state[2];
  350. d = context->state[3];
  351. e = context->state[4];
  352. f = context->state[5];
  353. g = context->state[6];
  354. h = context->state[7];
  355. j = 0;
  356. do {
  357. /* Rounds 0 to 15 (unrolled): */
  358. ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
  359. ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
  360. ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
  361. ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
  362. ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
  363. ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
  364. ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
  365. ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
  366. } while (j < 16);
  367. /* Now for the remaining rounds to 64: */
  368. do {
  369. ROUND256(a,b,c,d,e,f,g,h);
  370. ROUND256(h,a,b,c,d,e,f,g);
  371. ROUND256(g,h,a,b,c,d,e,f);
  372. ROUND256(f,g,h,a,b,c,d,e);
  373. ROUND256(e,f,g,h,a,b,c,d);
  374. ROUND256(d,e,f,g,h,a,b,c);
  375. ROUND256(c,d,e,f,g,h,a,b);
  376. ROUND256(b,c,d,e,f,g,h,a);
  377. } while (j < 64);
  378. /* Compute the current intermediate hash value */
  379. context->state[0] += a;
  380. context->state[1] += b;
  381. context->state[2] += c;
  382. context->state[3] += d;
  383. context->state[4] += e;
  384. context->state[5] += f;
  385. context->state[6] += g;
  386. context->state[7] += h;
  387. /* Clean up */
  388. a = b = c = d = e = f = g = h = T1 = 0;
  389. }
  390. #else /* SHA2_UNROLL_TRANSFORM */
  391. void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  392. sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
  393. sha2_word32 T1, T2, *W256;
  394. int j;
  395. W256 = (sha2_word32*)context->buffer;
  396. /* Initialize registers with the prev. intermediate value */
  397. a = context->state[0];
  398. b = context->state[1];
  399. c = context->state[2];
  400. d = context->state[3];
  401. e = context->state[4];
  402. f = context->state[5];
  403. g = context->state[6];
  404. h = context->state[7];
  405. j = 0;
  406. do {
  407. #if BYTE_ORDER == LITTLE_ENDIAN
  408. /* Copy data while converting to host byte order */
  409. REVERSE32(*data++,W256[j]);
  410. /* Apply the SHA-256 compression function to update a..h */
  411. T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
  412. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  413. /* Apply the SHA-256 compression function to update a..h with copy */
  414. T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
  415. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  416. T2 = Sigma0_256(a) + Maj(a, b, c);
  417. h = g;
  418. g = f;
  419. f = e;
  420. e = d + T1;
  421. d = c;
  422. c = b;
  423. b = a;
  424. a = T1 + T2;
  425. j++;
  426. } while (j < 16);
  427. do {
  428. /* Part of the message block expansion: */
  429. s0 = W256[(j+1)&0x0f];
  430. s0 = sigma0_256(s0);
  431. s1 = W256[(j+14)&0x0f];
  432. s1 = sigma1_256(s1);
  433. /* Apply the SHA-256 compression function to update a..h */
  434. T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
  435. (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
  436. T2 = Sigma0_256(a) + Maj(a, b, c);
  437. h = g;
  438. g = f;
  439. f = e;
  440. e = d + T1;
  441. d = c;
  442. c = b;
  443. b = a;
  444. a = T1 + T2;
  445. j++;
  446. } while (j < 64);
  447. /* Compute the current intermediate hash value */
  448. context->state[0] += a;
  449. context->state[1] += b;
  450. context->state[2] += c;
  451. context->state[3] += d;
  452. context->state[4] += e;
  453. context->state[5] += f;
  454. context->state[6] += g;
  455. context->state[7] += h;
  456. /* Clean up */
  457. a = b = c = d = e = f = g = h = T1 = T2 = 0;
  458. }
  459. #endif /* SHA2_UNROLL_TRANSFORM */
  460. void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
  461. unsigned int freespace, usedspace;
  462. if (len == 0) {
  463. /* Calling with no data is valid - we do nothing */
  464. return;
  465. }
  466. /* Sanity check: */
  467. assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
  468. usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  469. if (usedspace > 0) {
  470. /* Calculate how much free space is available in the buffer */
  471. freespace = SHA256_BLOCK_LENGTH - usedspace;
  472. if (len >= freespace) {
  473. /* Fill the buffer completely and process it */
  474. MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
  475. context->bitcount += freespace << 3;
  476. len -= freespace;
  477. data += freespace;
  478. SHA256_Transform(context, (sha2_word32*)context->buffer);
  479. } else {
  480. /* The buffer is not yet full */
  481. MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
  482. context->bitcount += len << 3;
  483. /* Clean up: */
  484. usedspace = freespace = 0;
  485. return;
  486. }
  487. }
  488. while (len >= SHA256_BLOCK_LENGTH) {
  489. /* Process as many complete blocks as we can */
  490. SHA256_Transform(context, (sha2_word32*)data);
  491. context->bitcount += SHA256_BLOCK_LENGTH << 3;
  492. len -= SHA256_BLOCK_LENGTH;
  493. data += SHA256_BLOCK_LENGTH;
  494. }
  495. if (len > 0) {
  496. /* There's left-overs, so save 'em */
  497. MEMCPY_BCOPY(context->buffer, data, len);
  498. context->bitcount += len << 3;
  499. }
  500. /* Clean up: */
  501. usedspace = freespace = 0;
  502. }
  503. void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
  504. sha2_word32 *d = (sha2_word32*)digest;
  505. unsigned int usedspace;
  506. /* Sanity check: */
  507. assert(context != (SHA256_CTX*)0);
  508. /* If no digest buffer is passed, we don't bother doing this: */
  509. if (digest != (sha2_byte*)0) {
  510. usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  511. #if BYTE_ORDER == LITTLE_ENDIAN
  512. /* Convert FROM host byte order */
  513. REVERSE64(context->bitcount,context->bitcount);
  514. #endif
  515. if (usedspace > 0) {
  516. /* Begin padding with a 1 bit: */
  517. context->buffer[usedspace++] = 0x80;
  518. if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
  519. /* Set-up for the last transform: */
  520. MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
  521. } else {
  522. if (usedspace < SHA256_BLOCK_LENGTH) {
  523. MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
  524. }
  525. /* Do second-to-last transform: */
  526. SHA256_Transform(context, (sha2_word32*)context->buffer);
  527. /* And set-up for the last transform: */
  528. MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
  529. }
  530. } else {
  531. /* Set-up for the last transform: */
  532. MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
  533. /* Begin padding with a 1 bit: */
  534. *context->buffer = 0x80;
  535. }
  536. /* Set the bit count: */
  537. *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
  538. /* Final transform: */
  539. SHA256_Transform(context, (sha2_word32*)context->buffer);
  540. #if BYTE_ORDER == LITTLE_ENDIAN
  541. {
  542. /* Convert TO host byte order */
  543. int j;
  544. for (j = 0; j < 8; j++) {
  545. REVERSE32(context->state[j],context->state[j]);
  546. *d++ = context->state[j];
  547. }
  548. }
  549. #else
  550. MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
  551. #endif
  552. }
  553. /* Clean up state data: */
  554. MEMSET_BZERO(context, sizeof(*context));
  555. usedspace = 0;
  556. }
  557. char *SHA256_End(SHA256_CTX* context, char buffer[]) {
  558. sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
  559. int i;
  560. /* Sanity check: */
  561. assert(context != (SHA256_CTX*)0);
  562. if (buffer != (char*)0) {
  563. SHA256_Final(digest, context);
  564. for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
  565. *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  566. *buffer++ = sha2_hex_digits[*d & 0x0f];
  567. d++;
  568. }
  569. *buffer = (char)0;
  570. } else {
  571. MEMSET_BZERO(context, sizeof(*context));
  572. }
  573. MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
  574. return buffer;
  575. }
  576. char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
  577. SHA256_CTX context;
  578. SHA256_Init(&context);
  579. SHA256_Update(&context, data, len);
  580. return SHA256_End(&context, digest);
  581. }
  582. /*** SHA-512: *********************************************************/
  583. void SHA512_Init(SHA512_CTX* context) {
  584. if (context == (SHA512_CTX*)0) {
  585. return;
  586. }
  587. MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
  588. MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
  589. context->bitcount[0] = context->bitcount[1] = 0;
  590. }
  591. #ifdef SHA2_UNROLL_TRANSFORM
  592. /* Unrolled SHA-512 round macros: */
  593. #if BYTE_ORDER == LITTLE_ENDIAN
  594. #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
  595. REVERSE64(*data++, W512[j]); \
  596. T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
  597. K512[j] + W512[j]; \
  598. (d) += T1, \
  599. (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
  600. j++
  601. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  602. #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
  603. T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
  604. K512[j] + (W512[j] = *data++); \
  605. (d) += T1; \
  606. (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  607. j++
  608. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  609. #define ROUND512(a,b,c,d,e,f,g,h) \
  610. s0 = W512[(j+1)&0x0f]; \
  611. s0 = sigma0_512(s0); \
  612. s1 = W512[(j+14)&0x0f]; \
  613. s1 = sigma1_512(s1); \
  614. T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
  615. (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
  616. (d) += T1; \
  617. (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  618. j++
  619. void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
  620. sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
  621. sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
  622. int j;
  623. /* Initialize registers with the prev. intermediate value */
  624. a = context->state[0];
  625. b = context->state[1];
  626. c = context->state[2];
  627. d = context->state[3];
  628. e = context->state[4];
  629. f = context->state[5];
  630. g = context->state[6];
  631. h = context->state[7];
  632. j = 0;
  633. do {
  634. ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
  635. ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
  636. ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
  637. ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
  638. ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
  639. ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
  640. ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
  641. ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
  642. } while (j < 16);
  643. /* Now for the remaining rounds up to 79: */
  644. do {
  645. ROUND512(a,b,c,d,e,f,g,h);
  646. ROUND512(h,a,b,c,d,e,f,g);
  647. ROUND512(g,h,a,b,c,d,e,f);
  648. ROUND512(f,g,h,a,b,c,d,e);
  649. ROUND512(e,f,g,h,a,b,c,d);
  650. ROUND512(d,e,f,g,h,a,b,c);
  651. ROUND512(c,d,e,f,g,h,a,b);
  652. ROUND512(b,c,d,e,f,g,h,a);
  653. } while (j < 80);
  654. /* Compute the current intermediate hash value */
  655. context->state[0] += a;
  656. context->state[1] += b;
  657. context->state[2] += c;
  658. context->state[3] += d;
  659. context->state[4] += e;
  660. context->state[5] += f;
  661. context->state[6] += g;
  662. context->state[7] += h;
  663. /* Clean up */
  664. a = b = c = d = e = f = g = h = T1 = 0;
  665. }
  666. #else /* SHA2_UNROLL_TRANSFORM */
  667. void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
  668. sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
  669. sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
  670. int j;
  671. /* Initialize registers with the prev. intermediate value */
  672. a = context->state[0];
  673. b = context->state[1];
  674. c = context->state[2];
  675. d = context->state[3];
  676. e = context->state[4];
  677. f = context->state[5];
  678. g = context->state[6];
  679. h = context->state[7];
  680. j = 0;
  681. do {
  682. #if BYTE_ORDER == LITTLE_ENDIAN
  683. /* Convert TO host byte order */
  684. REVERSE64(*data++, W512[j]);
  685. /* Apply the SHA-512 compression function to update a..h */
  686. T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
  687. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  688. /* Apply the SHA-512 compression function to update a..h with copy */
  689. T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
  690. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  691. T2 = Sigma0_512(a) + Maj(a, b, c);
  692. h = g;
  693. g = f;
  694. f = e;
  695. e = d + T1;
  696. d = c;
  697. c = b;
  698. b = a;
  699. a = T1 + T2;
  700. j++;
  701. } while (j < 16);
  702. do {
  703. /* Part of the message block expansion: */
  704. s0 = W512[(j+1)&0x0f];
  705. s0 = sigma0_512(s0);
  706. s1 = W512[(j+14)&0x0f];
  707. s1 = sigma1_512(s1);
  708. /* Apply the SHA-512 compression function to update a..h */
  709. T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
  710. (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
  711. T2 = Sigma0_512(a) + Maj(a, b, c);
  712. h = g;
  713. g = f;
  714. f = e;
  715. e = d + T1;
  716. d = c;
  717. c = b;
  718. b = a;
  719. a = T1 + T2;
  720. j++;
  721. } while (j < 80);
  722. /* Compute the current intermediate hash value */
  723. context->state[0] += a;
  724. context->state[1] += b;
  725. context->state[2] += c;
  726. context->state[3] += d;
  727. context->state[4] += e;
  728. context->state[5] += f;
  729. context->state[6] += g;
  730. context->state[7] += h;
  731. /* Clean up */
  732. a = b = c = d = e = f = g = h = T1 = T2 = 0;
  733. }
  734. #endif /* SHA2_UNROLL_TRANSFORM */
  735. void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
  736. unsigned int freespace, usedspace;
  737. if (len == 0) {
  738. /* Calling with no data is valid - we do nothing */
  739. return;
  740. }
  741. /* Sanity check: */
  742. assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
  743. usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  744. if (usedspace > 0) {
  745. /* Calculate how much free space is available in the buffer */
  746. freespace = SHA512_BLOCK_LENGTH - usedspace;
  747. if (len >= freespace) {
  748. /* Fill the buffer completely and process it */
  749. MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
  750. ADDINC128(context->bitcount, freespace << 3);
  751. len -= freespace;
  752. data += freespace;
  753. SHA512_Transform(context, (sha2_word64*)context->buffer);
  754. } else {
  755. /* The buffer is not yet full */
  756. MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
  757. ADDINC128(context->bitcount, len << 3);
  758. /* Clean up: */
  759. usedspace = freespace = 0;
  760. return;
  761. }
  762. }
  763. while (len >= SHA512_BLOCK_LENGTH) {
  764. /* Process as many complete blocks as we can */
  765. SHA512_Transform(context, (sha2_word64*)data);
  766. ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
  767. len -= SHA512_BLOCK_LENGTH;
  768. data += SHA512_BLOCK_LENGTH;
  769. }
  770. if (len > 0) {
  771. /* There's left-overs, so save 'em */
  772. MEMCPY_BCOPY(context->buffer, data, len);
  773. ADDINC128(context->bitcount, len << 3);
  774. }
  775. /* Clean up: */
  776. usedspace = freespace = 0;
  777. }
  778. void SHA512_Last(SHA512_CTX* context) {
  779. unsigned int usedspace;
  780. usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  781. #if BYTE_ORDER == LITTLE_ENDIAN
  782. /* Convert FROM host byte order */
  783. REVERSE64(context->bitcount[0],context->bitcount[0]);
  784. REVERSE64(context->bitcount[1],context->bitcount[1]);
  785. #endif
  786. if (usedspace > 0) {
  787. /* Begin padding with a 1 bit: */
  788. context->buffer[usedspace++] = 0x80;
  789. if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
  790. /* Set-up for the last transform: */
  791. MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
  792. } else {
  793. if (usedspace < SHA512_BLOCK_LENGTH) {
  794. MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
  795. }
  796. /* Do second-to-last transform: */
  797. SHA512_Transform(context, (sha2_word64*)context->buffer);
  798. /* And set-up for the last transform: */
  799. MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
  800. }
  801. } else {
  802. /* Prepare for final transform: */
  803. MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
  804. /* Begin padding with a 1 bit: */
  805. *context->buffer = 0x80;
  806. }
  807. /* Store the length of input data (in bits): */
  808. *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
  809. *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
  810. /* Final transform: */
  811. SHA512_Transform(context, (sha2_word64*)context->buffer);
  812. }
  813. void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
  814. sha2_word64 *d = (sha2_word64*)digest;
  815. /* Sanity check: */
  816. assert(context != (SHA512_CTX*)0);
  817. /* If no digest buffer is passed, we don't bother doing this: */
  818. if (digest != (sha2_byte*)0) {
  819. SHA512_Last(context);
  820. /* Save the hash data for output: */
  821. #if BYTE_ORDER == LITTLE_ENDIAN
  822. {
  823. /* Convert TO host byte order */
  824. int j;
  825. for (j = 0; j < 8; j++) {
  826. REVERSE64(context->state[j],context->state[j]);
  827. *d++ = context->state[j];
  828. }
  829. }
  830. #else
  831. MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
  832. #endif
  833. }
  834. /* Zero out state data */
  835. MEMSET_BZERO(context, sizeof(*context));
  836. }
  837. char *SHA512_End(SHA512_CTX* context, char buffer[]) {
  838. sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
  839. int i;
  840. /* Sanity check: */
  841. assert(context != (SHA512_CTX*)0);
  842. if (buffer != (char*)0) {
  843. SHA512_Final(digest, context);
  844. for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
  845. *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  846. *buffer++ = sha2_hex_digits[*d & 0x0f];
  847. d++;
  848. }
  849. *buffer = (char)0;
  850. } else {
  851. MEMSET_BZERO(context, sizeof(*context));
  852. }
  853. MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
  854. return buffer;
  855. }
  856. char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
  857. SHA512_CTX context;
  858. SHA512_Init(&context);
  859. SHA512_Update(&context, data, len);
  860. return SHA512_End(&context, digest);
  861. }
  862. /*** SHA-384: *********************************************************/
  863. void SHA384_Init(SHA384_CTX* context) {
  864. if (context == (SHA384_CTX*)0) {
  865. return;
  866. }
  867. MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
  868. MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
  869. context->bitcount[0] = context->bitcount[1] = 0;
  870. }
  871. void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
  872. SHA512_Update((SHA512_CTX*)context, data, len);
  873. }
  874. void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
  875. sha2_word64 *d = (sha2_word64*)digest;
  876. /* Sanity check: */
  877. assert(context != (SHA384_CTX*)0);
  878. /* If no digest buffer is passed, we don't bother doing this: */
  879. if (digest != (sha2_byte*)0) {
  880. SHA512_Last((SHA512_CTX*)context);
  881. /* Save the hash data for output: */
  882. #if BYTE_ORDER == LITTLE_ENDIAN
  883. {
  884. /* Convert TO host byte order */
  885. int j;
  886. for (j = 0; j < 6; j++) {
  887. REVERSE64(context->state[j],context->state[j]);
  888. *d++ = context->state[j];
  889. }
  890. }
  891. #else
  892. MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
  893. #endif
  894. }
  895. /* Zero out state data */
  896. MEMSET_BZERO(context, sizeof(*context));
  897. }
  898. char *SHA384_End(SHA384_CTX* context, char buffer[]) {
  899. sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
  900. int i;
  901. /* Sanity check: */
  902. assert(context != (SHA384_CTX*)0);
  903. if (buffer != (char*)0) {
  904. SHA384_Final(digest, context);
  905. for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
  906. *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  907. *buffer++ = sha2_hex_digits[*d & 0x0f];
  908. d++;
  909. }
  910. *buffer = (char)0;
  911. } else {
  912. MEMSET_BZERO(context, sizeof(*context));
  913. }
  914. MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
  915. return buffer;
  916. }
  917. char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
  918. SHA384_CTX context;
  919. SHA384_Init(&context);
  920. SHA384_Update(&context, data, len);
  921. return SHA384_End(&context, digest);
  922. }