/////////////////////////////////////////////////////////////////////////////// // // // DxilModule.cpp // // Copyright (C) Microsoft Corporation. All rights reserved. // // This file is distributed under the University of Illinois Open Source // // License. See LICENSE.TXT for details. // // // /////////////////////////////////////////////////////////////////////////////// #include "dxc/Support/Global.h" #include "dxc/DXIL/DxilOperations.h" #include "dxc/DXIL/DxilModule.h" #include "dxc/DXIL/DxilConstants.h" #include "dxc/DXIL/DxilShaderModel.h" #include "dxc/DXIL/DxilSignatureElement.h" #include "dxc/DXIL/DxilFunctionProps.h" #include "dxc/Support/WinAdapter.h" #include "dxc/DXIL/DxilEntryProps.h" #include "dxc/DXIL/DxilSubobject.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; using std::string; using std::vector; using std::unique_ptr; namespace { class DxilErrorDiagnosticInfo : public DiagnosticInfo { private: const char *m_message; public: DxilErrorDiagnosticInfo(const char *str) : DiagnosticInfo(DK_FirstPluginKind, DiagnosticSeverity::DS_Error), m_message(str) { } void print(DiagnosticPrinter &DP) const override { DP << m_message; } }; } // anon namespace namespace hlsl { namespace DXIL { // Define constant variables exposed in DxilConstants.h // TODO: revisit data layout descriptions for the following: // - x64 pointers? // - Keep elf manging(m:e)? // For legacy data layout, everything less than 32 align to 32. const char* kLegacyLayoutString = "e-m:e-p:32:32-i1:32-i8:32-i16:32-i32:32-i64:64-f16:32-f32:32-f64:64-n8:16:32:64"; // New data layout with native low precision types const char* kNewLayoutString = "e-m:e-p:32:32-i1:32-i8:8-i16:16-i32:32-i64:64-f16:16-f32:32-f64:64-n8:16:32:64"; // Function Attributes // TODO: consider generating attributes from hctdb const char* kFP32DenormKindString = "fp32-denorm-mode"; const char* kFP32DenormValueAnyString = "any"; const char* kFP32DenormValuePreserveString = "preserve"; const char* kFP32DenormValueFtzString = "ftz"; } // Avoid dependency on DxilModule from llvm::Module using this: void DxilModule_RemoveGlobal(llvm::Module* M, llvm::GlobalObject* G) { if (M && G && M->HasDxilModule()) { if (llvm::Function *F = dyn_cast(G)) M->GetDxilModule().RemoveFunction(F); } } void DxilModule_ResetModule(llvm::Module* M) { if (M && M->HasDxilModule()) delete &M->GetDxilModule(); M->SetDxilModule(nullptr); } //------------------------------------------------------------------------------ // // DxilModule methods. // DxilModule::DxilModule(Module *pModule) : m_StreamPrimitiveTopology(DXIL::PrimitiveTopology::Undefined) , m_ActiveStreamMask(0) , m_Ctx(pModule->getContext()) , m_pModule(pModule) , m_pEntryFunc(nullptr) , m_EntryName("") , m_pMDHelper(llvm::make_unique(pModule, llvm::make_unique(pModule))) , m_pDebugInfoFinder(nullptr) , m_pSM(nullptr) , m_DxilMajor(DXIL::kDxilMajor) , m_DxilMinor(DXIL::kDxilMinor) , m_ValMajor(1) , m_ValMinor(0) , m_pOP(llvm::make_unique(pModule->getContext(), pModule)) , m_pTypeSystem(llvm::make_unique(pModule)) , m_bDisableOptimizations(false) , m_bUseMinPrecision(true) // use min precision by default , m_bAllResourcesBound(false) , m_IntermediateFlags(0) , m_AutoBindingSpace(UINT_MAX) , m_pSubobjects(nullptr) { DXASSERT_NOMSG(m_pModule != nullptr); m_pModule->pfnRemoveGlobal = &DxilModule_RemoveGlobal; m_pModule->pfnResetDxilModule = &DxilModule_ResetModule; #if defined(_DEBUG) || defined(DBG) // Pin LLVM dump methods. void (__thiscall Module::*pfnModuleDump)() const = &Module::dump; void (__thiscall Type::*pfnTypeDump)() const = &Type::dump; void (__thiscall Function::*pfnViewCFGOnly)() const = &Function::viewCFGOnly; m_pUnused = (char *)&pfnModuleDump - (char *)&pfnTypeDump; m_pUnused -= (size_t)&pfnViewCFGOnly; #endif } DxilModule::~DxilModule() { if (m_pModule->pfnRemoveGlobal == &DxilModule_RemoveGlobal) m_pModule->pfnRemoveGlobal = nullptr; } LLVMContext &DxilModule::GetCtx() const { return m_Ctx; } Module *DxilModule::GetModule() const { return m_pModule; } OP *DxilModule::GetOP() const { return m_pOP.get(); } void DxilModule::SetShaderModel(const ShaderModel *pSM, bool bUseMinPrecision) { DXASSERT(m_pSM == nullptr || (pSM != nullptr && *m_pSM == *pSM), "shader model must not change for the module"); DXASSERT(pSM != nullptr && pSM->IsValidForDxil(), "shader model must be valid"); DXASSERT(pSM->IsValidForModule(), "shader model must be valid for top-level module use"); m_pSM = pSM; m_pSM->GetDxilVersion(m_DxilMajor, m_DxilMinor); m_pMDHelper->SetShaderModel(m_pSM); m_bUseMinPrecision = bUseMinPrecision; m_pOP->SetMinPrecision(m_bUseMinPrecision); m_pTypeSystem->SetMinPrecision(m_bUseMinPrecision); if (!m_pSM->IsLib()) { // Always have valid entry props for non-lib case from this point on. DxilFunctionProps props; props.shaderKind = m_pSM->GetKind(); m_DxilEntryPropsMap[nullptr] = llvm::make_unique(props, m_bUseMinPrecision); } m_SerializedRootSignature.clear(); } const ShaderModel *DxilModule::GetShaderModel() const { return m_pSM; } void DxilModule::GetDxilVersion(unsigned &DxilMajor, unsigned &DxilMinor) const { DxilMajor = m_DxilMajor; DxilMinor = m_DxilMinor; } void DxilModule::SetValidatorVersion(unsigned ValMajor, unsigned ValMinor) { m_ValMajor = ValMajor; m_ValMinor = ValMinor; } bool DxilModule::UpgradeValidatorVersion(unsigned ValMajor, unsigned ValMinor) { // Don't upgrade if validation was disabled. if (m_ValMajor == 0 && m_ValMinor == 0) { return false; } if (ValMajor > m_ValMajor || (ValMajor == m_ValMajor && ValMinor > m_ValMinor)) { // Module requires higher validator version than previously set SetValidatorVersion(ValMajor, ValMinor); return true; } return false; } void DxilModule::GetValidatorVersion(unsigned &ValMajor, unsigned &ValMinor) const { ValMajor = m_ValMajor; ValMinor = m_ValMinor; } bool DxilModule::GetMinValidatorVersion(unsigned &ValMajor, unsigned &ValMinor) const { if (!m_pSM) return false; m_pSM->GetMinValidatorVersion(ValMajor, ValMinor); if (ValMajor == 1 && ValMinor == 0 && (m_ShaderFlags.GetFeatureInfo() & hlsl::DXIL::ShaderFeatureInfo_ViewID)) ValMinor = 1; return true; } bool DxilModule::UpgradeToMinValidatorVersion() { unsigned ValMajor = 1, ValMinor = 0; if (GetMinValidatorVersion(ValMajor, ValMinor)) { return UpgradeValidatorVersion(ValMajor, ValMinor); } return false; } Function *DxilModule::GetEntryFunction() { return m_pEntryFunc; } const Function *DxilModule::GetEntryFunction() const { return m_pEntryFunc; } void DxilModule::SetEntryFunction(Function *pEntryFunc) { if (m_pSM->IsLib()) { DXASSERT(pEntryFunc == nullptr, "Otherwise, trying to set an entry function on library"); m_pEntryFunc = nullptr; return; } DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop"); m_pEntryFunc = pEntryFunc; // Move entry props to new function in order to preserve them. std::unique_ptr Props = std::move(m_DxilEntryPropsMap.begin()->second); m_DxilEntryPropsMap.clear(); m_DxilEntryPropsMap[m_pEntryFunc] = std::move(Props); } const string &DxilModule::GetEntryFunctionName() const { return m_EntryName; } void DxilModule::SetEntryFunctionName(const string &name) { m_EntryName = name; } llvm::Function *DxilModule::GetPatchConstantFunction() { if (!m_pSM->IsHS()) return nullptr; DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsHS(), "Must be HS profile"); return props.ShaderProps.HS.patchConstantFunc; } const llvm::Function *DxilModule::GetPatchConstantFunction() const { if (!m_pSM->IsHS()) return nullptr; DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop"); const DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsHS(), "Must be HS profile"); return props.ShaderProps.HS.patchConstantFunc; } void DxilModule::SetPatchConstantFunction(llvm::Function *patchConstantFunc) { if (!m_pSM->IsHS()) return; DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsHS(), "Must be HS profile"); auto &HS = props.ShaderProps.HS; if (HS.patchConstantFunc != patchConstantFunc) { if (HS.patchConstantFunc) m_PatchConstantFunctions.erase(HS.patchConstantFunc); HS.patchConstantFunc = patchConstantFunc; if (patchConstantFunc) m_PatchConstantFunctions.insert(patchConstantFunc); } } unsigned DxilModule::GetGlobalFlags() const { unsigned Flags = m_ShaderFlags.GetGlobalFlags(); return Flags; } void DxilModule::CollectShaderFlagsForModule(ShaderFlags &Flags) { for (Function &F : GetModule()->functions()) { ShaderFlags funcFlags = ShaderFlags::CollectShaderFlags(&F, this); Flags.CombineShaderFlags(funcFlags); }; const ShaderModel *SM = GetShaderModel(); unsigned NumUAVs = m_UAVs.size(); const unsigned kSmallUAVCount = 8; if (NumUAVs > kSmallUAVCount) Flags.Set64UAVs(true); if (NumUAVs && !(SM->IsCS() || SM->IsPS())) Flags.SetUAVsAtEveryStage(true); bool hasRawAndStructuredBuffer = false; for (auto &UAV : m_UAVs) { if (UAV->IsROV()) Flags.SetROVs(true); switch (UAV->GetKind()) { case DXIL::ResourceKind::RawBuffer: case DXIL::ResourceKind::StructuredBuffer: hasRawAndStructuredBuffer = true; break; default: // Not raw/structured. break; } } for (auto &SRV : m_SRVs) { switch (SRV->GetKind()) { case DXIL::ResourceKind::RawBuffer: case DXIL::ResourceKind::StructuredBuffer: hasRawAndStructuredBuffer = true; break; default: // Not raw/structured. break; } } Flags.SetEnableRawAndStructuredBuffers(hasRawAndStructuredBuffer); bool hasCSRawAndStructuredViaShader4X = hasRawAndStructuredBuffer && m_pSM->GetMajor() == 4 && m_pSM->IsCS(); Flags.SetCSRawAndStructuredViaShader4X(hasCSRawAndStructuredViaShader4X); } void DxilModule::CollectShaderFlagsForModule() { CollectShaderFlagsForModule(m_ShaderFlags); } void DxilModule::SetNumThreads(unsigned x, unsigned y, unsigned z) { DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsCS(), "only works for CS profile"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsCS(), "Must be CS profile"); unsigned *numThreads = props.ShaderProps.CS.numThreads; numThreads[0] = x; numThreads[1] = y; numThreads[2] = z; } unsigned DxilModule::GetNumThreads(unsigned idx) const { DXASSERT(idx < 3, "Thread dimension index must be 0-2"); if (!m_pSM->IsCS()) return 0; DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop"); __analysis_assume(idx < 3); const DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsCS(), "Must be CS profile"); return props.ShaderProps.CS.numThreads[idx]; } DXIL::InputPrimitive DxilModule::GetInputPrimitive() const { if (!m_pSM->IsGS()) return DXIL::InputPrimitive::Undefined; DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsGS(), "Must be GS profile"); return props.ShaderProps.GS.inputPrimitive; } void DxilModule::SetInputPrimitive(DXIL::InputPrimitive IP) { DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsGS(), "only works for GS profile"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsGS(), "Must be GS profile"); auto &GS = props.ShaderProps.GS; DXASSERT_NOMSG(DXIL::InputPrimitive::Undefined < IP && IP < DXIL::InputPrimitive::LastEntry); GS.inputPrimitive = IP; } unsigned DxilModule::GetMaxVertexCount() const { if (!m_pSM->IsGS()) return 0; DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsGS(), "Must be GS profile"); auto &GS = props.ShaderProps.GS; DXASSERT_NOMSG(GS.maxVertexCount != 0); return GS.maxVertexCount; } void DxilModule::SetMaxVertexCount(unsigned Count) { DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsGS(), "only works for GS profile"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsGS(), "Must be GS profile"); auto &GS = props.ShaderProps.GS; GS.maxVertexCount = Count; } DXIL::PrimitiveTopology DxilModule::GetStreamPrimitiveTopology() const { return m_StreamPrimitiveTopology; } void DxilModule::SetStreamPrimitiveTopology(DXIL::PrimitiveTopology Topology) { m_StreamPrimitiveTopology = Topology; SetActiveStreamMask(m_ActiveStreamMask); // Update props } bool DxilModule::HasMultipleOutputStreams() const { if (!m_pSM->IsGS()) { return false; } else { unsigned NumStreams = (m_ActiveStreamMask & 0x1) + ((m_ActiveStreamMask & 0x2) >> 1) + ((m_ActiveStreamMask & 0x4) >> 2) + ((m_ActiveStreamMask & 0x8) >> 3); DXASSERT_NOMSG(NumStreams <= DXIL::kNumOutputStreams); return NumStreams > 1; } } unsigned DxilModule::GetOutputStream() const { if (!m_pSM->IsGS()) { return 0; } else { DXASSERT_NOMSG(!HasMultipleOutputStreams()); switch (m_ActiveStreamMask) { case 0x1: return 0; case 0x2: return 1; case 0x4: return 2; case 0x8: return 3; default: DXASSERT_NOMSG(false); } return (unsigned)(-1); } } unsigned DxilModule::GetGSInstanceCount() const { if (!m_pSM->IsGS()) return 0; DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsGS(), "Must be GS profile"); return props.ShaderProps.GS.instanceCount; } void DxilModule::SetGSInstanceCount(unsigned Count) { DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsGS(), "only works for GS profile"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsGS(), "Must be GS profile"); props.ShaderProps.GS.instanceCount = Count; } bool DxilModule::IsStreamActive(unsigned Stream) const { return (m_ActiveStreamMask & (1<IsGS(), "only works for GS profile"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsGS(), "Must be GS profile"); for (unsigned i = 0; i < 4; i++) { if (IsStreamActive(i)) props.ShaderProps.GS.streamPrimitiveTopologies[i] = m_StreamPrimitiveTopology; else props.ShaderProps.GS.streamPrimitiveTopologies[i] = DXIL::PrimitiveTopology::Undefined; } } unsigned DxilModule::GetActiveStreamMask() const { return m_ActiveStreamMask; } bool DxilModule::GetUseMinPrecision() const { return m_bUseMinPrecision; } void DxilModule::SetDisableOptimization(bool DisableOptimization) { m_bDisableOptimizations = DisableOptimization; } bool DxilModule::GetDisableOptimization() const { return m_bDisableOptimizations; } void DxilModule::SetAllResourcesBound(bool ResourcesBound) { m_bAllResourcesBound = ResourcesBound; } bool DxilModule::GetAllResourcesBound() const { return m_bAllResourcesBound; } void DxilModule::SetLegacyResourceReservation(bool legacyResourceReservation) { m_IntermediateFlags &= ~LegacyResourceReservation; if (legacyResourceReservation) m_IntermediateFlags |= LegacyResourceReservation; } bool DxilModule::GetLegacyResourceReservation() const { return (m_IntermediateFlags & LegacyResourceReservation) != 0; } void DxilModule::ClearIntermediateOptions() { m_IntermediateFlags = 0; } unsigned DxilModule::GetInputControlPointCount() const { if (!(m_pSM->IsHS() || m_pSM->IsDS())) return 0; DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsHS() || props.IsDS(), "Must be HS or DS profile"); if (props.IsHS()) return props.ShaderProps.HS.inputControlPoints; else return props.ShaderProps.DS.inputControlPoints; } void DxilModule::SetInputControlPointCount(unsigned NumICPs) { DXASSERT(m_DxilEntryPropsMap.size() == 1 && (m_pSM->IsHS() || m_pSM->IsDS()), "only works for non-lib profile"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsHS() || props.IsDS(), "Must be HS or DS profile"); if (props.IsHS()) props.ShaderProps.HS.inputControlPoints = NumICPs; else props.ShaderProps.DS.inputControlPoints = NumICPs; } DXIL::TessellatorDomain DxilModule::GetTessellatorDomain() const { if (!(m_pSM->IsHS() || m_pSM->IsDS())) return DXIL::TessellatorDomain::Undefined; DXASSERT_NOMSG(m_DxilEntryPropsMap.size() == 1); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; if (props.IsHS()) return props.ShaderProps.HS.domain; else return props.ShaderProps.DS.domain; } void DxilModule::SetTessellatorDomain(DXIL::TessellatorDomain TessDomain) { DXASSERT(m_DxilEntryPropsMap.size() == 1 && (m_pSM->IsHS() || m_pSM->IsDS()), "only works for HS or DS profile"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsHS() || props.IsDS(), "Must be HS or DS profile"); if (props.IsHS()) props.ShaderProps.HS.domain = TessDomain; else props.ShaderProps.DS.domain = TessDomain; } unsigned DxilModule::GetOutputControlPointCount() const { if (!m_pSM->IsHS()) return 0; DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsHS(), "Must be HS profile"); return props.ShaderProps.HS.outputControlPoints; } void DxilModule::SetOutputControlPointCount(unsigned NumOCPs) { DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsHS(), "only works for HS profile"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsHS(), "Must be HS profile"); props.ShaderProps.HS.outputControlPoints = NumOCPs; } DXIL::TessellatorPartitioning DxilModule::GetTessellatorPartitioning() const { if (!m_pSM->IsHS()) return DXIL::TessellatorPartitioning::Undefined; DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsHS(), "Must be HS profile"); return props.ShaderProps.HS.partition; } void DxilModule::SetTessellatorPartitioning(DXIL::TessellatorPartitioning TessPartitioning) { DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsHS(), "only works for HS profile"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsHS(), "Must be HS profile"); props.ShaderProps.HS.partition = TessPartitioning; } DXIL::TessellatorOutputPrimitive DxilModule::GetTessellatorOutputPrimitive() const { if (!m_pSM->IsHS()) return DXIL::TessellatorOutputPrimitive::Undefined; DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsHS(), "Must be HS profile"); return props.ShaderProps.HS.outputPrimitive; } void DxilModule::SetTessellatorOutputPrimitive(DXIL::TessellatorOutputPrimitive TessOutputPrimitive) { DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsHS(), "only works for HS profile"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsHS(), "Must be HS profile"); props.ShaderProps.HS.outputPrimitive = TessOutputPrimitive; } float DxilModule::GetMaxTessellationFactor() const { if (!m_pSM->IsHS()) return 0.0F; DXASSERT(m_DxilEntryPropsMap.size() == 1, "should have one entry prop"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsHS(), "Must be HS profile"); return props.ShaderProps.HS.maxTessFactor; } void DxilModule::SetMaxTessellationFactor(float MaxTessellationFactor) { DXASSERT(m_DxilEntryPropsMap.size() == 1 && m_pSM->IsHS(), "only works for HS profile"); DxilFunctionProps &props = m_DxilEntryPropsMap.begin()->second->props; DXASSERT(props.IsHS(), "Must be HS profile"); props.ShaderProps.HS.maxTessFactor = MaxTessellationFactor; } void DxilModule::SetAutoBindingSpace(uint32_t Space) { m_AutoBindingSpace = Space; } uint32_t DxilModule::GetAutoBindingSpace() const { return m_AutoBindingSpace; } void DxilModule::SetShaderProperties(DxilFunctionProps *props) { if (!props) return; DxilFunctionProps &ourProps = GetDxilFunctionProps(GetEntryFunction()); if (props != &ourProps) { ourProps.shaderKind = props->shaderKind; ourProps.ShaderProps = props->ShaderProps; } switch (props->shaderKind) { case DXIL::ShaderKind::Pixel: { auto &PS = props->ShaderProps.PS; m_ShaderFlags.SetForceEarlyDepthStencil(PS.EarlyDepthStencil); } break; case DXIL::ShaderKind::Compute: case DXIL::ShaderKind::Domain: case DXIL::ShaderKind::Hull: case DXIL::ShaderKind::Vertex: break; default: { DXASSERT(props->shaderKind == DXIL::ShaderKind::Geometry, "else invalid shader kind"); auto &GS = props->ShaderProps.GS; m_ActiveStreamMask = 0; for (size_t i = 0; i < _countof(GS.streamPrimitiveTopologies); ++i) { if (GS.streamPrimitiveTopologies[i] != DXIL::PrimitiveTopology::Undefined) { m_ActiveStreamMask |= (1 << i); DXASSERT_NOMSG(m_StreamPrimitiveTopology == DXIL::PrimitiveTopology::Undefined || m_StreamPrimitiveTopology == GS.streamPrimitiveTopologies[i]); m_StreamPrimitiveTopology = GS.streamPrimitiveTopologies[i]; } } // Refresh props: SetActiveStreamMask(m_ActiveStreamMask); } break; } } template unsigned DxilModule::AddResource(vector > &Vec, unique_ptr pRes) { DXASSERT_NOMSG((unsigned)Vec.size() < UINT_MAX); unsigned Id = (unsigned)Vec.size(); Vec.emplace_back(std::move(pRes)); return Id; } unsigned DxilModule::AddCBuffer(unique_ptr pCB) { return AddResource(m_CBuffers, std::move(pCB)); } DxilCBuffer &DxilModule::GetCBuffer(unsigned idx) { return *m_CBuffers[idx]; } const DxilCBuffer &DxilModule::GetCBuffer(unsigned idx) const { return *m_CBuffers[idx]; } const vector > &DxilModule::GetCBuffers() const { return m_CBuffers; } unsigned DxilModule::AddSampler(unique_ptr pSampler) { return AddResource(m_Samplers, std::move(pSampler)); } DxilSampler &DxilModule::GetSampler(unsigned idx) { return *m_Samplers[idx]; } const DxilSampler &DxilModule::GetSampler(unsigned idx) const { return *m_Samplers[idx]; } const vector > &DxilModule::GetSamplers() const { return m_Samplers; } unsigned DxilModule::AddSRV(unique_ptr pSRV) { return AddResource(m_SRVs, std::move(pSRV)); } DxilResource &DxilModule::GetSRV(unsigned idx) { return *m_SRVs[idx]; } const DxilResource &DxilModule::GetSRV(unsigned idx) const { return *m_SRVs[idx]; } const vector > &DxilModule::GetSRVs() const { return m_SRVs; } unsigned DxilModule::AddUAV(unique_ptr pUAV) { return AddResource(m_UAVs, std::move(pUAV)); } DxilResource &DxilModule::GetUAV(unsigned idx) { return *m_UAVs[idx]; } const DxilResource &DxilModule::GetUAV(unsigned idx) const { return *m_UAVs[idx]; } const vector > &DxilModule::GetUAVs() const { return m_UAVs; } void DxilModule::LoadDxilResourceBaseFromMDNode(MDNode *MD, DxilResourceBase &R) { return m_pMDHelper->LoadDxilResourceBaseFromMDNode(MD, R); } void DxilModule::LoadDxilResourceFromMDNode(llvm::MDNode *MD, DxilResource &R) { return m_pMDHelper->LoadDxilResourceFromMDNode(MD, R); } void DxilModule::LoadDxilSamplerFromMDNode(llvm::MDNode *MD, DxilSampler &S) { return m_pMDHelper->LoadDxilSamplerFromMDNode(MD, S); } template static void RemoveResources(std::vector> &vec, std::unordered_set &immResID) { for (auto p = vec.begin(); p != vec.end();) { auto c = p++; if (immResID.count((*c)->GetID()) == 0) { p = vec.erase(c); } } } static void CollectUsedResource(Value *resID, std::unordered_set &usedResID) { if (usedResID.count(resID) > 0) return; usedResID.insert(resID); if (dyn_cast(resID)) { // Do nothing } else if (ZExtInst *ZEI = dyn_cast(resID)) { if (ZEI->getSrcTy()->isIntegerTy()) { IntegerType *ITy = cast(ZEI->getSrcTy()); if (ITy->getBitWidth() == 1) { usedResID.insert(ConstantInt::get(ZEI->getDestTy(), 0)); usedResID.insert(ConstantInt::get(ZEI->getDestTy(), 1)); } } } else if (SelectInst *SI = dyn_cast(resID)) { CollectUsedResource(SI->getTrueValue(), usedResID); CollectUsedResource(SI->getFalseValue(), usedResID); } else if (PHINode *Phi = dyn_cast(resID)) { for (Use &U : Phi->incoming_values()) { CollectUsedResource(U.get(), usedResID); } } // TODO: resID could be other types of instructions depending on the compiler optimization. } static void ConvertUsedResource(std::unordered_set &immResID, std::unordered_set &usedResID) { for (Value *V : usedResID) { if (ConstantInt *cResID = dyn_cast(V)) { immResID.insert(cResID->getLimitedValue()); } } } void DxilModule::RemoveFunction(llvm::Function *F) { DXASSERT_NOMSG(F != nullptr); m_DxilEntryPropsMap.erase(F); if (m_pTypeSystem.get()->GetFunctionAnnotation(F)) m_pTypeSystem.get()->EraseFunctionAnnotation(F); m_pOP->RemoveFunction(F); } void DxilModule::RemoveUnusedResources() { DXASSERT(!m_pSM->IsLib(), "this function does not work on libraries"); hlsl::OP *hlslOP = GetOP(); Function *createHandleFunc = hlslOP->GetOpFunc(DXIL::OpCode::CreateHandle, Type::getVoidTy(GetCtx())); if (createHandleFunc->user_empty()) { m_CBuffers.clear(); m_UAVs.clear(); m_SRVs.clear(); m_Samplers.clear(); createHandleFunc->eraseFromParent(); return; } std::unordered_set usedUAVID; std::unordered_set usedSRVID; std::unordered_set usedSamplerID; std::unordered_set usedCBufID; // Collect used ID. for (User *U : createHandleFunc->users()) { CallInst *CI = cast(U); Value *vResClass = CI->getArgOperand(DXIL::OperandIndex::kCreateHandleResClassOpIdx); ConstantInt *cResClass = cast(vResClass); DXIL::ResourceClass resClass = static_cast(cResClass->getLimitedValue()); // Skip unused resource handle. if (CI->user_empty()) continue; Value *resID = CI->getArgOperand(DXIL::OperandIndex::kCreateHandleResIDOpIdx); switch (resClass) { case DXIL::ResourceClass::CBuffer: CollectUsedResource(resID, usedCBufID); break; case DXIL::ResourceClass::Sampler: CollectUsedResource(resID, usedSamplerID); break; case DXIL::ResourceClass::SRV: CollectUsedResource(resID, usedSRVID); break; case DXIL::ResourceClass::UAV: CollectUsedResource(resID, usedUAVID); break; default: DXASSERT(0, "invalid res class"); break; } } std::unordered_set immUAVID; std::unordered_set immSRVID; std::unordered_set immSamplerID; std::unordered_set immCBufID; ConvertUsedResource(immUAVID, usedUAVID); ConvertUsedResource(immSRVID, usedSRVID); ConvertUsedResource(immSamplerID, usedSamplerID); ConvertUsedResource(immCBufID, usedCBufID); RemoveResources(m_UAVs, immUAVID); RemoveResources(m_SRVs, immSRVID); RemoveResources(m_Samplers, immSamplerID); RemoveResources(m_CBuffers, immCBufID); } namespace { template static void RemoveResourcesWithUnusedSymbolsHelper(std::vector> &vec) { unsigned resID = 0; for (auto p = vec.begin(); p != vec.end();) { auto c = p++; Constant *symbol = (*c)->GetGlobalSymbol(); symbol->removeDeadConstantUsers(); if (symbol->user_empty()) { p = vec.erase(c); if (GlobalVariable *GV = dyn_cast(symbol)) GV->eraseFromParent(); continue; } if ((*c)->GetID() != resID) { (*c)->SetID(resID); } resID++; } } } void DxilModule::RemoveResourcesWithUnusedSymbols() { RemoveResourcesWithUnusedSymbolsHelper(m_SRVs); RemoveResourcesWithUnusedSymbolsHelper(m_UAVs); RemoveResourcesWithUnusedSymbolsHelper(m_CBuffers); RemoveResourcesWithUnusedSymbolsHelper(m_Samplers); } DxilSignature &DxilModule::GetInputSignature() { DXASSERT(m_DxilEntryPropsMap.size() == 1 && !m_pSM->IsLib(), "only works for non-lib profile"); return m_DxilEntryPropsMap.begin()->second->sig.InputSignature; } const DxilSignature &DxilModule::GetInputSignature() const { DXASSERT(m_DxilEntryPropsMap.size() == 1 && !m_pSM->IsLib(), "only works for non-lib profile"); return m_DxilEntryPropsMap.begin()->second->sig.InputSignature; } DxilSignature &DxilModule::GetOutputSignature() { DXASSERT(m_DxilEntryPropsMap.size() == 1 && !m_pSM->IsLib(), "only works for non-lib profile"); return m_DxilEntryPropsMap.begin()->second->sig.OutputSignature; } const DxilSignature &DxilModule::GetOutputSignature() const { DXASSERT(m_DxilEntryPropsMap.size() == 1 && !m_pSM->IsLib(), "only works for non-lib profile"); return m_DxilEntryPropsMap.begin()->second->sig.OutputSignature; } DxilSignature &DxilModule::GetPatchConstantSignature() { DXASSERT(m_DxilEntryPropsMap.size() == 1 && !m_pSM->IsLib(), "only works for non-lib profile"); return m_DxilEntryPropsMap.begin()->second->sig.PatchConstantSignature; } const DxilSignature &DxilModule::GetPatchConstantSignature() const { DXASSERT(m_DxilEntryPropsMap.size() == 1 && !m_pSM->IsLib(), "only works for non-lib profile"); return m_DxilEntryPropsMap.begin()->second->sig.PatchConstantSignature; } const std::vector &DxilModule::GetSerializedRootSignature() const { return m_SerializedRootSignature; } std::vector &DxilModule::GetSerializedRootSignature() { return m_SerializedRootSignature; } // Entry props. bool DxilModule::HasDxilEntrySignature(const llvm::Function *F) const { return m_DxilEntryPropsMap.find(F) != m_DxilEntryPropsMap.end(); } DxilEntrySignature &DxilModule::GetDxilEntrySignature(const llvm::Function *F) { DXASSERT(m_DxilEntryPropsMap.count(F) != 0, "cannot find F in map"); return m_DxilEntryPropsMap[F].get()->sig; } void DxilModule::ReplaceDxilEntryProps(llvm::Function *F, llvm::Function *NewF) { DXASSERT(m_DxilEntryPropsMap.count(F) != 0, "cannot find F in map"); std::unique_ptr Props = std::move(m_DxilEntryPropsMap[F]); m_DxilEntryPropsMap.erase(F); m_DxilEntryPropsMap[NewF] = std::move(Props); } void DxilModule::CloneDxilEntryProps(llvm::Function *F, llvm::Function *NewF) { DXASSERT(m_DxilEntryPropsMap.count(F) != 0, "cannot find F in map"); std::unique_ptr Props = llvm::make_unique(*m_DxilEntryPropsMap[F]); m_DxilEntryPropsMap[NewF] = std::move(Props); } bool DxilModule::HasDxilEntryProps(const llvm::Function *F) const { return m_DxilEntryPropsMap.find(F) != m_DxilEntryPropsMap.end(); } DxilEntryProps &DxilModule::GetDxilEntryProps(const llvm::Function *F) { DXASSERT(m_DxilEntryPropsMap.count(F) != 0, "cannot find F in map"); return *m_DxilEntryPropsMap.find(F)->second.get(); } const DxilEntryProps &DxilModule::GetDxilEntryProps(const llvm::Function *F) const { DXASSERT(m_DxilEntryPropsMap.count(F) != 0, "cannot find F in map"); return *m_DxilEntryPropsMap.find(F)->second.get(); } bool DxilModule::HasDxilFunctionProps(const llvm::Function *F) const { return m_DxilEntryPropsMap.find(F) != m_DxilEntryPropsMap.end(); } DxilFunctionProps &DxilModule::GetDxilFunctionProps(const llvm::Function *F) { return const_cast( static_cast(this)->GetDxilFunctionProps(F)); } const DxilFunctionProps & DxilModule::GetDxilFunctionProps(const llvm::Function *F) const { DXASSERT(m_DxilEntryPropsMap.count(F) != 0, "cannot find F in map"); return m_DxilEntryPropsMap.find(F)->second.get()->props; } void DxilModule::SetPatchConstantFunctionForHS(llvm::Function *hullShaderFunc, llvm::Function *patchConstantFunc) { auto propIter = m_DxilEntryPropsMap.find(hullShaderFunc); DXASSERT(propIter != m_DxilEntryPropsMap.end(), "Hull shader must already have function props!"); DxilFunctionProps &props = propIter->second->props; DXASSERT(props.IsHS(), "else hullShaderFunc is not a Hull Shader"); auto &HS = props.ShaderProps.HS; if (HS.patchConstantFunc != patchConstantFunc) { if (HS.patchConstantFunc) m_PatchConstantFunctions.erase(HS.patchConstantFunc); HS.patchConstantFunc = patchConstantFunc; if (patchConstantFunc) m_PatchConstantFunctions.insert(patchConstantFunc); } } bool DxilModule::IsGraphicsShader(const llvm::Function *F) const { return HasDxilFunctionProps(F) && GetDxilFunctionProps(F).IsGraphics(); } bool DxilModule::IsPatchConstantShader(const llvm::Function *F) const { return m_PatchConstantFunctions.count(F) != 0; } bool DxilModule::IsComputeShader(const llvm::Function *F) const { return HasDxilFunctionProps(F) && GetDxilFunctionProps(F).IsCS(); } bool DxilModule::IsEntryThatUsesSignatures(const llvm::Function *F) const { auto propIter = m_DxilEntryPropsMap.find(F); if (propIter != m_DxilEntryPropsMap.end()) { DxilFunctionProps &props = propIter->second->props; return props.IsGraphics() || props.IsCS(); } // Otherwise, return true if patch constant function return IsPatchConstantShader(F); } bool DxilModule::StripRootSignatureFromMetadata() { NamedMDNode *pRootSignatureNamedMD = GetModule()->getNamedMetadata(DxilMDHelper::kDxilRootSignatureMDName); if (pRootSignatureNamedMD) { GetModule()->eraseNamedMetadata(pRootSignatureNamedMD); return true; } return false; } DxilSubobjects *DxilModule::GetSubobjects() { return m_pSubobjects.get(); } const DxilSubobjects *DxilModule::GetSubobjects() const { return m_pSubobjects.get(); } DxilSubobjects *DxilModule::ReleaseSubobjects() { return m_pSubobjects.release(); } void DxilModule::ResetSubobjects(DxilSubobjects *subobjects) { m_pSubobjects.reset(subobjects); } bool DxilModule::StripSubobjectsFromMetadata() { NamedMDNode *pSubobjectsNamedMD = GetModule()->getNamedMetadata(DxilMDHelper::kDxilSubobjectsMDName); if (pSubobjectsNamedMD) { GetModule()->eraseNamedMetadata(pSubobjectsNamedMD); return true; } return false; } void DxilModule::UpdateValidatorVersionMetadata() { m_pMDHelper->EmitValidatorVersion(m_ValMajor, m_ValMinor); } void DxilModule::ResetSerializedRootSignature(std::vector &Value) { m_SerializedRootSignature.clear(); m_SerializedRootSignature.reserve(Value.size()); m_SerializedRootSignature.assign(Value.begin(), Value.end()); } DxilTypeSystem &DxilModule::GetTypeSystem() { return *m_pTypeSystem; } std::vector &DxilModule::GetSerializedViewIdState() { return m_SerializedState; } const std::vector &DxilModule::GetSerializedViewIdState() const { return m_SerializedState; } void DxilModule::ResetTypeSystem(DxilTypeSystem *pValue) { m_pTypeSystem.reset(pValue); } void DxilModule::ResetOP(hlsl::OP *hlslOP) { m_pOP.reset(hlslOP); } void DxilModule::ResetEntryPropsMap(DxilEntryPropsMap &&PropMap) { m_DxilEntryPropsMap.clear(); std::move(PropMap.begin(), PropMap.end(), inserter(m_DxilEntryPropsMap, m_DxilEntryPropsMap.begin())); } static const StringRef llvmUsedName = "llvm.used"; void DxilModule::EmitLLVMUsed() { if (GlobalVariable *oldGV = m_pModule->getGlobalVariable(llvmUsedName)) { oldGV->eraseFromParent(); } if (m_LLVMUsed.empty()) return; vector GVs; Type *pI8PtrType = Type::getInt8PtrTy(m_Ctx, DXIL::kDefaultAddrSpace); GVs.resize(m_LLVMUsed.size()); for (size_t i = 0, e = m_LLVMUsed.size(); i != e; i++) { Constant *pConst = cast(&*m_LLVMUsed[i]); PointerType *pPtrType = dyn_cast(pConst->getType()); if (pPtrType->getPointerAddressSpace() != DXIL::kDefaultAddrSpace) { // Cast pointer to addrspace 0, as LLVMUsed elements must have the same // type. GVs[i] = ConstantExpr::getAddrSpaceCast(pConst, pI8PtrType); } else { GVs[i] = ConstantExpr::getPointerCast(pConst, pI8PtrType); } } ArrayType *pATy = ArrayType::get(pI8PtrType, GVs.size()); GlobalVariable *pGV = new GlobalVariable(*m_pModule, pATy, false, GlobalValue::AppendingLinkage, ConstantArray::get(pATy, GVs), llvmUsedName); pGV->setSection("llvm.metadata"); } void DxilModule::ClearLLVMUsed() { if (GlobalVariable *oldGV = m_pModule->getGlobalVariable(llvmUsedName)) { oldGV->eraseFromParent(); } if (m_LLVMUsed.empty()) return; for (size_t i = 0, e = m_LLVMUsed.size(); i != e; i++) { Constant *pConst = cast(&*m_LLVMUsed[i]); pConst->removeDeadConstantUsers(); } m_LLVMUsed.clear(); } vector &DxilModule::GetLLVMUsed() { return m_LLVMUsed; } // DXIL metadata serialization/deserialization. void DxilModule::ClearDxilMetadata(Module &M) { // Delete: DXIL version, validator version, DXIL shader model, // entry point tuples (shader properties, signatures, resources) // type system, view ID state, LLVM used, entry point tuples, // root signature, function properties. // Other cases for libs pending. // LLVM used is a global variable - handle separately. SmallVector nodes; for (NamedMDNode &b : M.named_metadata()) { StringRef name = b.getName(); if (name == DxilMDHelper::kDxilVersionMDName || name == DxilMDHelper::kDxilValidatorVersionMDName || name == DxilMDHelper::kDxilShaderModelMDName || name == DxilMDHelper::kDxilEntryPointsMDName || name == DxilMDHelper::kDxilRootSignatureMDName || name == DxilMDHelper::kDxilIntermediateOptionsMDName || name == DxilMDHelper::kDxilResourcesMDName || name == DxilMDHelper::kDxilTypeSystemMDName || name == DxilMDHelper::kDxilViewIdStateMDName || name == DxilMDHelper::kDxilSubobjectsMDName || name.startswith(DxilMDHelper::kDxilTypeSystemHelperVariablePrefix)) { nodes.push_back(&b); } } for (size_t i = 0; i < nodes.size(); ++i) { M.eraseNamedMetadata(nodes[i]); } } void DxilModule::EmitDxilMetadata() { m_pMDHelper->EmitDxilVersion(m_DxilMajor, m_DxilMinor); m_pMDHelper->EmitValidatorVersion(m_ValMajor, m_ValMinor); m_pMDHelper->EmitDxilShaderModel(m_pSM); m_pMDHelper->EmitDxilIntermediateOptions(m_IntermediateFlags); MDTuple *pMDProperties = nullptr; uint64_t flag = m_ShaderFlags.GetShaderFlagsRaw(); if (m_pSM->IsLib()) { DxilFunctionProps props; props.shaderKind = DXIL::ShaderKind::Library; pMDProperties = m_pMDHelper->EmitDxilEntryProperties(flag, props, GetAutoBindingSpace()); } else { pMDProperties = m_pMDHelper->EmitDxilEntryProperties( flag, m_DxilEntryPropsMap.begin()->second->props, GetAutoBindingSpace()); } MDTuple *pMDSignatures = nullptr; if (!m_pSM->IsLib()) { pMDSignatures = m_pMDHelper->EmitDxilSignatures( m_DxilEntryPropsMap.begin()->second->sig); } MDTuple *pMDResources = EmitDxilResources(); if (pMDResources) m_pMDHelper->EmitDxilResources(pMDResources); m_pMDHelper->EmitDxilTypeSystem(GetTypeSystem(), m_LLVMUsed); if (!m_pSM->IsLib() && !m_pSM->IsCS() && ((m_ValMajor == 0 && m_ValMinor == 0) || (m_ValMajor > 1 || (m_ValMajor == 1 && m_ValMinor >= 1)))) { m_pMDHelper->EmitDxilViewIdState(m_SerializedState); } EmitLLVMUsed(); MDTuple *pEntry = m_pMDHelper->EmitDxilEntryPointTuple(GetEntryFunction(), m_EntryName, pMDSignatures, pMDResources, pMDProperties); vector Entries; Entries.emplace_back(pEntry); if (m_pSM->IsLib()) { // Sort functions by name to keep metadata deterministic vector funcOrder; funcOrder.reserve(m_DxilEntryPropsMap.size()); std::transform( m_DxilEntryPropsMap.begin(), m_DxilEntryPropsMap.end(), std::back_inserter(funcOrder), [](const std::pair> &p) -> const Function* { return p.first; } ); std::sort(funcOrder.begin(), funcOrder.end(), [](const Function *F1, const Function *F2) { return F1->getName() < F2->getName(); }); for (auto F : funcOrder) { auto &entryProps = m_DxilEntryPropsMap[F]; MDTuple *pProps = m_pMDHelper->EmitDxilEntryProperties(0, entryProps->props, 0); MDTuple *pSig = m_pMDHelper->EmitDxilSignatures(entryProps->sig); MDTuple *pSubEntry = m_pMDHelper->EmitDxilEntryPointTuple( const_cast(F), F->getName(), pSig, nullptr, pProps); Entries.emplace_back(pSubEntry); } funcOrder.clear(); // Save Subobjects if (GetSubobjects()) { m_pMDHelper->EmitSubobjects(*GetSubobjects()); } } m_pMDHelper->EmitDxilEntryPoints(Entries); if (!m_SerializedRootSignature.empty()) { m_pMDHelper->EmitRootSignature(m_SerializedRootSignature); } } bool DxilModule::IsKnownNamedMetaData(llvm::NamedMDNode &Node) { return DxilMDHelper::IsKnownNamedMetaData(Node); } void DxilModule::LoadDxilMetadata() { m_pMDHelper->LoadDxilVersion(m_DxilMajor, m_DxilMinor); m_pMDHelper->LoadValidatorVersion(m_ValMajor, m_ValMinor); const ShaderModel *loadedSM; m_pMDHelper->LoadDxilShaderModel(loadedSM); m_pMDHelper->LoadDxilIntermediateOptions(m_IntermediateFlags); // This must be set before LoadDxilEntryProperties m_pMDHelper->SetShaderModel(loadedSM); // Setting module shader model requires UseMinPrecision flag, // which requires loading m_ShaderFlags, // which requires global entry properties, // so load entry properties first, then set the shader model const llvm::NamedMDNode *pEntries = m_pMDHelper->GetDxilEntryPoints(); if (!loadedSM->IsLib()) { IFTBOOL(pEntries->getNumOperands() == 1, DXC_E_INCORRECT_DXIL_METADATA); } Function *pEntryFunc; string EntryName; const llvm::MDOperand *pEntrySignatures, *pEntryResources, *pEntryProperties; m_pMDHelper->GetDxilEntryPoint(pEntries->getOperand(0), pEntryFunc, EntryName, pEntrySignatures, pEntryResources, pEntryProperties); uint64_t rawShaderFlags = 0; DxilFunctionProps entryFuncProps; entryFuncProps.shaderKind = loadedSM->GetKind(); m_pMDHelper->LoadDxilEntryProperties(*pEntryProperties, rawShaderFlags, entryFuncProps, m_AutoBindingSpace); m_bUseMinPrecision = true; if (rawShaderFlags) { m_ShaderFlags.SetShaderFlagsRaw(rawShaderFlags); m_bUseMinPrecision = !m_ShaderFlags.GetUseNativeLowPrecision(); m_bDisableOptimizations = m_ShaderFlags.GetDisableOptimizations(); m_bAllResourcesBound = m_ShaderFlags.GetAllResourcesBound(); } // Now that we have the UseMinPrecision flag, set shader model: SetShaderModel(loadedSM, m_bUseMinPrecision); if (loadedSM->IsLib()) { for (unsigned i = 1; i < pEntries->getNumOperands(); i++) { Function *pFunc; string Name; const llvm::MDOperand *pSignatures, *pResources, *pProperties; m_pMDHelper->GetDxilEntryPoint(pEntries->getOperand(i), pFunc, Name, pSignatures, pResources, pProperties); DxilFunctionProps props; uint64_t rawShaderFlags = 0; unsigned autoBindingSpace = 0; m_pMDHelper->LoadDxilEntryProperties( *pProperties, rawShaderFlags, props, autoBindingSpace); if (props.IsHS() && props.ShaderProps.HS.patchConstantFunc) { // Add patch constant function to m_PatchConstantFunctions m_PatchConstantFunctions.insert(props.ShaderProps.HS.patchConstantFunc); } std::unique_ptr pEntryProps = llvm::make_unique(props, m_bUseMinPrecision); m_pMDHelper->LoadDxilSignatures(*pSignatures, pEntryProps->sig); m_DxilEntryPropsMap[pFunc] = std::move(pEntryProps); } // Load Subobjects std::unique_ptr pSubobjects(new DxilSubobjects()); m_pMDHelper->LoadSubobjects(*pSubobjects); if (pSubobjects->GetSubobjects().size()) { ResetSubobjects(pSubobjects.release()); } } else { std::unique_ptr pEntryProps = llvm::make_unique(entryFuncProps, m_bUseMinPrecision); DxilFunctionProps *pFuncProps = &pEntryProps->props; m_pMDHelper->LoadDxilSignatures(*pEntrySignatures, pEntryProps->sig); m_DxilEntryPropsMap.clear(); m_DxilEntryPropsMap[pEntryFunc] = std::move(pEntryProps); SetEntryFunction(pEntryFunc); SetEntryFunctionName(EntryName); SetShaderProperties(pFuncProps); } LoadDxilResources(*pEntryResources); m_pMDHelper->LoadDxilTypeSystem(*m_pTypeSystem.get()); m_pMDHelper->LoadRootSignature(m_SerializedRootSignature); m_pMDHelper->LoadDxilViewIdState(m_SerializedState); } MDTuple *DxilModule::EmitDxilResources() { // Emit SRV records. MDTuple *pTupleSRVs = nullptr; if (!m_SRVs.empty()) { vector MDVals; for (size_t i = 0; i < m_SRVs.size(); i++) { MDVals.emplace_back(m_pMDHelper->EmitDxilSRV(*m_SRVs[i])); } pTupleSRVs = MDNode::get(m_Ctx, MDVals); } // Emit UAV records. MDTuple *pTupleUAVs = nullptr; if (!m_UAVs.empty()) { vector MDVals; for (size_t i = 0; i < m_UAVs.size(); i++) { MDVals.emplace_back(m_pMDHelper->EmitDxilUAV(*m_UAVs[i])); } pTupleUAVs = MDNode::get(m_Ctx, MDVals); } // Emit CBuffer records. MDTuple *pTupleCBuffers = nullptr; if (!m_CBuffers.empty()) { vector MDVals; for (size_t i = 0; i < m_CBuffers.size(); i++) { MDVals.emplace_back(m_pMDHelper->EmitDxilCBuffer(*m_CBuffers[i])); } pTupleCBuffers = MDNode::get(m_Ctx, MDVals); } // Emit Sampler records. MDTuple *pTupleSamplers = nullptr; if (!m_Samplers.empty()) { vector MDVals; for (size_t i = 0; i < m_Samplers.size(); i++) { MDVals.emplace_back(m_pMDHelper->EmitDxilSampler(*m_Samplers[i])); } pTupleSamplers = MDNode::get(m_Ctx, MDVals); } if (pTupleSRVs != nullptr || pTupleUAVs != nullptr || pTupleCBuffers != nullptr || pTupleSamplers != nullptr) { return m_pMDHelper->EmitDxilResourceTuple(pTupleSRVs, pTupleUAVs, pTupleCBuffers, pTupleSamplers); } else { return nullptr; } } void DxilModule::ReEmitDxilResources() { ClearDxilMetadata(*m_pModule); EmitDxilMetadata(); } template static void StripResourcesReflection(std::vector> &vec) { for (auto &p : vec) { p->SetGlobalName(""); // Cannot remove global symbol which used by validation. } } void DxilModule::StripReflection() { // Remove names. for (Function &F : m_pModule->functions()) { for (BasicBlock &BB : F) { if (BB.hasName()) BB.setName(""); for (Instruction &I : BB) { if (I.hasName()) I.setName(""); } } } // Remove struct annotation. // FunctionAnnotation is used later, so keep it. m_pTypeSystem->GetStructAnnotationMap().clear(); // Resource if (!GetShaderModel()->IsLib()) { StripResourcesReflection(m_CBuffers); StripResourcesReflection(m_UAVs); StripResourcesReflection(m_SRVs); StripResourcesReflection(m_Samplers); } // Unused global. SmallVector UnusedGlobals; for (GlobalVariable &GV : m_pModule->globals()) { if (GV.use_empty()) UnusedGlobals.emplace_back(&GV); } for (GlobalVariable *GV : UnusedGlobals) { GV->eraseFromParent(); } // ReEmit meta. ReEmitDxilResources(); } void DxilModule::LoadDxilResources(const llvm::MDOperand &MDO) { if (MDO.get() == nullptr) return; const llvm::MDTuple *pSRVs, *pUAVs, *pCBuffers, *pSamplers; m_pMDHelper->GetDxilResources(MDO, pSRVs, pUAVs, pCBuffers, pSamplers); // Load SRV records. if (pSRVs != nullptr) { for (unsigned i = 0; i < pSRVs->getNumOperands(); i++) { unique_ptr pSRV(new DxilResource); m_pMDHelper->LoadDxilSRV(pSRVs->getOperand(i), *pSRV); AddSRV(std::move(pSRV)); } } // Load UAV records. if (pUAVs != nullptr) { for (unsigned i = 0; i < pUAVs->getNumOperands(); i++) { unique_ptr pUAV(new DxilResource); m_pMDHelper->LoadDxilUAV(pUAVs->getOperand(i), *pUAV); AddUAV(std::move(pUAV)); } } // Load CBuffer records. if (pCBuffers != nullptr) { for (unsigned i = 0; i < pCBuffers->getNumOperands(); i++) { unique_ptr pCB(new DxilCBuffer); m_pMDHelper->LoadDxilCBuffer(pCBuffers->getOperand(i), *pCB); AddCBuffer(std::move(pCB)); } } // Load Sampler records. if (pSamplers != nullptr) { for (unsigned i = 0; i < pSamplers->getNumOperands(); i++) { unique_ptr pSampler(new DxilSampler); m_pMDHelper->LoadDxilSampler(pSamplers->getOperand(i), *pSampler); AddSampler(std::move(pSampler)); } } } void DxilModule::StripDebugRelatedCode() { // Remove all users of global resources. for (GlobalVariable &GV : m_pModule->globals()) { if (GV.hasInternalLinkage()) continue; if (GV.getType()->getPointerAddressSpace() == DXIL::kTGSMAddrSpace) continue; for (auto git = GV.user_begin(); git != GV.user_end();) { User *U = *(git++); // Try to remove load of GV. if (LoadInst *LI = dyn_cast(U)) { for (auto it = LI->user_begin(); it != LI->user_end();) { Instruction *LIUser = cast(*(it++)); if (StoreInst *SI = dyn_cast(LIUser)) { Value *Ptr = SI->getPointerOperand(); SI->eraseFromParent(); if (Instruction *PtrInst = dyn_cast(Ptr)) { if (Ptr->user_empty()) PtrInst->eraseFromParent(); } } } if (LI->user_empty()) LI->eraseFromParent(); } else if (GetElementPtrInst *GEP = dyn_cast(U)) { for (auto GEPIt = GEP->user_begin(); GEPIt != GEP->user_end();) { User *GEPU = *(GEPIt++); // Try to remove load of GEP. if (LoadInst *LI = dyn_cast(GEPU)) { for (auto it = LI->user_begin(); it != LI->user_end();) { Instruction *LIUser = cast(*(it++)); if (StoreInst *SI = dyn_cast(LIUser)) { Value *Ptr = SI->getPointerOperand(); SI->eraseFromParent(); if (Instruction *PtrInst = dyn_cast(Ptr)) { if (Ptr->user_empty()) PtrInst->eraseFromParent(); } } if (LI->user_empty()) LI->eraseFromParent(); } } } if (GEP->user_empty()) GEP->eraseFromParent(); } } } // Remove dx.source metadata. if (NamedMDNode *contents = m_pModule->getNamedMetadata( DxilMDHelper::kDxilSourceContentsMDName)) { contents->eraseFromParent(); } if (NamedMDNode *defines = m_pModule->getNamedMetadata(DxilMDHelper::kDxilSourceDefinesMDName)) { defines->eraseFromParent(); } if (NamedMDNode *mainFileName = m_pModule->getNamedMetadata( DxilMDHelper::kDxilSourceMainFileNameMDName)) { mainFileName->eraseFromParent(); } if (NamedMDNode *arguments = m_pModule->getNamedMetadata(DxilMDHelper::kDxilSourceArgsMDName)) { arguments->eraseFromParent(); } } DebugInfoFinder &DxilModule::GetOrCreateDebugInfoFinder() { if (m_pDebugInfoFinder == nullptr) { m_pDebugInfoFinder = llvm::make_unique(); m_pDebugInfoFinder->processModule(*m_pModule); } return *m_pDebugInfoFinder; } hlsl::DxilModule *hlsl::DxilModule::TryGetDxilModule(llvm::Module *pModule) { LLVMContext &Ctx = pModule->getContext(); std::string diagStr; raw_string_ostream diagStream(diagStr); hlsl::DxilModule *pDxilModule = nullptr; // TODO: add detail error in DxilMDHelper. try { pDxilModule = &pModule->GetOrCreateDxilModule(); } catch (const ::hlsl::Exception &hlslException) { diagStream << "load dxil metadata failed -"; try { const char *msg = hlslException.what(); if (msg == nullptr || *msg == '\0') diagStream << " error code " << hlslException.hr << "\n"; else diagStream << msg; } catch (...) { diagStream << " unable to retrieve error message.\n"; } Ctx.diagnose(DxilErrorDiagnosticInfo(diagStream.str().c_str())); } catch (...) { Ctx.diagnose(DxilErrorDiagnosticInfo("load dxil metadata failed - unknown error.\n")); } return pDxilModule; } // Check if the instruction has fast math flags configured to indicate // the instruction is precise. // Precise fast math flags means none of the fast math flags are set. bool DxilModule::HasPreciseFastMathFlags(const Instruction *inst) { return isa(inst) && !inst->getFastMathFlags().any(); } // Set fast math flags configured to indicate the instruction is precise. void DxilModule::SetPreciseFastMathFlags(llvm::Instruction *inst) { assert(isa(inst)); inst->copyFastMathFlags(FastMathFlags()); } // True if fast math flags are preserved across serialization/deserialization // of the dxil module. // // We need to check for this when querying fast math flags for preciseness // otherwise we will be overly conservative by reporting instructions precise // because their fast math flags were not preserved. // // Currently we restrict it to the instruction types that have fast math // preserved in the bitcode. We can expand this by converting fast math // flags to dx.precise metadata during serialization and back to fast // math flags during deserialization. bool DxilModule::PreservesFastMathFlags(const llvm::Instruction *inst) { return isa(inst) && (isa(inst) || isa(inst)); } bool DxilModule::IsPrecise(const Instruction *inst) const { if (m_ShaderFlags.GetDisableMathRefactoring()) return true; else if (DxilMDHelper::IsMarkedPrecise(inst)) return true; else if (PreservesFastMathFlags(inst)) return HasPreciseFastMathFlags(inst); else return false; } } // namespace hlsl namespace llvm { hlsl::DxilModule &Module::GetOrCreateDxilModule(bool skipInit) { std::unique_ptr M; if (!HasDxilModule()) { M = llvm::make_unique(this); if (!skipInit) { M->LoadDxilMetadata(); } SetDxilModule(M.release()); } return GetDxilModule(); } }