/////////////////////////////////////////////////////////////////////////////// // // // ExecutionTest.cpp // // Copyright (C) Microsoft Corporation. All rights reserved. // // This file is distributed under the University of Illinois Open Source // // License. See LICENSE.TXT for details. // // // // These tests run by executing compiled programs, and thus involve more // // moving parts, like the runtime and drivers. // // // /////////////////////////////////////////////////////////////////////////////// // We need to keep & fix these warnings to integrate smoothly with HLK #pragma warning(error: 4100 4146 4242 4244 4267 4701 4389) #include #include #include #include #include #include #include #include #include #include "dxc/Test/CompilationResult.h" #include "dxc/Test/HLSLTestData.h" #include #include #include #include #undef _read #include "WexTestClass.h" #include "dxc/Test/HlslTestUtils.h" #include "dxc/Test/DxcTestUtils.h" #include "dxc/Support/Global.h" #include "dxc/Support/WinIncludes.h" #include "dxc/Support/FileIOHelper.h" #include "dxc/Support/Unicode.h" // // d3d12.h and dxgi1_4.h are included in the Windows 10 SDK // https://msdn.microsoft.com/en-us/library/windows/desktop/dn899120(v=vs.85).aspx // https://developer.microsoft.com/en-US/windows/downloads/windows-10-sdk // #include #include #include #include "dxc/Support/d3dx12.h" #include #include #include #include #include "ShaderOpTest.h" #pragma comment(lib, "d3dcompiler.lib") #pragma comment(lib, "windowscodecs.lib") #pragma comment(lib, "dxguid.lib") #pragma comment(lib, "version.lib") // A more recent Windows SDK than currently required is needed for these. typedef HRESULT(WINAPI *D3D12EnableExperimentalFeaturesFn)( UINT NumFeatures, __in_ecount(NumFeatures) const IID* pIIDs, __in_ecount_opt(NumFeatures) void* pConfigurationStructs, __in_ecount_opt(NumFeatures) UINT* pConfigurationStructSizes); static const GUID D3D12ExperimentalShaderModelsID = { /* 76f5573e-f13a-40f5-b297-81ce9e18933f */ 0x76f5573e, 0xf13a, 0x40f5, { 0xb2, 0x97, 0x81, 0xce, 0x9e, 0x18, 0x93, 0x3f } }; using namespace DirectX; using namespace hlsl_test; template static bool contains(TSequence s, const T &val) { return std::cend(s) != std::find(std::cbegin(s), std::cend(s), val); } template static bool contains(InputIterator b, InputIterator e, const T &val) { return e != std::find(b, e, val); } static HRESULT EnableExperimentalShaderModels() { HMODULE hRuntime = LoadLibraryW(L"d3d12.dll"); if (hRuntime == NULL) { return HRESULT_FROM_WIN32(GetLastError()); } D3D12EnableExperimentalFeaturesFn pD3D12EnableExperimentalFeatures = (D3D12EnableExperimentalFeaturesFn)GetProcAddress(hRuntime, "D3D12EnableExperimentalFeatures"); if (pD3D12EnableExperimentalFeatures == nullptr) { FreeLibrary(hRuntime); return HRESULT_FROM_WIN32(GetLastError()); } HRESULT hr = pD3D12EnableExperimentalFeatures(1, &D3D12ExperimentalShaderModelsID, nullptr, nullptr); FreeLibrary(hRuntime); return hr; } static HRESULT ReportLiveObjects() { CComPtr pDebug; IFR(DXGIGetDebugInterface1(0, IID_PPV_ARGS(&pDebug))); IFR(pDebug->ReportLiveObjects(DXGI_DEBUG_ALL, DXGI_DEBUG_RLO_ALL)); return S_OK; } static void WriteInfoQueueMessages(void *pStrCtx, st::OutputStringFn pOutputStrFn, ID3D12InfoQueue *pInfoQueue) { bool allMessagesOK = true; UINT64 count = pInfoQueue->GetNumStoredMessages(); CAtlArray message; for (UINT64 i = 0; i < count; ++i) { // 'GetMessageA' rather than 'GetMessage' is an artifact of user32 headers. SIZE_T msgLen = 0; if (FAILED(pInfoQueue->GetMessageA(i, nullptr, &msgLen))) { allMessagesOK = false; continue; } if (message.GetCount() < msgLen) { if (!message.SetCount(msgLen)) { allMessagesOK = false; continue; } } D3D12_MESSAGE *pMessage = (D3D12_MESSAGE *)message.GetData(); if (FAILED(pInfoQueue->GetMessageA(i, pMessage, &msgLen))) { allMessagesOK = false; continue; } CA2W msgW(pMessage->pDescription, CP_ACP); pOutputStrFn(pStrCtx, msgW.m_psz); pOutputStrFn(pStrCtx, L"\r\n"); } if (!allMessagesOK) { pOutputStrFn(pStrCtx, L"Failed to retrieve some messages.\r\n"); } } class CComContext { private: bool m_init; public: CComContext() : m_init(false) {} ~CComContext() { Dispose(); } void Dispose() { if (!m_init) return; m_init = false; CoUninitialize(); } HRESULT Init() { HRESULT hr = CoInitializeEx(0, COINIT_MULTITHREADED); if (SUCCEEDED(hr)) { m_init = true; } return hr; } }; static void SavePixelsToFile(LPCVOID pPixels, DXGI_FORMAT format, UINT32 m_width, UINT32 m_height, LPCWSTR pFileName) { CComContext ctx; CComPtr pFactory; CComPtr pBitmap; CComPtr pEncoder; CComPtr pFrameEncode; CComPtr pStream; CComPtr pMalloc; struct PF { DXGI_FORMAT Format; GUID PixelFormat; UINT32 PixelSize; bool operator==(DXGI_FORMAT F) const { return F == Format; } } Vals[] = { // Add more pixel format mappings as needed. { DXGI_FORMAT_R8G8B8A8_UNORM, GUID_WICPixelFormat32bppRGBA, 4 } }; PF *pFormat = std::find(Vals, Vals + _countof(Vals), format); VERIFY_SUCCEEDED(ctx.Init()); VERIFY_SUCCEEDED(CoCreateInstance(CLSID_WICImagingFactory, NULL, CLSCTX_INPROC_SERVER, IID_IWICImagingFactory, (LPVOID*)&pFactory)); VERIFY_SUCCEEDED(CoGetMalloc(1, &pMalloc)); VERIFY_SUCCEEDED(hlsl::CreateMemoryStream(pMalloc, &pStream)); VERIFY_ARE_NOT_EQUAL(pFormat, Vals + _countof(Vals)); VERIFY_SUCCEEDED(pFactory->CreateBitmapFromMemory(m_width, m_height, pFormat->PixelFormat, m_width * pFormat->PixelSize, m_width * m_height * pFormat->PixelSize, (BYTE *)pPixels, &pBitmap)); VERIFY_SUCCEEDED(pFactory->CreateEncoder(GUID_ContainerFormatBmp, nullptr, &pEncoder)); VERIFY_SUCCEEDED(pEncoder->Initialize(pStream, WICBitmapEncoderNoCache)); VERIFY_SUCCEEDED(pEncoder->CreateNewFrame(&pFrameEncode, nullptr)); VERIFY_SUCCEEDED(pFrameEncode->Initialize(nullptr)); VERIFY_SUCCEEDED(pFrameEncode->WriteSource(pBitmap, nullptr)); VERIFY_SUCCEEDED(pFrameEncode->Commit()); VERIFY_SUCCEEDED(pEncoder->Commit()); hlsl::WriteBinaryFile(pFileName, pStream->GetPtr(), pStream->GetPtrSize()); } // Checks if the given warp version supports the given operation. bool IsValidWarpDllVersion(unsigned int minBuildNumber) { HMODULE pLibrary = LoadLibrary("D3D10Warp.dll"); if (pLibrary) { char path[MAX_PATH]; DWORD length = GetModuleFileName(pLibrary, path, MAX_PATH); if (length) { DWORD dwVerHnd = 0; DWORD dwVersionInfoSize = GetFileVersionInfoSize(path, &dwVerHnd); std::unique_ptr VffInfo(new int[dwVersionInfoSize]); if (GetFileVersionInfo(path, NULL, dwVersionInfoSize, VffInfo.get())) { LPVOID versionInfo; UINT size; if (VerQueryValue(VffInfo.get(), "\\", &versionInfo, &size)) { if (size) { VS_FIXEDFILEINFO *verInfo = (VS_FIXEDFILEINFO *)versionInfo; unsigned int warpBuildNumber = verInfo->dwFileVersionLS >> 16 & 0xffff; if (verInfo->dwSignature == 0xFEEF04BD && warpBuildNumber >= minBuildNumber) { return true; } } } } } FreeLibrary(pLibrary); } return false; } #if WDK_NTDDI_VERSION <= NTDDI_WIN10_RS2 #define D3D12_FEATURE_D3D12_OPTIONS3 ((D3D12_FEATURE)21) #define NTDDI_WIN10_RS3 0x0A000004 /* ABRACADABRA_WIN10_RS2 */ typedef enum D3D12_COMMAND_LIST_SUPPORT_FLAGS { D3D12_COMMAND_LIST_SUPPORT_FLAG_NONE = 0, D3D12_COMMAND_LIST_SUPPORT_FLAG_DIRECT = (1 << D3D12_COMMAND_LIST_TYPE_DIRECT), D3D12_COMMAND_LIST_SUPPORT_FLAG_BUNDLE = (1 << D3D12_COMMAND_LIST_TYPE_BUNDLE), D3D12_COMMAND_LIST_SUPPORT_FLAG_COMPUTE = (1 << D3D12_COMMAND_LIST_TYPE_COMPUTE), D3D12_COMMAND_LIST_SUPPORT_FLAG_COPY = (1 << D3D12_COMMAND_LIST_TYPE_COPY), D3D12_COMMAND_LIST_SUPPORT_FLAG_VIDEO_DECODE = (1 << 4), D3D12_COMMAND_LIST_SUPPORT_FLAG_VIDEO_PROCESS = (1 << 5) } D3D12_COMMAND_LIST_SUPPORT_FLAGS; typedef enum D3D12_VIEW_INSTANCING_TIER { D3D12_VIEW_INSTANCING_TIER_NOT_SUPPORTED = 0, D3D12_VIEW_INSTANCING_TIER_1 = 1, D3D12_VIEW_INSTANCING_TIER_2 = 2, D3D12_VIEW_INSTANCING_TIER_3 = 3 } D3D12_VIEW_INSTANCING_TIER; typedef struct D3D12_FEATURE_DATA_D3D12_OPTIONS3 { _Out_ BOOL CopyQueueTimestampQueriesSupported; _Out_ BOOL CastingFullyTypedFormatSupported; _Out_ DWORD WriteBufferImmediateSupportFlags; _Out_ D3D12_VIEW_INSTANCING_TIER ViewInstancingTier; _Out_ BOOL BarycentricsSupported; } D3D12_FEATURE_DATA_D3D12_OPTIONS3; #endif #if WDK_NTDDI_VERSION <= NTDDI_WIN10_RS3 #define D3D12_FEATURE_D3D12_OPTIONS4 ((D3D12_FEATURE)23) typedef enum D3D12_SHARED_RESOURCE_COMPATIBILITY_TIER { D3D12_SHARED_RESOURCE_COMPATIBILITY_TIER_0, D3D12_SHARED_RESOURCE_COMPATIBILITY_TIER_1, } D3D12_SHARED_RESOURCE_COMPATIBILITY_TIER; typedef struct D3D12_FEATURE_DATA_D3D12_OPTIONS4 { _Out_ BOOL ReservedBufferPlacementSupported; _Out_ D3D12_SHARED_RESOURCE_COMPATIBILITY_TIER SharedResourceCompatibilityTier; _Out_ BOOL Native16BitShaderOpsSupported; } D3D12_FEATURE_DATA_D3D12_OPTIONS4; #endif // Virtual class to compute the expected result given a set of inputs struct TableParameter; class ExecutionTest { public: // By default, ignore these tests, which require a recent build to run properly. BEGIN_TEST_CLASS(ExecutionTest) TEST_CLASS_PROPERTY(L"Parallel", L"true") TEST_CLASS_PROPERTY(L"Ignore", L"true") TEST_METHOD_PROPERTY(L"Priority", L"0") END_TEST_CLASS() TEST_CLASS_SETUP(ExecutionTestClassSetup) TEST_METHOD(BasicComputeTest); TEST_METHOD(BasicTriangleTest); TEST_METHOD(BasicTriangleOpTest); BEGIN_TEST_METHOD(BasicTriangleOpTestHalf) TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.2 END_TEST_METHOD() TEST_METHOD(OutOfBoundsTest); TEST_METHOD(SaturateTest); TEST_METHOD(SignTest); TEST_METHOD(Int64Test); TEST_METHOD(LifetimeIntrinsicTest) TEST_METHOD(WaveIntrinsicsTest); TEST_METHOD(WaveIntrinsicsDDITest); TEST_METHOD(WaveIntrinsicsInPSTest); TEST_METHOD(WaveSizeTest); TEST_METHOD(PartialDerivTest); TEST_METHOD(DerivativesTest); TEST_METHOD(ComputeSampleTest); TEST_METHOD(AtomicsTest); TEST_METHOD(Atomics64Test); TEST_METHOD(AtomicsTyped64Test); TEST_METHOD(AtomicsShared64Test); TEST_METHOD(AtomicsFloatTest); TEST_METHOD(HelperLaneTest); BEGIN_TEST_METHOD(HelperLaneTestWave) TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp handles this END_TEST_METHOD() TEST_METHOD(SignatureResourcesTest) TEST_METHOD(DynamicResourcesTest) TEST_METHOD(QuadReadTest) BEGIN_TEST_METHOD(CBufferTestHalf) TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.2 END_TEST_METHOD() TEST_METHOD(BasicShaderModel61); BEGIN_TEST_METHOD(BasicShaderModel63) TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.3 END_TEST_METHOD() BEGIN_TEST_METHOD(WaveIntrinsicsActiveIntTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#WaveIntrinsicsActiveIntTable") END_TEST_METHOD() BEGIN_TEST_METHOD(WaveIntrinsicsActiveUintTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#WaveIntrinsicsActiveUintTable") END_TEST_METHOD() BEGIN_TEST_METHOD(WaveIntrinsicsPrefixIntTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#WaveIntrinsicsPrefixIntTable") END_TEST_METHOD() BEGIN_TEST_METHOD(WaveIntrinsicsPrefixUintTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#WaveIntrinsicsPrefixUintTable") END_TEST_METHOD() BEGIN_TEST_METHOD(WaveIntrinsicsSM65IntTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#WaveIntrinsicsMultiPrefixIntTable") END_TEST_METHOD() BEGIN_TEST_METHOD(WaveIntrinsicsSM65UintTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#WaveIntrinsicsMultiPrefixUintTable") END_TEST_METHOD() // TAEF data-driven tests. BEGIN_TEST_METHOD(UnaryFloatOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#UnaryFloatOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(BinaryFloatOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#BinaryFloatOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(TertiaryFloatOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#TertiaryFloatOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(UnaryHalfOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#UnaryHalfOpTable") TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.2 END_TEST_METHOD() BEGIN_TEST_METHOD(BinaryHalfOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#BinaryHalfOpTable") TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.2 END_TEST_METHOD() BEGIN_TEST_METHOD(TertiaryHalfOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#TertiaryHalfOpTable") TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.2 END_TEST_METHOD() BEGIN_TEST_METHOD(UnaryIntOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#UnaryIntOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(BinaryIntOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#BinaryIntOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(TertiaryIntOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#TertiaryIntOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(UnaryUintOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#UnaryUintOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(BinaryUintOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#BinaryUintOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(TertiaryUintOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#TertiaryUintOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(UnaryInt16OpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#UnaryInt16OpTable") TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.2 END_TEST_METHOD() BEGIN_TEST_METHOD(BinaryInt16OpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#BinaryInt16OpTable") TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.2 END_TEST_METHOD() BEGIN_TEST_METHOD(TertiaryInt16OpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#TertiaryInt16OpTable") TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.2 END_TEST_METHOD() BEGIN_TEST_METHOD(UnaryUint16OpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#UnaryUint16OpTable") TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.2 END_TEST_METHOD() BEGIN_TEST_METHOD(BinaryUint16OpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#BinaryUint16OpTable") TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.2 END_TEST_METHOD() BEGIN_TEST_METHOD(TertiaryUint16OpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#TertiaryUint16OpTable") TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.2 END_TEST_METHOD() BEGIN_TEST_METHOD(DotTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#DotOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(Dot2AddHalfTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#Dot2AddHalfOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(Dot4AddI8PackedTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#Dot4AddI8PackedOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(Dot4AddU8PackedTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#Dot4AddU8PackedOpTable") END_TEST_METHOD() BEGIN_TEST_METHOD(Msad4Test) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#Msad4Table") END_TEST_METHOD() BEGIN_TEST_METHOD(DenormBinaryFloatOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#DenormBinaryFloatOpTable") TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.2 END_TEST_METHOD() BEGIN_TEST_METHOD(DenormTertiaryFloatOpTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#DenormTertiaryFloatOpTable") TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.2 END_TEST_METHOD() TEST_METHOD(BarycentricsTest); TEST_METHOD(ComputeRawBufferLdStI32); TEST_METHOD(ComputeRawBufferLdStFloat); BEGIN_TEST_METHOD(ComputeRawBufferLdStI64) TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.3 END_TEST_METHOD() BEGIN_TEST_METHOD(ComputeRawBufferLdStDouble) TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.3 END_TEST_METHOD() BEGIN_TEST_METHOD(ComputeRawBufferLdStI16) TEST_METHOD_PROPERTY(L"Priority", L"2") // This test is disabled because of a bug in WARP; TODO: enable once the bug is fixed END_TEST_METHOD() BEGIN_TEST_METHOD(ComputeRawBufferLdStHalf) TEST_METHOD_PROPERTY(L"Priority", L"2") // This test is disabled because of a bug in WARP; TODO: enable once the bug is fixed END_TEST_METHOD() TEST_METHOD(GraphicsRawBufferLdStI32); TEST_METHOD(GraphicsRawBufferLdStFloat); BEGIN_TEST_METHOD(GraphicsRawBufferLdStI64) TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.3 END_TEST_METHOD() BEGIN_TEST_METHOD(GraphicsRawBufferLdStDouble) TEST_METHOD_PROPERTY(L"Priority", L"2") // Remove this line once warp supports this feature in Shader Model 6.3 END_TEST_METHOD() BEGIN_TEST_METHOD(GraphicsRawBufferLdStI16) TEST_METHOD_PROPERTY(L"Priority", L"2") // This test is disabled because of a bug in WARP; TODO: enable once the bug is fixed END_TEST_METHOD() BEGIN_TEST_METHOD(GraphicsRawBufferLdStHalf) TEST_METHOD_PROPERTY(L"Priority", L"2") // This test is disabled because of a bug in WARP; TODO: enable once the bug is fixed END_TEST_METHOD() BEGIN_TEST_METHOD(PackUnpackTest) TEST_METHOD_PROPERTY(L"DataSource", L"Table:ShaderOpArithTable.xml#PackUnpackOpTable") END_TEST_METHOD() dxc::DxcDllSupport m_support; VersionSupportInfo m_ver; bool m_ExperimentalModeEnabled = false; const float ClearColor[4] = { 0.0f, 0.2f, 0.4f, 1.0f }; // Do not remove the following line - it is used by TranslateExecutionTest.py // MARKER: ExecutionTest/DxilConf Shared Implementation Start // This is defined in d3d.h for Windows 10 Anniversary Edition SDK, but we only // require the Windows 10 SDK. typedef enum D3D_SHADER_MODEL { D3D_SHADER_MODEL_5_1 = 0x51, D3D_SHADER_MODEL_6_0 = 0x60, D3D_SHADER_MODEL_6_1 = 0x61, D3D_SHADER_MODEL_6_2 = 0x62, D3D_SHADER_MODEL_6_3 = 0x63, D3D_SHADER_MODEL_6_4 = 0x64, D3D_SHADER_MODEL_6_5 = 0x65, D3D_SHADER_MODEL_6_6 = 0x66, } D3D_SHADER_MODEL; #if WDK_NTDDI_VERSION == NTDDI_WIN10_RS2 static const D3D_SHADER_MODEL HIGHEST_SHADER_MODEL = D3D_SHADER_MODEL_6_0; #elif WDK_NTDDI_VERSION == NTDDI_WIN10_RS3 static const D3D_SHADER_MODEL HIGHEST_SHADER_MODEL = D3D_SHADER_MODEL_6_1; #elif WDK_NTDDI_VERSION == NTDDI_WIN10_RS4 static const D3D_SHADER_MODEL HIGHEST_SHADER_MODEL = D3D_SHADER_MODEL_6_2; #elif WDK_NTDDI_VERSION == NTDDI_WIN10_RS5 static const D3D_SHADER_MODEL HIGHEST_SHADER_MODEL = D3D_SHADER_MODEL_6_3; #elif WDK_NTDDI_VERSION == NTDDI_WIN10_19H1 static const D3D_SHADER_MODEL HIGHEST_SHADER_MODEL = D3D_SHADER_MODEL_6_4; #elif WDK_NTDDI_VERSION == NTDDI_WIN10_VB static const D3D_SHADER_MODEL HIGHEST_SHADER_MODEL = D3D_SHADER_MODEL_6_5; #elif WDK_NTDDI_VERSION == NTDDI_WIN10_MN static const D3D_SHADER_MODEL HIGHEST_SHADER_MODEL = D3D_SHADER_MODEL_6_5; #elif WDK_NTDDI_VERSION == NTDDI_WIN10_FE static const D3D_SHADER_MODEL HIGHEST_SHADER_MODEL = D3D_SHADER_MODEL_6_6; #elif WDK_NTDDI_VERSION == NTDDI_WIN10_CO static const D3D_SHADER_MODEL HIGHEST_SHADER_MODEL = D3D_SHADER_MODEL_6_6; #else static const D3D_SHADER_MODEL HIGHEST_SHADER_MODEL = D3D_SHADER_MODEL_6_6; #endif bool UseDxbc() { #ifdef _HLK_CONF return false; #else return GetTestParamBool(L"DXBC"); #endif } bool UseWarpByDefault() { #ifdef _HLK_CONF return false; #else return true; #endif } bool UseDebugIfaces() { return true; } bool SaveImages() { return GetTestParamBool(L"SaveImages"); } void RunResourceTest(ID3D12Device *pDevice, const char *pShader, const wchar_t *sm, bool isDynamic); template void WaveIntrinsicsActivePrefixTest(TableParameter *pParameterList, size_t numParameter, bool isPrefix); template void WaveIntrinsicsMultiPrefixOpTest(TableParameter *pParameterList, size_t numParameters); void BasicTriangleTestSetup(LPCSTR OpName, LPCWSTR FileName, D3D_SHADER_MODEL testModel); void RunBasicShaderModelTest(D3D_SHADER_MODEL shaderModel); enum class RawBufferLdStType { I32, Float, I64, Double, I16, Half }; template struct RawBufferLdStTestData { Ty v1, v2[2], v3[3], v4[4]; }; template struct RawBufferLdStUavData { RawBufferLdStTestData input, output, srvOut; }; template void RunComputeRawBufferLdStTest(D3D_SHADER_MODEL shaderModel, RawBufferLdStType dataType, const char *shaderOpName, const RawBufferLdStTestData &testData); template void RunGraphicsRawBufferLdStTest(D3D_SHADER_MODEL shaderModel, RawBufferLdStType dataType, const char *shaderOpName, const RawBufferLdStTestData &testData); template void VerifyRawBufferLdStTestResults(const std::shared_ptr test, const RawBufferLdStTestData &testData); bool SetupRawBufferLdStTest(D3D_SHADER_MODEL shaderModel, RawBufferLdStType dataType, CComPtr &pDevice, CComPtr &pStream, char *&sTy, char *&additionalOptions); template void RunBasicShaderModelTest(CComPtr pDevice, const char *pShaderModelStr, const char *pShader, Ty *pInputDataPairs, unsigned inputDataCount); template const wchar_t* BasicShaderModelTest_GetFormatString(); void CompileFromText(LPCSTR pText, LPCWSTR pEntryPoint, LPCWSTR pTargetProfile, ID3DBlob **ppBlob, LPCWSTR *pOptions = nullptr, int numOptions = 0) { VERIFY_SUCCEEDED(m_support.Initialize()); CComPtr pCompiler; CComPtr pLibrary; CComPtr pTextBlob; CComPtr pResult; HRESULT resultCode; VERIFY_SUCCEEDED(m_support.CreateInstance(CLSID_DxcCompiler, &pCompiler)); VERIFY_SUCCEEDED(m_support.CreateInstance(CLSID_DxcLibrary, &pLibrary)); VERIFY_SUCCEEDED(pLibrary->CreateBlobWithEncodingFromPinned(pText, (UINT32)strlen(pText), CP_UTF8, &pTextBlob)); VERIFY_SUCCEEDED(pCompiler->Compile(pTextBlob, L"hlsl.hlsl", pEntryPoint, pTargetProfile, pOptions, numOptions, nullptr, 0, nullptr, &pResult)); VERIFY_SUCCEEDED(pResult->GetStatus(&resultCode)); if (FAILED(resultCode)) { CComPtr errors; VERIFY_SUCCEEDED(pResult->GetErrorBuffer(&errors)); #ifndef _HLK_CONF LogCommentFmt(L"Failed to compile shader: %s", BlobToUtf16(errors).data()); #endif } VERIFY_SUCCEEDED(resultCode); VERIFY_SUCCEEDED(pResult->GetResult((IDxcBlob **)ppBlob)); } void CreateCommandQueue(ID3D12Device *pDevice, LPCWSTR pName, ID3D12CommandQueue **ppCommandQueue, D3D12_COMMAND_LIST_TYPE type) { D3D12_COMMAND_QUEUE_DESC queueDesc = {}; queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE; queueDesc.Type = type; VERIFY_SUCCEEDED(pDevice->CreateCommandQueue(&queueDesc, IID_PPV_ARGS(ppCommandQueue))); VERIFY_SUCCEEDED((*ppCommandQueue)->SetName(pName)); } void CreateComputeCommandQueue(ID3D12Device *pDevice, LPCWSTR pName, ID3D12CommandQueue **ppCommandQueue) { CreateCommandQueue(pDevice, pName, ppCommandQueue, D3D12_COMMAND_LIST_TYPE_COMPUTE); } void CreateComputePSO(ID3D12Device *pDevice, ID3D12RootSignature *pRootSignature, LPCSTR pShader, LPCWSTR pTargetProfile, ID3D12PipelineState **ppComputeState, LPCWSTR *pOptions = nullptr, int numOptions = 0) { CComPtr pComputeShader; // Load and compile shaders. if (UseDxbc()) { #ifndef _HLK_CONF DXBCFromText(pShader, L"main", pTargetProfile, &pComputeShader); #endif } else { CompileFromText(pShader, L"main", pTargetProfile, &pComputeShader, pOptions, numOptions); } // Describe and create the compute pipeline state object (PSO). D3D12_COMPUTE_PIPELINE_STATE_DESC computePsoDesc = {}; computePsoDesc.pRootSignature = pRootSignature; computePsoDesc.CS = CD3DX12_SHADER_BYTECODE(pComputeShader); VERIFY_SUCCEEDED(pDevice->CreateComputePipelineState(&computePsoDesc, IID_PPV_ARGS(ppComputeState))); } bool CreateDevice(_COM_Outptr_ ID3D12Device **ppDevice, D3D_SHADER_MODEL testModel = D3D_SHADER_MODEL_6_0, bool skipUnsupported = true, bool enableRayTracing = false) { if (testModel > HIGHEST_SHADER_MODEL) { UINT minor = (UINT)testModel & 0x0f; LogCommentFmt(L"Installed SDK does not support " L"shader model 6.%1u", minor); if (skipUnsupported) { WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); } return false; } const D3D_FEATURE_LEVEL FeatureLevelRequired = enableRayTracing ? D3D_FEATURE_LEVEL_12_0 : D3D_FEATURE_LEVEL_11_0; CComPtr factory; CComPtr pDevice; *ppDevice = nullptr; VERIFY_SUCCEEDED(CreateDXGIFactory1(IID_PPV_ARGS(&factory))); if (GetTestParamUseWARP(UseWarpByDefault())) { CComPtr warpAdapter; VERIFY_SUCCEEDED(factory->EnumWarpAdapter(IID_PPV_ARGS(&warpAdapter))); HRESULT createHR = D3D12CreateDevice(warpAdapter, FeatureLevelRequired, IID_PPV_ARGS(&pDevice)); if (FAILED(createHR)) { LogCommentFmt(L"The available version of WARP does not support d3d12."); if (skipUnsupported) { WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); } return false; } } else { CComPtr hardwareAdapter; WEX::Common::String AdapterValue; HRESULT hr = WEX::TestExecution::RuntimeParameters::TryGetValue(L"Adapter", AdapterValue); if (SUCCEEDED(hr)) { GetHardwareAdapter(factory, AdapterValue, &hardwareAdapter); } else { WEX::Logging::Log::Comment( L"Using default hardware adapter with D3D12 support."); } VERIFY_SUCCEEDED(D3D12CreateDevice(hardwareAdapter, FeatureLevelRequired, IID_PPV_ARGS(&pDevice))); } // retrieve adapter information LUID adapterID = pDevice->GetAdapterLuid(); CComPtr adapter; factory->EnumAdapterByLuid(adapterID, IID_PPV_ARGS(&adapter)); DXGI_ADAPTER_DESC AdapterDesc; VERIFY_SUCCEEDED(adapter->GetDesc(&AdapterDesc)); LogCommentFmt(L"Using Adapter:%s", AdapterDesc.Description); if (pDevice == nullptr) return false; if (!UseDxbc()) { // Check for DXIL support. typedef struct D3D12_FEATURE_DATA_SHADER_MODEL { _Inout_ D3D_SHADER_MODEL HighestShaderModel; } D3D12_FEATURE_DATA_SHADER_MODEL; const UINT D3D12_FEATURE_SHADER_MODEL = 7; D3D12_FEATURE_DATA_SHADER_MODEL SMData; SMData.HighestShaderModel = testModel; VERIFY_SUCCEEDED(pDevice->CheckFeatureSupport( (D3D12_FEATURE)D3D12_FEATURE_SHADER_MODEL, &SMData, sizeof(SMData))); if (SMData.HighestShaderModel < testModel) { UINT minor = (UINT)testModel & 0x0f; LogCommentFmt(L"The selected device does not support " L"shader model 6.%1u", minor); if (skipUnsupported) { WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); } return false; } } if (UseDebugIfaces()) { CComPtr pInfoQueue; if (SUCCEEDED(pDevice->QueryInterface(&pInfoQueue))) { pInfoQueue->SetMuteDebugOutput(FALSE); } } *ppDevice = pDevice.Detach(); return true; } void CreateGraphicsCommandQueue(ID3D12Device *pDevice, ID3D12CommandQueue **ppCommandQueue) { D3D12_COMMAND_QUEUE_DESC queueDesc = {}; queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE; queueDesc.Type = D3D12_COMMAND_LIST_TYPE_DIRECT;; VERIFY_SUCCEEDED(pDevice->CreateCommandQueue(&queueDesc, IID_PPV_ARGS(ppCommandQueue))); } void CreateGraphicsCommandQueueAndList( ID3D12Device *pDevice, ID3D12CommandQueue **ppCommandQueue, ID3D12CommandAllocator **ppAllocator, ID3D12GraphicsCommandList **ppCommandList, ID3D12PipelineState *pPSO) { CreateGraphicsCommandQueue(pDevice, ppCommandQueue); VERIFY_SUCCEEDED(pDevice->CreateCommandAllocator( D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(ppAllocator))); VERIFY_SUCCEEDED(pDevice->CreateCommandList( 0, D3D12_COMMAND_LIST_TYPE_DIRECT, *ppAllocator, pPSO, IID_PPV_ARGS(ppCommandList))); } void CreateGraphicsPSO(ID3D12Device *pDevice, D3D12_INPUT_LAYOUT_DESC *pInputLayout, ID3D12RootSignature *pRootSignature, LPCSTR pShaders, ID3D12PipelineState **ppPSO) { CComPtr vertexShader; CComPtr pixelShader; if (UseDxbc()) { #ifndef _HLK_CONF DXBCFromText(pShaders, L"VSMain", L"vs_6_0", &vertexShader); DXBCFromText(pShaders, L"PSMain", L"ps_6_0", &pixelShader); #endif } else { CompileFromText(pShaders, L"VSMain", L"vs_6_0", &vertexShader); CompileFromText(pShaders, L"PSMain", L"ps_6_0", &pixelShader); } // Describe and create the graphics pipeline state object (PSO). D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {}; psoDesc.InputLayout = *pInputLayout; psoDesc.pRootSignature = pRootSignature; psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader); psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader); psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT); psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT); psoDesc.DepthStencilState.DepthEnable = FALSE; psoDesc.DepthStencilState.StencilEnable = FALSE; psoDesc.SampleMask = UINT_MAX; psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE; psoDesc.NumRenderTargets = 1; psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM; psoDesc.SampleDesc.Count = 1; VERIFY_SUCCEEDED( pDevice->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(ppPSO))); } void CreateRenderTargetAndReadback(ID3D12Device *pDevice, ID3D12DescriptorHeap *pHeap, UINT width, UINT height, ID3D12Resource **ppRenderTarget, ID3D12Resource **ppBuffer) { const DXGI_FORMAT format = DXGI_FORMAT_R8G8B8A8_UNORM; const size_t formatElementSize = 4; CComPtr pRenderTarget; CComPtr pBuffer; CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle( pHeap->GetCPUDescriptorHandleForHeapStart()); CD3DX12_HEAP_PROPERTIES rtHeap(D3D12_HEAP_TYPE_DEFAULT); CD3DX12_RESOURCE_DESC rtDesc( CD3DX12_RESOURCE_DESC::Tex2D(format, width, height)); CD3DX12_CLEAR_VALUE rtClearVal(format, ClearColor); rtDesc.Flags = D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET; VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &rtHeap, D3D12_HEAP_FLAG_NONE, &rtDesc, D3D12_RESOURCE_STATE_COPY_DEST, &rtClearVal, IID_PPV_ARGS(&pRenderTarget))); pDevice->CreateRenderTargetView(pRenderTarget, nullptr, rtvHandle); // rtvHandle.Offset(1, rtvDescriptorSize); // Not needed for a single // resource. CD3DX12_HEAP_PROPERTIES readHeap(D3D12_HEAP_TYPE_READBACK); CD3DX12_RESOURCE_DESC readDesc( CD3DX12_RESOURCE_DESC::Buffer(width * height * formatElementSize)); VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &readHeap, D3D12_HEAP_FLAG_NONE, &readDesc, D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&pBuffer))); *ppRenderTarget = pRenderTarget.Detach(); *ppBuffer = pBuffer.Detach(); } void CreateRootSignatureFromDesc(ID3D12Device *pDevice, const D3D12_ROOT_SIGNATURE_DESC *pDesc, ID3D12RootSignature **pRootSig) { CComPtr signature; CComPtr error; VERIFY_SUCCEEDED(D3D12SerializeRootSignature(pDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error)); VERIFY_SUCCEEDED(pDevice->CreateRootSignature( 0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(pRootSig))); } void CreateRootSignatureFromRanges(ID3D12Device *pDevice, ID3D12RootSignature **pRootSig, CD3DX12_DESCRIPTOR_RANGE *resRanges, UINT resCt, CD3DX12_DESCRIPTOR_RANGE *sampRanges = nullptr, UINT sampCt = 0, D3D12_ROOT_SIGNATURE_FLAGS flags = D3D12_ROOT_SIGNATURE_FLAG_NONE) { CD3DX12_ROOT_PARAMETER rootParameters[2]; rootParameters[0].InitAsDescriptorTable(resCt, resRanges, D3D12_SHADER_VISIBILITY_ALL); rootParameters[1].InitAsDescriptorTable(sampCt, sampRanges, D3D12_SHADER_VISIBILITY_ALL); CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, flags); CreateRootSignatureFromDesc(pDevice, &rootSignatureDesc, pRootSig); } void CreateRtvDescriptorHeap(ID3D12Device *pDevice, UINT numDescriptors, ID3D12DescriptorHeap **pRtvHeap, UINT *rtvDescriptorSize) { D3D12_DESCRIPTOR_HEAP_DESC rtvHeapDesc = {}; rtvHeapDesc.NumDescriptors = numDescriptors; rtvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_RTV; rtvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE; VERIFY_SUCCEEDED( pDevice->CreateDescriptorHeap(&rtvHeapDesc, IID_PPV_ARGS(pRtvHeap))); if (rtvDescriptorSize != nullptr) { *rtvDescriptorSize = pDevice->GetDescriptorHandleIncrementSize( D3D12_DESCRIPTOR_HEAP_TYPE_RTV); } } void CreateTestResources(ID3D12Device *pDevice, ID3D12GraphicsCommandList *pCommandList, LPCVOID values, UINT32 valueSizeInBytes, D3D12_RESOURCE_DESC resDesc, ID3D12Resource **ppResource, ID3D12Resource **ppUploadResource, ID3D12Resource **ppReadBuffer = nullptr) { CComPtr pResource; CComPtr pReadBuffer; CComPtr pUploadResource; D3D12_SUBRESOURCE_DATA transferData; D3D12_HEAP_PROPERTIES defaultHeapProperties = CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT); D3D12_HEAP_PROPERTIES uploadHeapProperties = CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD); D3D12_RESOURCE_DESC uploadBufferDesc = CD3DX12_RESOURCE_DESC::Buffer(valueSizeInBytes); CD3DX12_HEAP_PROPERTIES readHeap(D3D12_HEAP_TYPE_READBACK); CD3DX12_RESOURCE_DESC readDesc(CD3DX12_RESOURCE_DESC::Buffer(valueSizeInBytes)); pDevice->GetCopyableFootprints(&resDesc, 0, 1/*mipleveles*/, 0, nullptr, nullptr, nullptr, &uploadBufferDesc.Width); uploadBufferDesc.Height = 1; VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &defaultHeapProperties, D3D12_HEAP_FLAG_NONE, &resDesc, D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&pResource))); VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &uploadHeapProperties, D3D12_HEAP_FLAG_NONE, &uploadBufferDesc, D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&pUploadResource))); if (ppReadBuffer) VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &readHeap, D3D12_HEAP_FLAG_NONE, &readDesc, D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&pReadBuffer))); transferData.pData = values; transferData.RowPitch = valueSizeInBytes/resDesc.Height; transferData.SlicePitch = valueSizeInBytes; UpdateSubresources<1>(pCommandList, pResource.p, pUploadResource.p, 0, 0, 1, &transferData); if (resDesc.Flags & D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS) RecordTransitionBarrier(pCommandList, pResource, D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_UNORDERED_ACCESS); else RecordTransitionBarrier(pCommandList, pResource, D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_COMMON); *ppResource = pResource.Detach(); *ppUploadResource = pUploadResource.Detach(); if (ppReadBuffer) *ppReadBuffer = pReadBuffer.Detach(); } void CreateTestUavs(ID3D12Device *pDevice, ID3D12GraphicsCommandList *pCommandList, LPCVOID values, UINT32 valueSizeInBytes, ID3D12Resource **ppUavResource, ID3D12Resource **ppUploadResource = nullptr, ID3D12Resource **ppReadBuffer = nullptr) { D3D12_RESOURCE_DESC bufferDesc = CD3DX12_RESOURCE_DESC::Buffer(valueSizeInBytes, D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS); CreateTestResources(pDevice, pCommandList, values, valueSizeInBytes, bufferDesc, ppUavResource, ppUploadResource, ppReadBuffer); } // Create and return descriptor heaps for the given device // with the given number of resources and samples. // using some reasonable defaults void CreateDefaultDescHeaps(ID3D12Device *pDevice, int NumResources, int NumSamplers, ID3D12DescriptorHeap **ppResHeap, ID3D12DescriptorHeap **ppSampHeap) { // Describe and create descriptor heaps. ID3D12DescriptorHeap *pResHeap, *pSampHeap; D3D12_DESCRIPTOR_HEAP_DESC heapDesc = {}; heapDesc.NumDescriptors = NumResources; heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV; heapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE; VERIFY_SUCCEEDED(pDevice->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&pResHeap))); heapDesc.NumDescriptors = NumSamplers; heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER; VERIFY_SUCCEEDED(pDevice->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&pSampHeap))); *ppResHeap = pResHeap; *ppSampHeap = pSampHeap; } void CreateSRV(ID3D12Device *pDevice, CD3DX12_CPU_DESCRIPTOR_HANDLE &baseHandle, DXGI_FORMAT format, D3D12_SRV_DIMENSION viewDimension, UINT numElements, UINT stride, const CComPtr pResource) { UINT descriptorSize = pDevice->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV); // Create SRV D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {}; srvDesc.Format = format; srvDesc.ViewDimension = viewDimension; srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING; switch (viewDimension) { case D3D12_SRV_DIMENSION_BUFFER: srvDesc.Buffer.FirstElement = 0; srvDesc.Buffer.NumElements = numElements; srvDesc.Buffer.StructureByteStride = stride; if (format == DXGI_FORMAT_R32_TYPELESS && stride == 0) srvDesc.Buffer.Flags = D3D12_BUFFER_SRV_FLAG_RAW; else srvDesc.Buffer.Flags = D3D12_BUFFER_SRV_FLAG_NONE; break; case D3D12_SRV_DIMENSION_TEXTURE1D: srvDesc.Texture1D.MostDetailedMip = 0; srvDesc.Texture1D.MipLevels = 1; srvDesc.Texture1D.ResourceMinLODClamp = 0; break; case D3D12_SRV_DIMENSION_TEXTURE2D: srvDesc.Texture2D.MostDetailedMip = 0; srvDesc.Texture2D.MipLevels = 1; srvDesc.Texture2D.PlaneSlice = 0; srvDesc.Texture2D.ResourceMinLODClamp = 0; break; } pDevice->CreateShaderResourceView(pResource, &srvDesc, baseHandle); baseHandle.Offset(descriptorSize); } void CreateRawSRV(ID3D12Device *pDevice, CD3DX12_CPU_DESCRIPTOR_HANDLE &heapStart, UINT numElements, const CComPtr pResource) { CreateSRV(pDevice, heapStart, DXGI_FORMAT_R32_TYPELESS, D3D12_SRV_DIMENSION_BUFFER, numElements, 0, pResource); } void CreateStructSRV(ID3D12Device *pDevice, CD3DX12_CPU_DESCRIPTOR_HANDLE &heapStart, UINT numElements, UINT stride, const CComPtr pResource) { CreateSRV(pDevice, heapStart, DXGI_FORMAT_UNKNOWN, D3D12_SRV_DIMENSION_BUFFER, numElements, stride, pResource); } void CreateTypedSRV(ID3D12Device *pDevice, CD3DX12_CPU_DESCRIPTOR_HANDLE &heapStart, UINT numElements, DXGI_FORMAT format, const CComPtr pResource) { CreateSRV(pDevice, heapStart, format, D3D12_SRV_DIMENSION_BUFFER, numElements, 0, pResource); } void CreateTex1DSRV(ID3D12Device *pDevice, CD3DX12_CPU_DESCRIPTOR_HANDLE &heapStart, UINT numElements, DXGI_FORMAT format, const CComPtr pResource) { CreateSRV(pDevice, heapStart, format, D3D12_SRV_DIMENSION_TEXTURE1D, numElements, 0, pResource); } void CreateTex2DSRV(ID3D12Device *pDevice, CD3DX12_CPU_DESCRIPTOR_HANDLE &heapStart, UINT numElements, DXGI_FORMAT format, const CComPtr pResource) { CreateSRV(pDevice, heapStart, format, D3D12_SRV_DIMENSION_TEXTURE2D, numElements, 0, pResource); } void CreateUAV(ID3D12Device *pDevice, CD3DX12_CPU_DESCRIPTOR_HANDLE &baseHandle, DXGI_FORMAT format, D3D12_UAV_DIMENSION viewDimension, UINT numElements, UINT stride, const CComPtr pResource) { UINT descriptorSize = pDevice->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV); D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {}; uavDesc.Format = format; uavDesc.ViewDimension = viewDimension; switch (viewDimension) { case D3D12_UAV_DIMENSION_BUFFER: uavDesc.Buffer.FirstElement = 0; uavDesc.Buffer.NumElements = numElements; uavDesc.Buffer.StructureByteStride = stride; if (format == DXGI_FORMAT_R32_TYPELESS && stride == 0) uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_RAW; else uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_NONE; break; case D3D12_UAV_DIMENSION_TEXTURE1D: uavDesc.Texture1D.MipSlice = 0; break; case D3D12_UAV_DIMENSION_TEXTURE2D: uavDesc.Texture2D.MipSlice = 0; uavDesc.Texture2D.PlaneSlice = 0; break; } pDevice->CreateUnorderedAccessView(pResource, nullptr, &uavDesc, baseHandle); baseHandle.Offset(descriptorSize); } void CreateRawUAV(ID3D12Device *pDevice, CD3DX12_CPU_DESCRIPTOR_HANDLE &heapStart, UINT numElements, const CComPtr pResource) { CreateUAV(pDevice, heapStart, DXGI_FORMAT_R32_TYPELESS, D3D12_UAV_DIMENSION_BUFFER, numElements, 0, pResource); } void CreateStructUAV(ID3D12Device *pDevice, CD3DX12_CPU_DESCRIPTOR_HANDLE &heapStart, UINT numElements, UINT stride, const CComPtr pResource) { CreateUAV(pDevice, heapStart, DXGI_FORMAT_UNKNOWN, D3D12_UAV_DIMENSION_BUFFER, numElements, stride, pResource); } void CreateTypedUAV(ID3D12Device *pDevice, CD3DX12_CPU_DESCRIPTOR_HANDLE &heapStart, UINT numElements, DXGI_FORMAT format, const CComPtr pResource) { CreateUAV(pDevice, heapStart, format, D3D12_UAV_DIMENSION_BUFFER, numElements, 0, pResource); } void CreateTex1DUAV(ID3D12Device *pDevice, CD3DX12_CPU_DESCRIPTOR_HANDLE &heapStart, UINT numElements, DXGI_FORMAT format, const CComPtr pResource) { CreateUAV(pDevice, heapStart, format, D3D12_UAV_DIMENSION_TEXTURE1D, numElements, 0, pResource); } void CreateTex2DUAV(ID3D12Device *pDevice, CD3DX12_CPU_DESCRIPTOR_HANDLE &heapStart, UINT numElements, DXGI_FORMAT format, const CComPtr pResource) { CreateUAV(pDevice, heapStart, format, D3D12_UAV_DIMENSION_TEXTURE2D, numElements, 0, pResource); } // Create Samplers for given the filter and border color information provided // using some reasonable defaults void CreateDefaultSamplers(ID3D12Device *pDevice, D3D12_CPU_DESCRIPTOR_HANDLE heapStart, D3D12_FILTER filters[], float BorderColors[], int NumSamplers) { CD3DX12_CPU_DESCRIPTOR_HANDLE sampHandle(heapStart); UINT descriptorSize = pDevice->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER); D3D12_SAMPLER_DESC sampDesc = {}; sampDesc.Filter = D3D12_FILTER_MIN_MAG_LINEAR_MIP_POINT; sampDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_BORDER; sampDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_BORDER; sampDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_BORDER; sampDesc.MipLODBias = 0; sampDesc.MaxAnisotropy = 1; sampDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_EQUAL; sampDesc.MinLOD = 0; sampDesc.MaxLOD = 0; for (int i = 0; i < NumSamplers; i++) { sampDesc.Filter = filters[i]; for (int j = 0; j < 4; j++) sampDesc.BorderColor[j] = BorderColors[i]; pDevice->CreateSampler(&sampDesc, sampHandle); sampHandle = sampHandle.Offset(descriptorSize); } } template void CreateVertexBuffer(ID3D12Device *pDevice, TVertex(&vertices)[len], ID3D12Resource **ppVertexBuffer, D3D12_VERTEX_BUFFER_VIEW *pVertexBufferView) { size_t vertexBufferSize = sizeof(vertices); CComPtr pVertexBuffer; CD3DX12_HEAP_PROPERTIES heapProps(D3D12_HEAP_TYPE_UPLOAD); CD3DX12_RESOURCE_DESC bufferDesc( CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize)); VERIFY_SUCCEEDED(pDevice->CreateCommittedResource( &heapProps, D3D12_HEAP_FLAG_NONE, &bufferDesc, D3D12_RESOURCE_STATE_GENERIC_READ, nullptr, IID_PPV_ARGS(&pVertexBuffer))); UINT8 *pVertexDataBegin; CD3DX12_RANGE readRange(0, 0); VERIFY_SUCCEEDED(pVertexBuffer->Map( 0, &readRange, reinterpret_cast(&pVertexDataBegin))); memcpy(pVertexDataBegin, vertices, vertexBufferSize); pVertexBuffer->Unmap(0, nullptr); // Initialize the vertex buffer view. pVertexBufferView->BufferLocation = pVertexBuffer->GetGPUVirtualAddress(); pVertexBufferView->StrideInBytes = sizeof(TVertex); pVertexBufferView->SizeInBytes = (UINT)vertexBufferSize; *ppVertexBuffer = pVertexBuffer.Detach(); } // Requires Anniversary Edition headers, so simplifying things for current setup. const UINT D3D12_FEATURE_D3D12_OPTIONS1 = 8; struct D3D12_FEATURE_DATA_D3D12_OPTIONS1 { BOOL WaveOps; UINT WaveLaneCountMin; UINT WaveLaneCountMax; UINT TotalLaneCount; BOOL ExpandedComputeResourceStates; BOOL Int64ShaderOps; }; bool DoesDeviceSupportInt64(ID3D12Device *pDevice) { D3D12_FEATURE_DATA_D3D12_OPTIONS1 O; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS1, &O, sizeof(O)))) return false; return O.Int64ShaderOps != FALSE; } bool DoesDeviceSupportDouble(ID3D12Device *pDevice) { D3D12_FEATURE_DATA_D3D12_OPTIONS O; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS, &O, sizeof(O)))) return false; return O.DoublePrecisionFloatShaderOps != FALSE; } bool DoesDeviceSupportWaveOps(ID3D12Device *pDevice) { D3D12_FEATURE_DATA_D3D12_OPTIONS1 O; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS1, &O, sizeof(O)))) return false; return O.WaveOps != FALSE; } bool DoesDeviceSupportBarycentrics(ID3D12Device *pDevice) { D3D12_FEATURE_DATA_D3D12_OPTIONS3 O; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS3, &O, sizeof(O)))) return false; return O.BarycentricsSupported != FALSE; } bool DoesDeviceSupportNative16bitOps(ID3D12Device *pDevice) { D3D12_FEATURE_DATA_D3D12_OPTIONS4 O; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS4, &O, sizeof(O)))) return false; return O.Native16BitShaderOpsSupported != FALSE; } bool DoesDeviceSupportMeshShaders(ID3D12Device *pDevice) { #if defined(NTDDI_WIN10_VB) && WDK_NTDDI_VERSION >= NTDDI_WIN10_VB D3D12_FEATURE_DATA_D3D12_OPTIONS7 O7; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS7, &O7, sizeof(O7)))) return false; return O7.MeshShaderTier != D3D12_MESH_SHADER_TIER_NOT_SUPPORTED; #else UNREFERENCED_PARAMETER(pDevice); return false; #endif } bool DoesDeviceSupportRayTracing(ID3D12Device *pDevice) { #if WDK_NTDDI_VERSION > NTDDI_WIN10_RS4 D3D12_FEATURE_DATA_D3D12_OPTIONS5 O5; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS5, &O5, sizeof(O5)))) return false; return O5.RaytracingTier != D3D12_RAYTRACING_TIER_NOT_SUPPORTED; #else UNREFERENCED_PARAMETER(pDevice); return false; #endif } // Replace with appropriate WDK check when available #define SM66_RUNTIME_SUPPORT 0 bool DoesDeviceSupportMeshAmpDerivatives(ID3D12Device *pDevice) { #if SM66_RUNTIME_SUPPORT D3D12_FEATURE_DATA_D3D12_OPTIONS7 O7; D3D12_FEATURE_DATA_D3D12_OPTIONS9 O9; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS7, &O7, sizeof(O7))) || FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS9, &O9, sizeof(O9)))) return false; return O7.MeshShaderTier != D3D12_MESH_SHADER_TIER_NOT_SUPPORTED && O9.DerivativesInMeshAndAmplificationShadersSupported != FALSE; #else UNREFERENCED_PARAMETER(pDevice); return false; #endif } bool DoesDeviceSupportTyped64Atomics(ID3D12Device *pDevice) { #if SM66_RUNTIME_SUPPORT D3D12_FEATURE_DATA_D3D12_OPTIONS9 O9; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS9, &O9, sizeof(O9)))) return false; return O9.AtomicInt64OnTypedResourceSupported != FALSE; #else UNREFERENCED_PARAMETER(pDevice); return false; #endif } bool DoesDeviceSupportShared64Atomics(ID3D12Device *pDevice) { #if SM66_RUNTIME_SUPPORT D3D12_FEATURE_DATA_D3D12_OPTIONS9 O9; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS9, &O9, sizeof(O9)))) return false; return O9.AtomicInt64OnGroupSharedSupported != FALSE; #else UNREFERENCED_PARAMETER(pDevice); return false; #endif } #ifndef _HLK_CONF void DXBCFromText(LPCSTR pText, LPCWSTR pEntryPoint, LPCWSTR pTargetProfile, ID3DBlob **ppBlob) { CW2A pEntryPointA(pEntryPoint, CP_UTF8); CW2A pTargetProfileA(pTargetProfile, CP_UTF8); CComPtr pErrors; D3D_SHADER_MACRO d3dMacro[2]; ZeroMemory(d3dMacro, sizeof(d3dMacro)); d3dMacro[0].Definition = "1"; d3dMacro[0].Name = "USING_DXBC"; HRESULT hr = D3DCompile(pText, strlen(pText), "hlsl.hlsl", d3dMacro, nullptr, pEntryPointA, pTargetProfileA, 0, 0, ppBlob, &pErrors); if (pErrors != nullptr) { CA2W errors((char *)pErrors->GetBufferPointer(), CP_ACP); LogCommentFmt(L"Compilation failure: %s", errors.m_szBuffer); } VERIFY_SUCCEEDED(hr); } #endif HRESULT EnableDebugLayer() { // The debug layer does net yet validate DXIL programs that require rewriting, // but basic logging should work properly. HRESULT hr = S_FALSE; if (UseDebugIfaces()) { CComPtr debugController; hr = D3D12GetDebugInterface(IID_PPV_ARGS(&debugController)); if (SUCCEEDED(hr)) { debugController->EnableDebugLayer(); hr = S_OK; } } return hr; } #ifndef _HLK_CONF HRESULT EnableExperimentalMode() { if (m_ExperimentalModeEnabled) { return S_OK; } if (!GetTestParamBool(L"ExperimentalShaders")) { return S_FALSE; } HRESULT hr = EnableExperimentalShaderModels(); if (SUCCEEDED(hr)) { m_ExperimentalModeEnabled = true; } return hr; } #endif struct FenceObj { HANDLE m_fenceEvent = NULL; CComPtr m_fence; UINT64 m_fenceValue; ~FenceObj() { if (m_fenceEvent) CloseHandle(m_fenceEvent); } }; void InitFenceObj(ID3D12Device *pDevice, FenceObj *pObj) { pObj->m_fenceValue = 1; VERIFY_SUCCEEDED(pDevice->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&pObj->m_fence))); // Create an event handle to use for frame synchronization. pObj->m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr); if (pObj->m_fenceEvent == nullptr) { VERIFY_SUCCEEDED(HRESULT_FROM_WIN32(GetLastError())); } } void ReadHlslDataIntoNewStream(LPCWSTR relativePath, IStream **ppStream) { VERIFY_SUCCEEDED(m_support.Initialize()); CComPtr pLibrary; CComPtr pBlob; CComPtr pStream; std::wstring path = GetPathToHlslDataFile(relativePath); VERIFY_SUCCEEDED(m_support.CreateInstance(CLSID_DxcLibrary, &pLibrary)); VERIFY_SUCCEEDED(pLibrary->CreateBlobFromFile(path.c_str(), nullptr, &pBlob)); VERIFY_SUCCEEDED(pLibrary->CreateStreamFromBlobReadOnly(pBlob, &pStream)); *ppStream = pStream.Detach(); } void RecordRenderAndReadback(ID3D12GraphicsCommandList *pList, ID3D12DescriptorHeap *pRtvHeap, UINT rtvDescriptorSize, UINT instanceCount, D3D12_VERTEX_BUFFER_VIEW *pVertexBufferView, ID3D12RootSignature *pRootSig, ID3D12Resource *pRenderTarget, ID3D12Resource *pReadBuffer) { D3D12_RESOURCE_DESC rtDesc = pRenderTarget->GetDesc(); D3D12_VIEWPORT viewport; D3D12_RECT scissorRect; memset(&viewport, 0, sizeof(viewport)); viewport.Height = (float)rtDesc.Height; viewport.Width = (float)rtDesc.Width; viewport.MaxDepth = 1.0f; memset(&scissorRect, 0, sizeof(scissorRect)); scissorRect.right = (long)rtDesc.Width; scissorRect.bottom = rtDesc.Height; if (pRootSig != nullptr) { pList->SetGraphicsRootSignature(pRootSig); } pList->RSSetViewports(1, &viewport); pList->RSSetScissorRects(1, &scissorRect); // Indicate that the buffer will be used as a render target. RecordTransitionBarrier(pList, pRenderTarget, D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_RENDER_TARGET); CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle(pRtvHeap->GetCPUDescriptorHandleForHeapStart(), 0, rtvDescriptorSize); pList->OMSetRenderTargets(1, &rtvHandle, FALSE, nullptr); pList->ClearRenderTargetView(rtvHandle, ClearColor, 0, nullptr); pList->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST); pList->IASetVertexBuffers(0, 1, pVertexBufferView); pList->DrawInstanced(3, instanceCount, 0, 0); // Transition to copy source and copy into read-back buffer. RecordTransitionBarrier(pList, pRenderTarget, D3D12_RESOURCE_STATE_RENDER_TARGET, D3D12_RESOURCE_STATE_COPY_SOURCE); // Copy into read-back buffer. UINT64 rowPitch = rtDesc.Width * 4; if (rowPitch % D3D12_TEXTURE_DATA_PITCH_ALIGNMENT) rowPitch += D3D12_TEXTURE_DATA_PITCH_ALIGNMENT - (rowPitch % D3D12_TEXTURE_DATA_PITCH_ALIGNMENT); D3D12_PLACED_SUBRESOURCE_FOOTPRINT Footprint; Footprint.Offset = 0; Footprint.Footprint = CD3DX12_SUBRESOURCE_FOOTPRINT(DXGI_FORMAT_R8G8B8A8_UNORM, (UINT)rtDesc.Width, rtDesc.Height, 1, (UINT)rowPitch); CD3DX12_TEXTURE_COPY_LOCATION DstLoc(pReadBuffer, Footprint); CD3DX12_TEXTURE_COPY_LOCATION SrcLoc(pRenderTarget, 0); pList->CopyTextureRegion(&DstLoc, 0, 0, 0, &SrcLoc, nullptr); } void RunRWByteBufferComputeTest(ID3D12Device *pDevice, LPCSTR shader, std::vector &values); void RunLifetimeIntrinsicTest(ID3D12Device *pDevice, LPCSTR shader, D3D_SHADER_MODEL shaderModel, bool useLibTarget, LPCWSTR *pOptions, int numOptions, std::vector &values); void RunLifetimeIntrinsicComputeTest(ID3D12Device *pDevice, LPCSTR pShader, CComPtr& pUavHeap, CComPtr& pRootSignature, LPCWSTR pTargetProfile, LPCWSTR *pOptions, int numOptions, std::vector &values); void RunLifetimeIntrinsicLibTest(ID3D12Device5 *pDevice, LPCSTR pShader, CComPtr& pRootSignature, LPCWSTR pTargetProfile, LPCWSTR *pOptions, int numOptions); void SetDescriptorHeap(ID3D12GraphicsCommandList *pCommandList, ID3D12DescriptorHeap *pHeap) { ID3D12DescriptorHeap *const pHeaps[1] = { pHeap }; pCommandList->SetDescriptorHeaps(1, pHeaps); } void WaitForSignal(ID3D12CommandQueue *pCQ, FenceObj &FO) { ::WaitForSignal(pCQ, FO.m_fence, FO.m_fenceEvent, FO.m_fenceValue++); } }; #define WAVE_INTRINSIC_DXBC_GUARD \ "#ifdef USING_DXBC\r\n" \ "uint WaveGetLaneIndex() { return 1; }\r\n" \ "uint WaveReadLaneFirst(uint u) { return u; }\r\n" \ "bool WaveIsFirstLane() { return true; }\r\n" \ "uint WaveGetLaneCount() { return 1; }\r\n" \ "uint WaveReadLaneAt(uint n, uint u) { return u; }\r\n" \ "bool WaveActiveAnyTrue(bool b) { return b; }\r\n" \ "bool WaveActiveAllTrue(bool b) { return false; }\r\n" \ "uint WaveActiveAllEqual(uint u) { return u; }\r\n" \ "uint4 WaveActiveBallot(bool b) { return 1; }\r\n" \ "uint WaveActiveCountBits(uint u) { return 1; }\r\n" \ "uint WaveActiveSum(uint u) { return 1; }\r\n" \ "uint WaveActiveProduct(uint u) { return 1; }\r\n" \ "uint WaveActiveBitAnd(uint u) { return 1; }\r\n" \ "uint WaveActiveBitOr(uint u) { return 1; }\r\n" \ "uint WaveActiveBitXor(uint u) { return 1; }\r\n" \ "uint WaveActiveMin(uint u) { return 1; }\r\n" \ "uint WaveActiveMax(uint u) { return 1; }\r\n" \ "uint WavePrefixCountBits(uint u) { return 1; }\r\n" \ "uint WavePrefixSum(uint u) { return 1; }\r\n" \ "uint WavePrefixProduct(uint u) { return 1; }\r\n" \ "uint QuadReadLaneAt(uint a, uint u) { return 1; }\r\n" \ "uint QuadReadAcrossX(uint u) { return 1; }\r\n" \ "uint QuadReadAcrossY(uint u) { return 1; }\r\n" \ "uint QuadReadAcrossDiagonal(uint u) { return 1; }\r\n" \ "#endif\r\n" static void SetupComputeValuePattern(std::vector &values, size_t count) { values.resize(count); // one element per dispatch group, in bytes for (size_t i = 0; i < count; ++i) { values[i] = (uint32_t)i; } } bool ExecutionTest::ExecutionTestClassSetup() { #ifdef _HLK_CONF // TODO: Enabling the D3D driver verifier. Check out the logic in the D3DConf_12_Core test. VERIFY_SUCCEEDED(m_support.Initialize()); m_UseWarp = hlsl_test::GetTestParamUseWARP(false); m_EnableDebugLayer = hlsl_test::GetTestParamBool(L"DebugLayer"); if (m_EnableDebugLayer) { EnableDebugLayer(); } return true; #else HRESULT hr = EnableExperimentalMode(); if (FAILED(hr)) { LogCommentFmt(L"Unable to enable shader experimental mode - 0x%08x.", hr); } else if (hr == S_FALSE) { LogCommentFmt(L"Experimental mode not enabled."); } else { LogCommentFmt(L"Experimental mode enabled."); } hr = EnableDebugLayer(); if (FAILED(hr)) { LogCommentFmt(L"Unable to enable debug layer - 0x%08x.", hr); } else { LogCommentFmt(L"Debug layer enabled."); } return true; #endif } void ExecutionTest::RunRWByteBufferComputeTest(ID3D12Device *pDevice, LPCSTR pShader, std::vector &values) { static const int DispatchGroupX = 1; static const int DispatchGroupY = 1; static const int DispatchGroupZ = 1; CComPtr pCommandList; CComPtr pCommandQueue; CComPtr pUavHeap; CComPtr pCommandAllocator; UINT uavDescriptorSize; FenceObj FO; const UINT valueSizeInBytes = (UINT)values.size() * sizeof(uint32_t); CreateComputeCommandQueue(pDevice, L"RunRWByteBufferComputeTest Command Queue", &pCommandQueue); InitFenceObj(pDevice, &FO); // Describe and create a UAV descriptor heap. D3D12_DESCRIPTOR_HEAP_DESC heapDesc = {}; heapDesc.NumDescriptors = 1; heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV; heapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE; VERIFY_SUCCEEDED(pDevice->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&pUavHeap))); uavDescriptorSize = pDevice->GetDescriptorHandleIncrementSize(heapDesc.Type); // Create root signature. CComPtr pRootSignature; { CD3DX12_DESCRIPTOR_RANGE ranges[1]; ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0, 0, 0); CD3DX12_ROOT_PARAMETER rootParameters[1]; rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_ALL); CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_NONE); CreateRootSignatureFromDesc(pDevice, &rootSignatureDesc, &pRootSignature); } // Create pipeline state object. CComPtr pComputeState; CreateComputePSO(pDevice, pRootSignature, pShader, L"cs_6_0", &pComputeState); // Create a command allocator and list for compute. VERIFY_SUCCEEDED(pDevice->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_COMPUTE, IID_PPV_ARGS(&pCommandAllocator))); VERIFY_SUCCEEDED(pDevice->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COMPUTE, pCommandAllocator, pComputeState, IID_PPV_ARGS(&pCommandList))); pCommandList->SetName(L"ExecutionTest::RunRWByteButterComputeTest Command List"); // Set up UAV resource. CComPtr pUavResource; CComPtr pReadBuffer; CComPtr pUploadResource; CreateTestUavs(pDevice, pCommandList, values.data(), valueSizeInBytes, &pUavResource, &pUploadResource, &pReadBuffer); VERIFY_SUCCEEDED(pUavResource->SetName(L"RunRWByteBufferComputeText UAV")); VERIFY_SUCCEEDED(pReadBuffer->SetName(L"RunRWByteBufferComputeText UAV Read Buffer")); VERIFY_SUCCEEDED(pUploadResource->SetName(L"RunRWByteBufferComputeText UAV Upload Buffer")); // Close the command list and execute it to perform the GPU setup. pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); VERIFY_SUCCEEDED(pCommandAllocator->Reset()); VERIFY_SUCCEEDED(pCommandList->Reset(pCommandAllocator, pComputeState)); // Run the compute shader and copy the results back to readable memory. { D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {}; uavDesc.Format = DXGI_FORMAT_R32_TYPELESS; uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER; uavDesc.Buffer.FirstElement = 0; uavDesc.Buffer.NumElements = (UINT)values.size(); uavDesc.Buffer.StructureByteStride = 0; uavDesc.Buffer.CounterOffsetInBytes = 0; uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_RAW; CD3DX12_CPU_DESCRIPTOR_HANDLE uavHandle(pUavHeap->GetCPUDescriptorHandleForHeapStart()); CD3DX12_GPU_DESCRIPTOR_HANDLE uavHandleGpu(pUavHeap->GetGPUDescriptorHandleForHeapStart()); pDevice->CreateUnorderedAccessView(pUavResource, nullptr, &uavDesc, uavHandle); SetDescriptorHeap(pCommandList, pUavHeap); pCommandList->SetComputeRootSignature(pRootSignature); pCommandList->SetComputeRootDescriptorTable(0, uavHandleGpu); } pCommandList->Dispatch(DispatchGroupX, DispatchGroupY, DispatchGroupZ); RecordTransitionBarrier(pCommandList, pUavResource, D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE); pCommandList->CopyResource(pReadBuffer, pUavResource); pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); { MappedData mappedData(pReadBuffer, valueSizeInBytes); uint32_t *pData = (uint32_t *)mappedData.data(); memcpy(values.data(), pData, (size_t)valueSizeInBytes); } WaitForSignal(pCommandQueue, FO); } void ExecutionTest::RunLifetimeIntrinsicComputeTest(ID3D12Device *pDevice, LPCSTR pShader, CComPtr& pUavHeap, CComPtr& pRootSignature, LPCWSTR pTargetProfile, LPCWSTR *pOptions, int numOptions, std::vector &values) { // Create command queue. CComPtr pCommandQueue; CreateComputeCommandQueue(pDevice, L"RunLifetimeIntrinsicTest Command Queue", &pCommandQueue); FenceObj FO; InitFenceObj(pDevice, &FO); // Compile shader "main" and create pipeline state object. CComPtr pComputeState; CreateComputePSO(pDevice, pRootSignature, pShader, pTargetProfile, &pComputeState, pOptions, numOptions); // Create a command allocator and list for compute. CComPtr pCommandAllocator; CComPtr pCommandList; VERIFY_SUCCEEDED(pDevice->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_COMPUTE, IID_PPV_ARGS(&pCommandAllocator))); VERIFY_SUCCEEDED(pDevice->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COMPUTE, pCommandAllocator, pComputeState, IID_PPV_ARGS(&pCommandList))); pCommandList->SetName(L"ExecutionTest::RunLifetimeIntrinsicTest Command List"); // Set up UAV resource. const UINT valueSizeInBytes = (UINT)values.size() * sizeof(uint32_t); CComPtr pUavResource; CComPtr pReadBuffer; CComPtr pUploadResource; CreateTestUavs(pDevice, pCommandList, values.data(), valueSizeInBytes, &pUavResource, &pUploadResource, &pReadBuffer); VERIFY_SUCCEEDED(pUavResource->SetName(L"RunLifetimeIntrinsicTest UAV")); VERIFY_SUCCEEDED(pReadBuffer->SetName(L"RunLifetimeIntrinsicTest UAV Read Buffer")); VERIFY_SUCCEEDED(pUploadResource->SetName(L"RunLifetimeIntrinsicTest UAV Upload Buffer")); // Close the command list and execute it to perform the GPU setup. pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); VERIFY_SUCCEEDED(pCommandAllocator->Reset()); VERIFY_SUCCEEDED(pCommandList->Reset(pCommandAllocator, pComputeState)); // Run the compute shader and copy the results back to readable memory. { D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {}; uavDesc.Format = DXGI_FORMAT_R32_TYPELESS; uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER; uavDesc.Buffer.FirstElement = 0; uavDesc.Buffer.NumElements = (UINT)values.size(); uavDesc.Buffer.StructureByteStride = 0; uavDesc.Buffer.CounterOffsetInBytes = 0; uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_RAW; CD3DX12_CPU_DESCRIPTOR_HANDLE uavHandle(pUavHeap->GetCPUDescriptorHandleForHeapStart()); CD3DX12_GPU_DESCRIPTOR_HANDLE uavHandleGpu(pUavHeap->GetGPUDescriptorHandleForHeapStart()); pDevice->CreateUnorderedAccessView(pUavResource, nullptr, &uavDesc, uavHandle); SetDescriptorHeap(pCommandList, pUavHeap); pCommandList->SetComputeRootSignature(pRootSignature); pCommandList->SetComputeRootDescriptorTable(0, uavHandleGpu); } static const int DispatchGroupX = 1; static const int DispatchGroupY = 1; static const int DispatchGroupZ = 1; pCommandList->Dispatch(DispatchGroupX, DispatchGroupY, DispatchGroupZ); RecordTransitionBarrier(pCommandList, pUavResource, D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE); pCommandList->CopyResource(pReadBuffer, pUavResource); pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); { MappedData mappedData(pReadBuffer, valueSizeInBytes); uint32_t *pData = (uint32_t *)mappedData.data(); memcpy(values.data(), pData, (size_t)valueSizeInBytes); } WaitForSignal(pCommandQueue, FO); } void ExecutionTest::RunLifetimeIntrinsicLibTest(ID3D12Device5 *pDevice, LPCSTR pShader, CComPtr& pRootSignature, LPCWSTR pTargetProfile, LPCWSTR *pOptions, int numOptions) { // Create command queue. CComPtr pCommandQueue; CreateCommandQueue(pDevice, L"RunLifetimeIntrinsicTest Command Queue", &pCommandQueue, D3D12_COMMAND_LIST_TYPE_DIRECT); FenceObj FO; InitFenceObj(pDevice, &FO); // Compile raygen shader. CComPtr pShaderLib; CompileFromText(pShader, L"RayGen", pTargetProfile, &pShaderLib, pOptions, numOptions); // Describe and create the RT pipeline state object (RTPSO). CD3DX12_STATE_OBJECT_DESC stateObjectDesc(D3D12_STATE_OBJECT_TYPE_RAYTRACING_PIPELINE); auto lib = stateObjectDesc.CreateSubobject(); CD3DX12_SHADER_BYTECODE byteCode(pShaderLib); lib->SetDXILLibrary(&byteCode); lib->DefineExport(L"RayGen"); const int payloadCount = 4; const int attributeCount = 2; const int maxRecursion = 2; stateObjectDesc.CreateSubobject()->Config(payloadCount * sizeof(float), attributeCount * sizeof(float)); stateObjectDesc.CreateSubobject()->Config(maxRecursion); // Create (local!) root sig subobject and associate with shader. auto localRootSigSubObj = stateObjectDesc.CreateSubobject(); localRootSigSubObj->SetRootSignature(pRootSignature); auto x = stateObjectDesc.CreateSubobject(); x->SetSubobjectToAssociate(*localRootSigSubObj); x->AddExport(L"RayGen"); CComPtr pStateObject; VERIFY_SUCCEEDED(pDevice->CreateStateObject(stateObjectDesc, IID_PPV_ARGS(&pStateObject))); // Create a command allocator and list. CComPtr pCommandAllocator; CComPtr pCommandList; VERIFY_SUCCEEDED(pDevice->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(&pCommandAllocator))); VERIFY_SUCCEEDED(pDevice->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, pCommandAllocator, nullptr, IID_PPV_ARGS(&pCommandList))); pCommandList->SetPipelineState1(pStateObject); pCommandList->SetName(L"ExecutionTest::RunLifetimeIntrinsicTest Command List"); // Close the command list and execute it to kick-off compilation in the driver. // NOTE: We don't care about anything else, so we're not setting up any resources and don't actually execute the shader. pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); } void ExecutionTest::RunLifetimeIntrinsicTest(ID3D12Device *pDevice, LPCSTR pShader, D3D_SHADER_MODEL shaderModel, bool useLibTarget, LPCWSTR *pOptions, int numOptions, std::vector &values) { LPCWSTR pTargetProfile; switch (shaderModel) { default: pTargetProfile = useLibTarget ? L"lib_6_3" : L"cs_6_0"; break; // Default to 6.3 for lib, 6.0 otherwise. case D3D_SHADER_MODEL_6_0: pTargetProfile = useLibTarget ? L"lib_6_0" : L"cs_6_0"; break; case D3D_SHADER_MODEL_6_3: pTargetProfile = useLibTarget ? L"lib_6_3" : L"cs_6_3"; break; case D3D_SHADER_MODEL_6_5: pTargetProfile = useLibTarget ? L"lib_6_5" : L"cs_6_5"; break; case D3D_SHADER_MODEL_6_6: pTargetProfile = useLibTarget ? L"lib_6_6" : L"cs_6_6"; break; } // Describe a UAV descriptor heap. D3D12_DESCRIPTOR_HEAP_DESC heapDesc = {}; heapDesc.NumDescriptors = 1; heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV; heapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE; // Create the UAV descriptor heap. CComPtr pUavHeap; VERIFY_SUCCEEDED(pDevice->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&pUavHeap))); // Create root signature. CComPtr pRootSignature; { CD3DX12_DESCRIPTOR_RANGE ranges[1]; ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0, 0, 0); CD3DX12_ROOT_PARAMETER rootParameters[1]; rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_ALL); CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; D3D12_ROOT_SIGNATURE_FLAGS rootSigFlag = useLibTarget ? D3D12_ROOT_SIGNATURE_FLAG_LOCAL_ROOT_SIGNATURE : D3D12_ROOT_SIGNATURE_FLAG_NONE; rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, rootSigFlag); CreateRootSignatureFromDesc(pDevice, &rootSignatureDesc, &pRootSignature); } if (useLibTarget) RunLifetimeIntrinsicLibTest(reinterpret_cast(pDevice), pShader, pRootSignature, pTargetProfile, pOptions, numOptions); else RunLifetimeIntrinsicComputeTest(pDevice, pShader, pUavHeap, pRootSignature, pTargetProfile, pOptions, numOptions, values); } TEST_F(ExecutionTest, LifetimeIntrinsicTest) { // The only thing we test here is that existence of lifetime intrinsics or // their fallback replacement (store undef or store zeroinitializer) do not // cause any issues in the runtime and driver stack. // The easiest way to force placement of intrinsics is to create an array in // a local scope that is dynamically indexed. It must not be optimized away, // so we do some bogus initialization that prevents this. Since all the code // is guarded by a conditional that is dynamically always false, the actual // effect of the shader is that the same value that was read is written back. static const char* pShader = R"( RWByteAddressBuffer g_bab : register(u0); void fn(uint GI) { const uint addr = GI * 4; const int val = g_bab.Load(addr); int res = val; if (val < 0) { // Never true. int arr[200]; for (int i = 0; i < 200; ++i) { arr[i] = arr[val - i]; } res += arr[val]; } g_bab.Store(addr, (uint)res); } [numthreads(8,8,1)] void main(uint GI : SV_GroupIndex) { fn(GI); } [shader("raygeneration")] void RayGen() { const uint d = DispatchRaysIndex().x; const uint g = g > 64 ? 63 : g; fn(g); } )"; static const int NumThreadsX = 8; static const int NumThreadsY = 8; static const int NumThreadsZ = 1; static const int ThreadsPerGroup = NumThreadsX * NumThreadsY * NumThreadsZ; static const int DispatchGroupCount = 1; // TODO: There's probably a lot of things in the rest of this test that could be stripped away. CComPtr pDevice; if (!CreateDevice(reinterpret_cast(&pDevice), D3D_SHADER_MODEL_6_6, true, true)) { WEX::Logging::Log::Comment(L"Lifetime test not run pre 6.6"); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } std::vector values; SetupComputeValuePattern(values, ThreadsPerGroup * DispatchGroupCount); // Run a number of tests for different configurations that will cause // lifetime intrinsics to be placed directly, be replaced by a zeroinitializer // store, or be replaced by an undef store. LPCWSTR pOptions15[] = {L"/validator-version 1.5"}; LPCWSTR pOptions16[] = {L"/validator-version 1.6", L"/Vd"}; VERIFY_ARE_EQUAL(values[1], (uint32_t)1); // Test regular shader with zeroinitializer store. RunLifetimeIntrinsicTest(pDevice, pShader, D3D_SHADER_MODEL_6_0, false, pOptions15, _countof(pOptions15), values); VERIFY_ARE_EQUAL(values[1], (uint32_t)1); if (DoesDeviceSupportRayTracing(pDevice)) { // Test library with zeroinitializer store. RunLifetimeIntrinsicTest(pDevice, pShader, D3D_SHADER_MODEL_6_3, true, pOptions15, _countof(pOptions15), values); VERIFY_ARE_EQUAL(values[1], (uint32_t)1); } // Testing SM 6.6 and validator version 1.6 requires experimental shaders // being turned on. if (!m_ExperimentalModeEnabled) return; // Test regular shader with undef store. RunLifetimeIntrinsicTest(pDevice, pShader, D3D_SHADER_MODEL_6_0, false, pOptions16, _countof(pOptions16), values); VERIFY_ARE_EQUAL(values[1], (uint32_t)1); if (DoesDeviceSupportRayTracing(pDevice)) { // Test library with undef store. RunLifetimeIntrinsicTest(pDevice, pShader, D3D_SHADER_MODEL_6_3, true, pOptions16, _countof(pOptions16), values); VERIFY_ARE_EQUAL(values[1], (uint32_t)1); } // Test regular shader with lifetime intrinsics. RunLifetimeIntrinsicTest(pDevice, pShader, D3D_SHADER_MODEL_6_5, false, pOptions16, _countof(pOptions16), values); // TODO: Test 6.6 here! VERIFY_ARE_EQUAL(values[1], (uint32_t)1); if (DoesDeviceSupportRayTracing(pDevice)) { // Test library with lifetime intrinsics. RunLifetimeIntrinsicTest(pDevice, pShader, D3D_SHADER_MODEL_6_5, true, pOptions16, _countof(pOptions16), values); // TODO: Test 6.6 here! VERIFY_ARE_EQUAL(values[1], (uint32_t)1); } } TEST_F(ExecutionTest, BasicComputeTest) { #ifndef _HLK_CONF // // BasicComputeTest is a simple compute shader that can be used as the basis // for more interesting compute execution tests. // The HLSL is compatible with shader models <=5.1 to allow using the DXBC // rendering code paths for comparison. // static const char pShader[] = "RWByteAddressBuffer g_bab : register(u0);\r\n" "[numthreads(8,8,1)]\r\n" "void main(uint GI : SV_GroupIndex) {" " uint addr = GI * 4;\r\n" " uint val = g_bab.Load(addr);\r\n" " DeviceMemoryBarrierWithGroupSync();\r\n" " g_bab.Store(addr, val + 1);\r\n" "}"; static const int NumThreadsX = 8; static const int NumThreadsY = 8; static const int NumThreadsZ = 1; static const int ThreadsPerGroup = NumThreadsX * NumThreadsY * NumThreadsZ; static const int DispatchGroupCount = 1; CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::vector values; SetupComputeValuePattern(values, ThreadsPerGroup * DispatchGroupCount); VERIFY_ARE_EQUAL(values[0], (uint32_t)0); RunRWByteBufferComputeTest(pDevice, pShader, values); VERIFY_ARE_EQUAL(values[0], (uint32_t)1); #endif } TEST_F(ExecutionTest, BasicTriangleTest) { #ifndef _HLK_CONF static const UINT FrameCount = 2; static const UINT m_width = 320; static const UINT m_height = 200; static const float m_aspectRatio = static_cast(m_width) / static_cast(m_height); struct Vertex { XMFLOAT3 position; XMFLOAT4 color; }; // Pipeline objects. CComPtr pDevice; CComPtr pRenderTarget; CComPtr pCommandAllocator; CComPtr pCommandQueue; CComPtr pRootSig; CComPtr pRtvHeap; CComPtr pPipelineState; CComPtr pCommandList; CComPtr pReadBuffer; UINT rtvDescriptorSize; CComPtr pVertexBuffer; D3D12_VERTEX_BUFFER_VIEW vertexBufferView; // Synchronization objects. FenceObj FO; // Shaders. static const char pShaders[] = "struct PSInput {\r\n" " float4 position : SV_POSITION;\r\n" " float4 color : COLOR;\r\n" "};\r\n\r\n" "PSInput VSMain(float4 position : POSITION, float4 color : COLOR) {\r\n" " PSInput result;\r\n" "\r\n" " result.position = position;\r\n" " result.color = color;\r\n" " return result;\r\n" "}\r\n\r\n" "float4 PSMain(PSInput input) : SV_TARGET {\r\n" " return 1; //input.color;\r\n" "};\r\n"; if (!CreateDevice(&pDevice)) return; struct BasicTestChecker { CComPtr m_pDevice; CComPtr m_pInfoQueue; bool m_OK = false; void SetOK(bool value) { m_OK = value; } BasicTestChecker(ID3D12Device *pDevice) : m_pDevice(pDevice) { if (FAILED(m_pDevice.QueryInterface(&m_pInfoQueue))) return; m_pInfoQueue->PushEmptyStorageFilter(); m_pInfoQueue->PushEmptyRetrievalFilter(); } ~BasicTestChecker() { if (!m_OK && m_pInfoQueue != nullptr) { UINT64 count = m_pInfoQueue->GetNumStoredMessages(); bool invalidBytecodeFound = false; CAtlArray m_pBytes; for (UINT64 i = 0; i < count; ++i) { SIZE_T len = 0; if (FAILED(m_pInfoQueue->GetMessageA(i, nullptr, &len))) continue; if (m_pBytes.GetCount() < len && !m_pBytes.SetCount(len)) continue; D3D12_MESSAGE *pMsg = (D3D12_MESSAGE *)m_pBytes.GetData(); if (FAILED(m_pInfoQueue->GetMessageA(i, pMsg, &len))) continue; if (pMsg->ID == D3D12_MESSAGE_ID_CREATEVERTEXSHADER_INVALIDSHADERBYTECODE || pMsg->ID == D3D12_MESSAGE_ID_CREATEPIXELSHADER_INVALIDSHADERBYTECODE) { invalidBytecodeFound = true; break; } } if (invalidBytecodeFound) { LogCommentFmt(L"%s", L"Found an invalid bytecode message. This " L"typically indicates that experimental mode " L"is not set up properly."); if (!GetTestParamBool(L"ExperimentalShaders")) { LogCommentFmt(L"Note that the ExperimentalShaders test parameter isn't set."); } } else { LogCommentFmt(L"Did not find corrupt pixel or vertex shaders in " L"queue - dumping complete queue."); WriteInfoQueueMessages(nullptr, OutputFn, m_pInfoQueue); } } } static void __stdcall OutputFn(void *pCtx, const wchar_t *pMsg) { UNREFERENCED_PARAMETER(pCtx); LogCommentFmt(L"%s", pMsg); } }; BasicTestChecker BTC(pDevice); { InitFenceObj(pDevice, &FO); CreateRtvDescriptorHeap(pDevice, FrameCount, &pRtvHeap, &rtvDescriptorSize); CreateRenderTargetAndReadback(pDevice, pRtvHeap, m_width, m_height, &pRenderTarget, &pReadBuffer); // Create an empty root signature. CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init( 0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT); CreateRootSignatureFromDesc(pDevice, &rootSignatureDesc, &pRootSig); // Create the pipeline state, which includes compiling and loading shaders. // Define the vertex input layout. D3D12_INPUT_ELEMENT_DESC inputElementDescs[] = { {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0}, {"COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0}}; D3D12_INPUT_LAYOUT_DESC InputLayout = { inputElementDescs, _countof(inputElementDescs) }; CreateGraphicsPSO(pDevice, &InputLayout, pRootSig, pShaders, &pPipelineState); CreateGraphicsCommandQueueAndList(pDevice, &pCommandQueue, &pCommandAllocator, &pCommandList, pPipelineState); // Define the geometry for a triangle. Vertex triangleVertices[] = { { { 0.0f, 0.25f * m_aspectRatio, 0.0f },{ 1.0f, 0.0f, 0.0f, 1.0f } }, { { 0.25f, -0.25f * m_aspectRatio, 0.0f },{ 0.0f, 1.0f, 0.0f, 1.0f } }, { { -0.25f, -0.25f * m_aspectRatio, 0.0f },{ 0.0f, 0.0f, 1.0f, 1.0f } } }; CreateVertexBuffer(pDevice, triangleVertices, &pVertexBuffer, &vertexBufferView); WaitForSignal(pCommandQueue, FO); } // Render and execute the command list. RecordRenderAndReadback(pCommandList, pRtvHeap, rtvDescriptorSize, 1, &vertexBufferView, pRootSig, pRenderTarget, pReadBuffer); VERIFY_SUCCEEDED(pCommandList->Close()); ExecuteCommandList(pCommandQueue, pCommandList); // Wait for previous frame. WaitForSignal(pCommandQueue, FO); // At this point, we've verified that execution succeeded with DXIL. BTC.SetOK(true); // Read back to CPU and examine contents. { MappedData data(pReadBuffer, m_width * m_height * 4); const uint32_t *pPixels = (uint32_t *)data.data(); if (SaveImages()) { SavePixelsToFile(pPixels, DXGI_FORMAT_R8G8B8A8_UNORM, m_width, m_height, L"basic.bmp"); } uint32_t top = pPixels[m_width / 2]; // Top center. uint32_t mid = pPixels[m_width / 2 + m_width * (m_height / 2)]; // Middle center. VERIFY_ARE_EQUAL(0xff663300, top); // clear color VERIFY_ARE_EQUAL(0xffffffff, mid); // white } #endif } TEST_F(ExecutionTest, Int64Test) { static const char pShader[] = "RWByteAddressBuffer g_bab : register(u0);\r\n" "[numthreads(8,8,1)]\r\n" "void main(uint GI : SV_GroupIndex) {" " uint addr = GI * 4;\r\n" " uint val = g_bab.Load(addr);\r\n" " uint64_t u64 = val;\r\n" " u64 *= val;\r\n" " g_bab.Store(addr, (uint)(u64 >> 32));\r\n" "}"; static const int NumThreadsX = 8; static const int NumThreadsY = 8; static const int NumThreadsZ = 1; static const int ThreadsPerGroup = NumThreadsX * NumThreadsY * NumThreadsZ; static const int DispatchGroupCount = 1; CComPtr pDevice; if (!CreateDevice(&pDevice)) return; if (!DoesDeviceSupportInt64(pDevice)) { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support int64 operations."); return; } std::vector values; SetupComputeValuePattern(values, ThreadsPerGroup * DispatchGroupCount); VERIFY_ARE_EQUAL(values[0], (uint32_t)0); RunRWByteBufferComputeTest(pDevice, pShader, values); VERIFY_ARE_EQUAL(values[0], (uint32_t)0); } TEST_F(ExecutionTest, SignTest) { static const char pShader[] = "RWByteAddressBuffer g_bab : register(u0);\r\n" "[numthreads(8,1,1)]\r\n" "void main(uint GI : SV_GroupIndex) {" " uint addr = GI * 4;\r\n" " int val = g_bab.Load(addr);\r\n" " g_bab.Store(addr, (uint)(sign(val)));\r\n" "}"; static const int NumThreadsX = 8; static const int NumThreadsY = 1; static const int NumThreadsZ = 1; static const int ThreadsPerGroup = NumThreadsX * NumThreadsY * NumThreadsZ; static const int DispatchGroupCount = 1; CComPtr pDevice; if (!CreateDevice(&pDevice)) return; const uint32_t neg1 = (uint32_t)-1; uint32_t origValues[] = { (uint32_t)-3, (uint32_t)-2, neg1, 0, 1, 2, 3, 4 }; std::vector values(origValues, origValues + _countof(origValues)); RunRWByteBufferComputeTest(pDevice, pShader, values); VERIFY_ARE_EQUAL(values[0], neg1); VERIFY_ARE_EQUAL(values[1], neg1); VERIFY_ARE_EQUAL(values[2], neg1); VERIFY_ARE_EQUAL(values[3], (uint32_t)0); VERIFY_ARE_EQUAL(values[4], (uint32_t)1); VERIFY_ARE_EQUAL(values[5], (uint32_t)1); VERIFY_ARE_EQUAL(values[6], (uint32_t)1); VERIFY_ARE_EQUAL(values[7], (uint32_t)1); } TEST_F(ExecutionTest, WaveIntrinsicsDDITest) { #ifndef _HLK_CONF CComPtr pDevice; if (!CreateDevice(&pDevice)) return; D3D12_FEATURE_DATA_D3D12_OPTIONS1 O; if (FAILED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS1, &O, sizeof(O)))) return; bool waveSupported = O.WaveOps; UINT laneCountMin = O.WaveLaneCountMin; UINT laneCountMax = O.WaveLaneCountMax; LogCommentFmt(L"WaveOps %i, WaveLaneCountMin %u, WaveLaneCountMax %u", waveSupported, laneCountMin, laneCountMax); VERIFY_IS_TRUE(laneCountMin <= laneCountMax); if (waveSupported) { VERIFY_IS_TRUE(laneCountMin > 0 && laneCountMax > 0); } else { VERIFY_IS_TRUE(laneCountMin == 0 && laneCountMax == 0); } #endif } TEST_F(ExecutionTest, WaveIntrinsicsTest) { #ifndef _HLK_CONF WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); struct PerThreadData { uint32_t id, flags, laneIndex, laneCount, firstLaneId, preds, firstlaneX, lane1X; uint32_t allBC, allSum, allProd, allAND, allOR, allXOR, allMin, allMax; uint32_t pfBC, pfSum, pfProd; uint32_t ballot[4]; uint32_t diver; // divergent value, used in calculation int32_t i_diver; // divergent value, used in calculation int32_t i_allMax, i_allMin, i_allSum, i_allProd; int32_t i_pfSum, i_pfProd; }; static const char pShader[] = WAVE_INTRINSIC_DXBC_GUARD "struct PerThreadData {\r\n" " uint id, flags, laneIndex, laneCount, firstLaneId, preds, firstlaneX, lane1X;\r\n" " uint allBC, allSum, allProd, allAND, allOR, allXOR, allMin, allMax;\r\n" " uint pfBC, pfSum, pfProd;\r\n" " uint4 ballot;\r\n" " uint diver;\r\n" " int i_diver;\r\n" " int i_allMax, i_allMin, i_allSum, i_allProd;\r\n" " int i_pfSum, i_pfProd;\r\n" "};\r\n" "RWStructuredBuffer g_sb : register(u0);\r\n" "[numthreads(8,8,1)]\r\n" "void main(uint GI : SV_GroupIndex, uint3 GTID : SV_GroupThreadID) {" " PerThreadData pts = g_sb[GI];\r\n" " uint diver = GTID.x + 2;\r\n" " pts.diver = diver;\r\n" " pts.flags = 0;\r\n" " pts.preds = 0;\r\n" " if (WaveIsFirstLane()) pts.flags |= 1;\r\n" " pts.laneIndex = WaveGetLaneIndex();\r\n" " pts.laneCount = WaveGetLaneCount();\r\n" " pts.firstLaneId = WaveReadLaneFirst(pts.id);\r\n" " pts.preds |= ((WaveActiveAnyTrue(diver == 1) ? 1 : 0) << 0);\r\n" " pts.preds |= ((WaveActiveAllTrue(diver == 1) ? 1 : 0) << 1);\r\n" " pts.preds |= ((WaveActiveAllEqual(diver) ? 1 : 0) << 2);\r\n" " pts.preds |= ((WaveActiveAllEqual(GTID.z) ? 1 : 0) << 3);\r\n" " pts.preds |= ((WaveActiveAllEqual(WaveReadLaneFirst(diver)) ? 1 : 0) << 4);\r\n" " pts.ballot = WaveActiveBallot(diver > 3);\r\n" " pts.firstlaneX = WaveReadLaneFirst(GTID.x);\r\n" " pts.lane1X = WaveReadLaneAt(GTID.x, 1);\r\n" "\r\n" " pts.allBC = WaveActiveCountBits(diver > 3);\r\n" " pts.allSum = WaveActiveSum(diver);\r\n" " pts.allProd = WaveActiveProduct(diver);\r\n" " pts.allAND = WaveActiveBitAnd(diver);\r\n" " pts.allOR = WaveActiveBitOr(diver);\r\n" " pts.allXOR = WaveActiveBitXor(diver);\r\n" " pts.allMin = WaveActiveMin(diver);\r\n" " pts.allMax = WaveActiveMax(diver);\r\n" "\r\n" " pts.pfBC = WavePrefixCountBits(diver > 3);\r\n" " pts.pfSum = WavePrefixSum(diver);\r\n" " pts.pfProd = WavePrefixProduct(diver);\r\n" "\r\n" " int i_diver = pts.i_diver;\r\n" " pts.i_allMax = WaveActiveMax(i_diver);\r\n" " pts.i_allMin = WaveActiveMin(i_diver);\r\n" " pts.i_allSum = WaveActiveSum(i_diver);\r\n" " pts.i_allProd = WaveActiveProduct(i_diver);\r\n" " pts.i_pfSum = WavePrefixSum(i_diver);\r\n" " pts.i_pfProd = WavePrefixProduct(i_diver);\r\n" "\r\n" " g_sb[GI] = pts;\r\n" "}"; static const int NumtheadsX = 8; static const int NumtheadsY = 8; static const int NumtheadsZ = 1; static const int ThreadsPerGroup = NumtheadsX * NumtheadsY * NumtheadsZ; static const int DispatchGroupCount = 1; CComPtr pDevice; if (!CreateDevice(&pDevice)) return; if (!DoesDeviceSupportWaveOps(pDevice)) { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support wave operations."); return; } std::vector values; values.resize(ThreadsPerGroup * DispatchGroupCount); for (size_t i = 0; i < values.size(); ++i) { memset(&values[i], 0, sizeof(PerThreadData)); values[i].id = (uint32_t)i; values[i].i_diver = (int)i; values[i].i_diver *= (i % 2) ? 1 : -1; } static const int DispatchGroupX = 1; static const int DispatchGroupY = 1; static const int DispatchGroupZ = 1; CComPtr pCommandList; CComPtr pCommandQueue; CComPtr pUavHeap; CComPtr pCommandAllocator; UINT uavDescriptorSize; FenceObj FO; bool dxbc = UseDxbc(); const size_t valueSizeInBytes = values.size() * sizeof(PerThreadData); CreateComputeCommandQueue(pDevice, L"WaveIntrinsicsTest Command Queue", &pCommandQueue); InitFenceObj(pDevice, &FO); // Describe and create a UAV descriptor heap. D3D12_DESCRIPTOR_HEAP_DESC heapDesc = {}; heapDesc.NumDescriptors = 1; heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV; heapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE; VERIFY_SUCCEEDED(pDevice->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&pUavHeap))); uavDescriptorSize = pDevice->GetDescriptorHandleIncrementSize(heapDesc.Type); // Create root signature. CComPtr pRootSignature; { CD3DX12_DESCRIPTOR_RANGE ranges[1]; ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0, 0, 0); CD3DX12_ROOT_PARAMETER rootParameters[1]; rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_ALL); CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_NONE); CComPtr signature; CComPtr error; VERIFY_SUCCEEDED(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error)); VERIFY_SUCCEEDED(pDevice->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&pRootSignature))); } // Create pipeline state object. CComPtr pComputeState; CreateComputePSO(pDevice, pRootSignature, pShader, L"cs_6_0", &pComputeState); // Create a command allocator and list for compute. VERIFY_SUCCEEDED(pDevice->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_COMPUTE, IID_PPV_ARGS(&pCommandAllocator))); VERIFY_SUCCEEDED(pDevice->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COMPUTE, pCommandAllocator, pComputeState, IID_PPV_ARGS(&pCommandList))); // Set up UAV resource. CComPtr pUavResource; CComPtr pReadBuffer; CComPtr pUploadResource; CreateTestUavs(pDevice, pCommandList, values.data(), (UINT)valueSizeInBytes, &pUavResource, &pUploadResource, &pReadBuffer); // Close the command list and execute it to perform the GPU setup. pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); VERIFY_SUCCEEDED(pCommandAllocator->Reset()); VERIFY_SUCCEEDED(pCommandList->Reset(pCommandAllocator, pComputeState)); // Run the compute shader and copy the results back to readable memory. { D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {}; uavDesc.Format = DXGI_FORMAT_UNKNOWN; uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER; uavDesc.Buffer.FirstElement = 0; uavDesc.Buffer.NumElements = (UINT)values.size(); uavDesc.Buffer.StructureByteStride = sizeof(PerThreadData); uavDesc.Buffer.CounterOffsetInBytes = 0; uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_NONE; CD3DX12_CPU_DESCRIPTOR_HANDLE uavHandle(pUavHeap->GetCPUDescriptorHandleForHeapStart()); CD3DX12_GPU_DESCRIPTOR_HANDLE uavHandleGpu(pUavHeap->GetGPUDescriptorHandleForHeapStart()); pDevice->CreateUnorderedAccessView(pUavResource, nullptr, &uavDesc, uavHandle); SetDescriptorHeap(pCommandList, pUavHeap); pCommandList->SetComputeRootSignature(pRootSignature); pCommandList->SetComputeRootDescriptorTable(0, uavHandleGpu); } pCommandList->Dispatch(DispatchGroupX, DispatchGroupY, DispatchGroupZ); RecordTransitionBarrier(pCommandList, pUavResource, D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE); pCommandList->CopyResource(pReadBuffer, pUavResource); pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); { MappedData mappedData(pReadBuffer, (UINT)valueSizeInBytes); PerThreadData *pData = (PerThreadData *)mappedData.data(); memcpy(values.data(), pData, valueSizeInBytes); // Gather some general data. // The 'firstLaneId' captures a unique number per first-lane per wave. // Counting the number distinct firstLaneIds gives us the number of waves. std::vector firstLaneIds; for (size_t i = 0; i < values.size(); ++i) { PerThreadData &pts = values[i]; uint32_t firstLaneId = pts.firstLaneId; if (!contains(firstLaneIds, firstLaneId)) { firstLaneIds.push_back(firstLaneId); } } // Waves should cover 4 threads or more. LogCommentFmt(L"Found %u distinct lane ids: %u", firstLaneIds.size()); if (!dxbc) { VERIFY_IS_GREATER_THAN_OR_EQUAL(values.size() / 4, firstLaneIds.size()); } // Now, group threads into waves. std::map > > waves; for (size_t i = 0; i < firstLaneIds.size(); ++i) { waves[firstLaneIds[i]] = std::make_unique >(); } for (size_t i = 0; i < values.size(); ++i) { PerThreadData &pts = values[i]; std::unique_ptr > &wave = waves[pts.firstLaneId]; wave->push_back(&pts); } // Verify that all the wave values are coherent across the wave. for (size_t i = 0; i < values.size(); ++i) { PerThreadData &pts = values[i]; std::unique_ptr > &wave = waves[pts.firstLaneId]; // Sort the lanes by increasing lane ID. struct LaneIdOrderPred { bool operator()(PerThreadData *a, PerThreadData *b) { return a->laneIndex < b->laneIndex; } }; std::sort(wave.get()->begin(), wave.get()->end(), LaneIdOrderPred()); // Verify some interesting properties of the first lane. uint32_t pfBC, pfSum, pfProd; int32_t i_pfSum, i_pfProd; int32_t i_allMax, i_allMin; { PerThreadData *ptdFirst = wave->front(); VERIFY_IS_TRUE(0 != (ptdFirst->flags & 1)); // FirstLane sets this bit. VERIFY_IS_TRUE(0 == ptdFirst->pfBC); VERIFY_IS_TRUE(0 == ptdFirst->pfSum); VERIFY_IS_TRUE(1 == ptdFirst->pfProd); VERIFY_IS_TRUE(0 == ptdFirst->i_pfSum); VERIFY_IS_TRUE(1 == ptdFirst->i_pfProd); pfBC = (ptdFirst->diver > 3) ? 1 : 0; pfSum = ptdFirst->diver; pfProd = ptdFirst->diver; i_pfSum = ptdFirst->i_diver; i_pfProd = ptdFirst->i_diver; i_allMax = i_allMin = ptdFirst->i_diver; } // Calculate values which take into consideration all lanes. uint32_t preds = 0; preds |= 1 << 1; // AllTrue starts true, switches to false if needed. preds |= 1 << 2; // AllEqual starts true, switches to false if needed. preds |= 1 << 3; // WaveActiveAllEqual(GTID.z) is always true preds |= 1 << 4; // (WaveActiveAllEqual(WaveReadLaneFirst(diver)) is always true uint32_t ballot[4] = { 0, 0, 0, 0 }; int32_t i_allSum = 0, i_allProd = 1; for (size_t n = 0; n < wave->size(); ++n) { std::vector &lanes = *wave.get(); // pts.preds |= ((WaveActiveAnyTrue(diver == 1) ? 1 : 0) << 0); if (lanes[n]->diver == 1) preds |= (1 << 0); // pts.preds |= ((WaveActiveAllTrue(diver == 1) ? 1 : 0) << 1); if (lanes[n]->diver != 1) preds &= ~(1 << 1); // pts.preds |= ((WaveActiveAllEqual(diver) ? 1 : 0) << 2); if (lanes[0]->diver != lanes[n]->diver) preds &= ~(1 << 2); // pts.ballot = WaveActiveBallot(diver > 3);\r\n" if (lanes[n]->diver > 3) { // This is the uint4 result layout: // .x -> bits 0 .. 31 // .y -> bits 32 .. 63 // .z -> bits 64 .. 95 // .w -> bits 96 ..127 uint32_t component = lanes[n]->laneIndex / 32; uint32_t bit = lanes[n]->laneIndex % 32; ballot[component] |= 1 << bit; } i_allMax = std::max(lanes[n]->i_diver, i_allMax); i_allMin = std::min(lanes[n]->i_diver, i_allMin); i_allProd *= lanes[n]->i_diver; i_allSum += lanes[n]->i_diver; } for (size_t n = 1; n < wave->size(); ++n) { // 'All' operations are uniform across the wave. std::vector &lanes = *wave.get(); VERIFY_IS_TRUE(0 == (lanes[n]->flags & 1)); // non-firstlanes do not set this bit VERIFY_ARE_EQUAL(lanes[0]->allBC, lanes[n]->allBC); VERIFY_ARE_EQUAL(lanes[0]->allSum, lanes[n]->allSum); VERIFY_ARE_EQUAL(lanes[0]->allProd, lanes[n]->allProd); VERIFY_ARE_EQUAL(lanes[0]->allAND, lanes[n]->allAND); VERIFY_ARE_EQUAL(lanes[0]->allOR, lanes[n]->allOR); VERIFY_ARE_EQUAL(lanes[0]->allXOR, lanes[n]->allXOR); VERIFY_ARE_EQUAL(lanes[0]->allMin, lanes[n]->allMin); VERIFY_ARE_EQUAL(lanes[0]->allMax, lanes[n]->allMax); VERIFY_ARE_EQUAL(i_allMax, lanes[n]->i_allMax); VERIFY_ARE_EQUAL(i_allMin, lanes[n]->i_allMin); VERIFY_ARE_EQUAL(i_allProd, lanes[n]->i_allProd); VERIFY_ARE_EQUAL(i_allSum, lanes[n]->i_allSum); // first-lane reads and uniform reads are uniform across the wave. VERIFY_ARE_EQUAL(lanes[0]->firstlaneX, lanes[n]->firstlaneX); VERIFY_ARE_EQUAL(lanes[0]->lane1X, lanes[n]->lane1X); // the lane count is uniform across the wave. VERIFY_ARE_EQUAL(lanes[0]->laneCount, lanes[n]->laneCount); // The predicates are uniform across the wave. VERIFY_ARE_EQUAL(lanes[n]->preds, preds); // the lane index is distinct per thread. for (size_t prior = 0; prior < n; ++prior) { VERIFY_ARE_NOT_EQUAL(lanes[prior]->laneIndex, lanes[n]->laneIndex); } // Ballot results are uniform across the wave. VERIFY_ARE_EQUAL(0, memcmp(ballot, lanes[n]->ballot, sizeof(ballot))); // Keep running total of prefix calculation. Prefix values are exclusive to // the executing lane. VERIFY_ARE_EQUAL(pfBC, lanes[n]->pfBC); VERIFY_ARE_EQUAL(pfSum, lanes[n]->pfSum); VERIFY_ARE_EQUAL(pfProd, lanes[n]->pfProd); VERIFY_ARE_EQUAL(i_pfSum, lanes[n]->i_pfSum); VERIFY_ARE_EQUAL(i_pfProd, lanes[n]->i_pfProd); pfBC += (lanes[n]->diver > 3) ? 1 : 0; pfSum += lanes[n]->diver; pfProd *= lanes[n]->diver; i_pfSum += lanes[n]->i_diver; i_pfProd *= lanes[n]->i_diver; } // TODO: add divergent branching and verify that the otherwise uniform values properly diverge } // Compare each value of each per-thread element. for (size_t i = 0; i < values.size(); ++i) { PerThreadData &pts = values[i]; VERIFY_ARE_EQUAL(i, pts.id); // ID is unchanged. } } #endif } // This test is assuming that the adapter implements WaveReadLaneFirst correctly TEST_F(ExecutionTest, WaveIntrinsicsInPSTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); struct Vertex { XMFLOAT3 position; }; struct PerPixelData { XMFLOAT4 position; uint32_t id, flags, laneIndex, laneCount, firstLaneId, sum1; uint32_t id0, id1, id2, id3; uint32_t acrossX, acrossY, acrossDiag, quadActiveCount; }; const UINT RTWidth = 128; const UINT RTHeight = 128; // Shaders. static const char pShaders[] = WAVE_INTRINSIC_DXBC_GUARD "struct PSInput {\r\n" " float4 position : SV_POSITION;\r\n" "};\r\n\r\n" "PSInput VSMain(float4 position : POSITION) {\r\n" " PSInput result;\r\n" "\r\n" " result.position = position;\r\n" " return result;\r\n" "}\r\n\r\n" "uint pos_to_id(float4 pos) { return pos.x * 128 + pos.y; }\r\n" "struct PerPixelData {\r\n" " float4 position;\r\n" " uint id, flags, laneIndex, laneCount, firstLaneId, sum1;\r\n" " uint id0, id1, id2, id3;\r\n" " uint acrossX, acrossY, acrossDiag, quadActiveCount;\r\n" "};\r\n" "AppendStructuredBuffer g_sb : register(u1);\r\n" "float4 PSMain(PSInput input) : SV_TARGET {\r\n" " uint one = 1;\r\n" " PerPixelData d;\r\n" " d.position = input.position;\r\n" " d.id = pos_to_id(input.position);\r\n" " d.flags = 0;\r\n" " if (WaveIsFirstLane()) d.flags |= 1;\r\n" " d.laneIndex = WaveGetLaneIndex();\r\n" " d.laneCount = WaveGetLaneCount();\r\n" " d.firstLaneId = WaveReadLaneFirst(d.id);\r\n" " d.sum1 = WaveActiveSum(one);\r\n" " d.id0 = QuadReadLaneAt(d.id, 0);\r\n" " d.id1 = QuadReadLaneAt(d.id, 1);\r\n" " d.id2 = QuadReadLaneAt(d.id, 2);\r\n" " d.id3 = QuadReadLaneAt(d.id, 3);\r\n" " d.acrossX = QuadReadAcrossX(d.id);\r\n" " d.acrossY = QuadReadAcrossY(d.id);\r\n" " d.acrossDiag = QuadReadAcrossDiagonal(d.id);\r\n" " d.quadActiveCount = one + QuadReadAcrossX(one) + QuadReadAcrossY(one) + QuadReadAcrossDiagonal(one);\r\n" " g_sb.Append(d);\r\n" " return 1;\r\n" "};\r\n"; CComPtr pDevice; CComPtr pCommandQueue; CComPtr pUavHeap, pRtvHeap; CComPtr pCommandAllocator; CComPtr pCommandList; CComPtr pPSO; CComPtr pRenderTarget, pReadBuffer; UINT uavDescriptorSize, rtvDescriptorSize; CComPtr pVertexBuffer; D3D12_VERTEX_BUFFER_VIEW vertexBufferView; if (!CreateDevice(&pDevice)) return; if (!DoesDeviceSupportWaveOps(pDevice)) { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support wave operations."); return; } FenceObj FO; InitFenceObj(pDevice, &FO); // Describe and create a UAV descriptor heap. D3D12_DESCRIPTOR_HEAP_DESC heapDesc = {}; heapDesc.NumDescriptors = 1; heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV; heapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE; VERIFY_SUCCEEDED(pDevice->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(&pUavHeap))); uavDescriptorSize = pDevice->GetDescriptorHandleIncrementSize(heapDesc.Type); CreateRtvDescriptorHeap(pDevice, 1, &pRtvHeap, &rtvDescriptorSize); CreateRenderTargetAndReadback(pDevice, pRtvHeap, RTHeight, RTWidth, &pRenderTarget, &pReadBuffer); // Create root signature: one UAV. CComPtr pRootSignature; { CD3DX12_DESCRIPTOR_RANGE ranges[1]; ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 1, 0, 0); CD3DX12_ROOT_PARAMETER rootParameters[1]; rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_ALL); CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT); CreateRootSignatureFromDesc(pDevice, &rootSignatureDesc, &pRootSignature); } D3D12_INPUT_ELEMENT_DESC elementDesc[] = { {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0}}; D3D12_INPUT_LAYOUT_DESC InputLayout = {elementDesc, _countof(elementDesc)}; CreateGraphicsPSO(pDevice, &InputLayout, pRootSignature, pShaders, &pPSO); CreateGraphicsCommandQueueAndList(pDevice, &pCommandQueue, &pCommandAllocator, &pCommandList, pPSO); // Single triangle covering half the target. Vertex vertices[] = { { { -1.0f, 1.0f, 0.0f } }, { { 1.0f, 1.0f, 0.0f } }, { { -1.0f, -1.0f, 0.0f } } }; const UINT TriangleCount = _countof(vertices) / 3; CreateVertexBuffer(pDevice, vertices, &pVertexBuffer, &vertexBufferView); bool dxbc = UseDxbc(); // Set up UAV resource. std::vector values; values.resize(RTWidth * RTHeight * 2); UINT valueSizeInBytes = (UINT)values.size() * sizeof(PerPixelData); memset(values.data(), 0, valueSizeInBytes); CComPtr pUavResource; CComPtr pUavReadBuffer; CComPtr pUploadResource; CreateTestUavs(pDevice, pCommandList, values.data(), valueSizeInBytes, &pUavResource, &pUploadResource, &pUavReadBuffer); // Set up the append counter resource. CComPtr pUavCounterResource; CComPtr pReadCounterBuffer; CComPtr pUploadCounterResource; BYTE zero[sizeof(UINT)] = { 0 }; CreateTestUavs(pDevice, pCommandList, zero, sizeof(zero), &pUavCounterResource, &pUploadCounterResource, &pReadCounterBuffer); // Close the command list and execute it to perform the GPU setup. pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); VERIFY_SUCCEEDED(pCommandAllocator->Reset()); VERIFY_SUCCEEDED(pCommandList->Reset(pCommandAllocator, pPSO)); pCommandList->SetGraphicsRootSignature(pRootSignature); SetDescriptorHeap(pCommandList, pUavHeap); { D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {}; uavDesc.Format = DXGI_FORMAT_UNKNOWN; uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER; uavDesc.Buffer.FirstElement = 0; uavDesc.Buffer.NumElements = (UINT)values.size(); uavDesc.Buffer.StructureByteStride = sizeof(PerPixelData); uavDesc.Buffer.CounterOffsetInBytes = 0; uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_NONE; CD3DX12_CPU_DESCRIPTOR_HANDLE uavHandle(pUavHeap->GetCPUDescriptorHandleForHeapStart()); CD3DX12_GPU_DESCRIPTOR_HANDLE uavHandleGpu(pUavHeap->GetGPUDescriptorHandleForHeapStart()); pDevice->CreateUnorderedAccessView(pUavResource, pUavCounterResource, &uavDesc, uavHandle); pCommandList->SetGraphicsRootDescriptorTable(0, uavHandleGpu); } RecordRenderAndReadback(pCommandList, pRtvHeap, rtvDescriptorSize, TriangleCount, &vertexBufferView, nullptr, pRenderTarget, pReadBuffer); RecordTransitionBarrier(pCommandList, pUavResource, D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE); RecordTransitionBarrier(pCommandList, pUavCounterResource, D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE); pCommandList->CopyResource(pUavReadBuffer, pUavResource); pCommandList->CopyResource(pReadCounterBuffer, pUavCounterResource); VERIFY_SUCCEEDED(pCommandList->Close()); LogCommentFmt(L"Rendering to %u by %u", RTWidth, RTHeight); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); { MappedData data(pReadBuffer, RTWidth * RTHeight * 4); const uint32_t *pPixels = (uint32_t *)data.data(); if (SaveImages()) { SavePixelsToFile(pPixels, DXGI_FORMAT_R8G8B8A8_UNORM, RTWidth, RTHeight, L"psintrin.bmp"); } } uint32_t appendCount; { MappedData mappedData(pReadCounterBuffer, sizeof(uint32_t)); appendCount = *((uint32_t *)mappedData.data()); LogCommentFmt(L"%u elements in append buffer", appendCount); } { MappedData mappedData(pUavReadBuffer, (UINT32)values.size()); PerPixelData *pData = (PerPixelData *)mappedData.data(); memcpy(values.data(), pData, valueSizeInBytes); // DXBC is handy to test pipeline setup, but interesting functions are // stubbed out, so there is no point in further validation. if (dxbc) return; uint32_t maxActiveLaneCount = 0; uint32_t maxLaneCount = 0; for (uint32_t i = 0; i < appendCount; ++i) { maxActiveLaneCount = std::max(maxActiveLaneCount, values[i].sum1); maxLaneCount = std::max(maxLaneCount, values[i].laneCount); } uint32_t peerOfHelperLanes = 0; for (uint32_t i = 0; i < appendCount; ++i) { if (values[i].sum1 != maxActiveLaneCount) { ++peerOfHelperLanes; } } LogCommentFmt( L"Found: %u threads. Waves reported up to %u total lanes, up " L"to %u active lanes, and %u threads had helper/inactive lanes.", appendCount, maxLaneCount, maxActiveLaneCount, peerOfHelperLanes); // Group threads into quad invocations. uint32_t singlePixelCount = 0; uint32_t multiPixelCount = 0; std::unordered_set ids; std::multimap idGroups; std::multimap firstIdGroups; for (uint32_t i = 0; i < appendCount; ++i) { ids.insert(values[i].id); idGroups.insert(std::make_pair(values[i].id, &values[i])); firstIdGroups.insert(std::make_pair(values[i].firstLaneId, &values[i])); } for (uint32_t id : ids) { if (idGroups.count(id) == 1) ++singlePixelCount; else ++multiPixelCount; } LogCommentFmt(L"%u pixels were processed by a single thread. %u invocations were for shared pixels.", singlePixelCount, multiPixelCount); // Multiple threads may have tried to shade the same pixel. (Is this true even if we have only one triangle?) // Where every pixel is distinct, it's very straightforward to validate. { auto cur = firstIdGroups.begin(), end = firstIdGroups.end(); while (cur != end) { bool simpleWave = true; uint32_t firstId = (*cur).first; auto groupEnd = cur; while (groupEnd != end && (*groupEnd).first == firstId) { if (idGroups.count((*groupEnd).second->id) > 1) simpleWave = false; ++groupEnd; } if (simpleWave) { // Break the wave into quads. struct QuadData { unsigned count; PerPixelData *data[4]; }; std::map quads; for (auto i = cur; i != groupEnd; ++i) { // assuming that it is a simple wave, idGroups has a unique id for each entry. uint32_t laneId = (*i).second->id; uint32_t laneIds[4] = {(*i).second->id0, (*i).second->id1, (*i).second->id2, (*i).second->id3}; // Since this is a simple wave, each lane has an unique id and // therefore should not have any ids in there. VERIFY_IS_TRUE(quads.find(laneId) == quads.end()); // check if QuadReadLaneAt is returning same values in a single quad. bool newQuad = true; for (unsigned quadIndex = 0; quadIndex < 4; ++quadIndex) { auto match = quads.find(laneIds[quadIndex]); if (match != quads.end()) { (*match).second.data[(*match).second.count++] = (*i).second; newQuad = false; break; } auto quadMemberData = idGroups.find(laneIds[quadIndex]); if (quadMemberData != idGroups.end()) { VERIFY_IS_TRUE((*quadMemberData).second->id0 == laneIds[0]); VERIFY_IS_TRUE((*quadMemberData).second->id1 == laneIds[1]); VERIFY_IS_TRUE((*quadMemberData).second->id2 == laneIds[2]); VERIFY_IS_TRUE((*quadMemberData).second->id3 == laneIds[3]); } } if (newQuad) { QuadData qdata; qdata.count = 1; qdata.data[0] = (*i).second; quads.insert(std::make_pair(laneId, qdata)); } } for (auto quadPair : quads) { unsigned count = quadPair.second.count; // There could be only one pixel data on the edge of the triangle if (count < 2) continue; PerPixelData **data = quadPair.second.data; bool isTop[4]; bool isLeft[4]; PerPixelData helperData; memset(&helperData, sizeof(helperData), 0); PerPixelData *layout[4]; // tl,tr,bl,br memset(layout, sizeof(layout), 0); auto fnToLayout = [&](bool top, bool left) -> PerPixelData ** { int idx = top ? 0 : 2; idx += left ? 0 : 1; return &layout[idx]; }; auto fnToLayoutData = [&](bool top, bool left) -> PerPixelData * { PerPixelData **pResult = fnToLayout(top, left); if (*pResult == nullptr) return &helperData; return *pResult; }; VERIFY_IS_TRUE(count <= 4); if (count == 2) { isTop[0] = data[0]->position.y < data[1]->position.y; isTop[1] = (data[0]->position.y == data[1]->position.y) ? isTop[0] : !isTop[0]; isLeft[0] = data[0]->position.x < data[1]->position.x; isLeft[1] = (data[0]->position.x == data[1]->position.x) ? isLeft[0] : !isLeft[0]; } else { // with at least three samples, we have distinct x and y coordinates. float left = std::min(data[0]->position.x, data[1]->position.x); left = std::min(data[2]->position.x, left); float top = std::min(data[0]->position.y, data[1]->position.y); top = std::min(data[2]->position.y, top); for (unsigned i = 0; i < count; ++i) { isTop[i] = data[i]->position.y == top; isLeft[i] = data[i]->position.x == left; } } for (unsigned i = 0; i < count; ++i) { *(fnToLayout(isTop[i], isLeft[i])) = data[i]; } // Finally, we have a proper quad reconstructed. Validate. for (unsigned i = 0; i < count; ++i) { PerPixelData *d = data[i]; VERIFY_ARE_EQUAL(d->id0, fnToLayoutData(true, true)->id); VERIFY_ARE_EQUAL(d->id1, fnToLayoutData(true, false)->id); VERIFY_ARE_EQUAL(d->id2, fnToLayoutData(false, true)->id); VERIFY_ARE_EQUAL(d->id3, fnToLayoutData(false, false)->id); VERIFY_ARE_EQUAL(d->acrossX, fnToLayoutData(isTop[i], !isLeft[i])->id); VERIFY_ARE_EQUAL(d->acrossY, fnToLayoutData(!isTop[i], isLeft[i])->id); VERIFY_ARE_EQUAL(d->acrossDiag, fnToLayoutData(!isTop[i], !isLeft[i])->id); VERIFY_ARE_EQUAL(d->quadActiveCount, count); } } } cur = groupEnd; } } // TODO: provide validation for quads where the same pixel was shaded multiple times // // Consider: for pixels that were shaded multiple times, check whether // some grouping of threads into quads satisfies all value requirements. } } struct ShaderOpTestResult { st::ShaderOp *ShaderOp; std::shared_ptr ShaderOpSet; std::shared_ptr Test; }; struct SPrimitives { float f_float; float f_float2; float f_float_o; float f_float2_o; }; std::shared_ptr RunShaderOpTestAfterParse(ID3D12Device *pDevice, dxc::DxcDllSupport &support, LPCSTR pName, st::ShaderOpTest::TInitCallbackFn pInitCallback, std::shared_ptr ShaderOpSet) { st::ShaderOp *pShaderOp; if (pName == nullptr) { if (ShaderOpSet->ShaderOps.size() != 1) { VERIFY_FAIL(L"Expected a single shader operation."); } pShaderOp = ShaderOpSet->ShaderOps[0].get(); } else { pShaderOp = ShaderOpSet->GetShaderOp(pName); } if (pShaderOp == nullptr) { std::string msg = "Unable to find shader op "; msg += pName; msg += "; available ops"; const char sep = ':'; for (auto &pAvailOp : ShaderOpSet->ShaderOps) { msg += sep; msg += pAvailOp->Name ? pAvailOp->Name : "[n/a]"; } CA2W msgWide(msg.c_str()); VERIFY_FAIL(msgWide.m_psz); } // This won't actually be used since we're supplying the device, // but let's make it consistent. pShaderOp->UseWarpDevice = GetTestParamUseWARP(true); std::shared_ptr test = std::make_shared(); test->SetDxcSupport(&support); test->SetInitCallback(pInitCallback); test->SetDevice(pDevice); test->RunShaderOp(pShaderOp); std::shared_ptr result = std::make_shared(); result->ShaderOpSet = ShaderOpSet; result->Test = test; result->ShaderOp = pShaderOp; return result; } std::shared_ptr RunShaderOpTest(ID3D12Device *pDevice, dxc::DxcDllSupport &support, IStream *pStream, LPCSTR pName, st::ShaderOpTest::TInitCallbackFn pInitCallback) { DXASSERT_NOMSG(pStream != nullptr); std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); return RunShaderOpTestAfterParse(pDevice, support, pName, pInitCallback, ShaderOpSet); } TEST_F(ExecutionTest, OutOfBoundsTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); // Single operation test at the moment. CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, "OOB", nullptr); MappedData data; // Read back to CPU and examine contents - should get pure red. { MappedData data; test->Test->GetReadBackData("RTarget", &data); const uint32_t *pPixels = (uint32_t *)data.data(); uint32_t first = *pPixels; VERIFY_ARE_EQUAL(0xff0000ff, first); // pure red - only first component is read } } TEST_F(ExecutionTest, SaturateTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); // Single operation test at the moment. CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, "Saturate", nullptr); MappedData data; test->Test->GetReadBackData("U0", &data); const float *pValues = (float *)data.data(); // Everything is zero except for 1.5f and +Inf, which saturate to 1.0f const float ExpectedCases[9] = { 0.0f, 0.0f, 0.0f, 0.0f, // -inf, -1.5, -denorm, -0 0.0f, 0.0f, 1.0f, 1.0f, // 0, denorm, 1.5f, inf 0.0f // nan }; for (size_t i = 0; i < _countof(ExpectedCases); ++i) { VERIFY_IS_TRUE(ifdenorm_flushf_eq(*pValues, ExpectedCases[i])); ++pValues; } } void ExecutionTest::BasicTriangleTestSetup(LPCSTR ShaderOpName, LPCWSTR FileName, D3D_SHADER_MODEL testModel) { #ifdef _HLK_CONF UNREFERENCED_PARAMETER(ShaderOpName); UNREFERENCED_PARAMETER(FileName); UNREFERENCED_PARAMETER(testModel); #else WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); // Single operation test at the moment. CComPtr pDevice; if (!CreateDevice(&pDevice, testModel)) return; std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, ShaderOpName, nullptr); MappedData data; D3D12_RESOURCE_DESC &D = test->ShaderOp->GetResourceByName("RTarget")->Desc; UINT width = (UINT)D.Width; UINT height = D.Height; test->Test->GetReadBackData("RTarget", &data); const uint32_t *pPixels = (uint32_t *)data.data(); if (SaveImages()) { SavePixelsToFile(pPixels, DXGI_FORMAT_R8G8B8A8_UNORM, 320, 200, FileName); } uint32_t top = pPixels[width / 2]; // Top center. uint32_t mid = pPixels[width / 2 + width * (height / 2)]; // Middle center. VERIFY_ARE_EQUAL(0xff663300, top); // clear color VERIFY_ARE_EQUAL(0xffffffff, mid); // white // This is the basic validation test for shader operations, so it's good to // check this here at least for this one test case. data.reset(); test.reset(); ReportLiveObjects(); #endif } TEST_F(ExecutionTest, BasicTriangleOpTest) { BasicTriangleTestSetup("Triangle", L"basic-triangle.bmp", D3D_SHADER_MODEL_6_0); } TEST_F(ExecutionTest, BasicTriangleOpTestHalf) { BasicTriangleTestSetup("TriangleHalf", L"basic-triangle-half.bmp", D3D_SHADER_MODEL_6_2); } void VerifyDerivResults(const float *pPixels, UINT offsetCenter) { // pixel at the center float CenterDDXFine = pPixels[offsetCenter]; float CenterDDYFine = pPixels[offsetCenter + 1]; float CenterDDXCoarse = pPixels[offsetCenter + 2]; float CenterDDYCoarse = pPixels[offsetCenter + 3]; LogCommentFmt( L"center ddx_fine: %8f, ddy_fine: %8f, ddx_coarse: %8f, ddy_coarse: %8f", CenterDDXFine, CenterDDYFine, CenterDDXCoarse, CenterDDYCoarse); // The texture for the 9 pixels in the center should look like the following // 256 32 64 // 2048 256 512 // 1 .125 .25 // In D3D12 there is no guarantee of how the adapter is grouping 2x2 pixels // So for fine derivatives there can be up to two possible results for the center pixel, // while for coarse derivatives there can be up to six possible results. int ulpTolerance = 1; // 512 - 256 or 2048 - 256 bool left = CompareFloatULP(CenterDDXFine, -1792.0f, ulpTolerance); VERIFY_IS_TRUE(left || CompareFloatULP(CenterDDXFine, 256.0f, ulpTolerance)); // 256 - 32 or 256 - .125 bool top = CompareFloatULP(CenterDDYFine, 224.0f, ulpTolerance); VERIFY_IS_TRUE(top || CompareFloatULP(CenterDDYFine, -255.875, ulpTolerance)); if (top && left) { VERIFY_IS_TRUE((CompareFloatULP(CenterDDXCoarse, -224.0f, ulpTolerance) || CompareFloatULP(CenterDDXCoarse, -1792.0f, ulpTolerance)) && (CompareFloatULP(CenterDDYCoarse, 224.0f, ulpTolerance) || CompareFloatULP(CenterDDYCoarse, 1792.0f, ulpTolerance))); } else if (top) { // top right quad VERIFY_IS_TRUE((CompareFloatULP(CenterDDXCoarse, 256.0f, ulpTolerance) || CompareFloatULP(CenterDDXCoarse, 32.0f, ulpTolerance)) && (CompareFloatULP(CenterDDYCoarse, 224.0f, ulpTolerance) || CompareFloatULP(CenterDDYCoarse, 448.0f, ulpTolerance))); } else if (left) { // bottom left quad VERIFY_IS_TRUE((CompareFloatULP(CenterDDXCoarse, -1792.0f, ulpTolerance) || CompareFloatULP(CenterDDXCoarse, -.875f, ulpTolerance)) && (CompareFloatULP(CenterDDYCoarse, -2047.0f, ulpTolerance) || CompareFloatULP(CenterDDYCoarse, -255.875f, ulpTolerance))); } else { // bottom right VERIFY_IS_TRUE((CompareFloatULP(CenterDDXCoarse, 256.0f, ulpTolerance) || CompareFloatULP(CenterDDXCoarse, .125f, ulpTolerance)) && (CompareFloatULP(CenterDDYCoarse, -255.875f, ulpTolerance) || CompareFloatULP(CenterDDYCoarse, -511.75f, ulpTolerance))); } } // Rendering two right triangles forming a square and assigning a texture value // for each pixel to calculate derivates. TEST_F(ExecutionTest, PartialDerivTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, "DerivFine", nullptr); MappedData data; D3D12_RESOURCE_DESC &D = test->ShaderOp->GetResourceByName("RTarget")->Desc; UINT width = (UINT)D.Width; UINT height = D.Height; UINT pixelSize = GetByteSizeForFormat(D.Format) / 4; test->Test->GetReadBackData("RTarget", &data); const float *pPixels = (float *)data.data(); UINT centerIndex = (UINT64)width * height / 2 - width / 2; UINT offsetCenter = centerIndex * pixelSize; VerifyDerivResults(pPixels, offsetCenter); } TEST_F(ExecutionTest, DerivativesTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL_6_6)) return; std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); st::ShaderOp *pShaderOp = ShaderOpSet->GetShaderOp("Derivatives"); LPCSTR CS = pShaderOp->CS; struct Dispatch { int x, y, z; int mx, my, mz; }; std::vector dispatches = { {32, 32, 1, 8, 8, 1}, {64, 4, 1, 64, 2, 1}, {1, 4, 64, 1, 4, 32}, {64, 1, 1, 64, 1, 1}, {1, 64, 1, 1, 64, 1}, {1, 1, 64, 1, 1, 64}, {16, 16, 3, 4, 4, 3}, {32, 3, 8, 8, 3, 2}, {3, 1, 64, 3, 1, 32} }; char compilerOptions[256]; for (Dispatch &D : dispatches) { UINT width = D.x; UINT height = D.y; UINT depth = D.z; UINT mwidth = D.mx; UINT mheight = D.my; UINT mdepth = D.mz; UINT pixelSize = 4; // always float4 // format compiler args VERIFY_IS_TRUE(sprintf_s(compilerOptions, sizeof(compilerOptions), "-D DISPATCHX=%d -D DISPATCHY=%d -D DISPATCHZ=%d " "-D MESHDISPATCHX=%d -D MESHDISPATCHY=%d -D MESHDISPATCHZ=%d", width, height, depth, mwidth, mheight, mdepth)); for (st::ShaderOpShader &S : pShaderOp->Shaders) S.Arguments = compilerOptions; pShaderOp->DispatchX = width; pShaderOp->DispatchY = height; pShaderOp->DispatchZ = depth; // Test Compute Shader pShaderOp->CS = CS; std::shared_ptr test = RunShaderOpTestAfterParse(pDevice, m_support, "Derivatives", nullptr, ShaderOpSet); MappedData data; test->Test->GetReadBackData("U0", &data); const float *pPixels = (float *)data.data(); // To find roughly the center for compute, divide the pixel count in half, // truncate to next lowest power of 16 (4x4), which is the repeating period // and then add 10 to reach the point the test expects UINT centerIndex = (((UINT64)(width * height * depth)/2) & ~0xF) + 10; UINT offsetCenter = centerIndex * pixelSize; LogCommentFmt(L"Verifying derivatives in compute shader results"); VerifyDerivResults(pPixels, offsetCenter); if (DoesDeviceSupportMeshAmpDerivatives(pDevice)) { // Disable CS so mesh goes forward pShaderOp->CS = nullptr; test = RunShaderOpTestAfterParse(pDevice, m_support, "Derivatives", nullptr, ShaderOpSet); test->Test->GetReadBackData("U1", &data); pPixels = (float *)data.data(); centerIndex = (((UINT64)(mwidth * mheight * mdepth)/2) & ~0xF) + 10; offsetCenter = centerIndex * pixelSize; LogCommentFmt(L"Verifying derivatives in mesh shader results"); VerifyDerivResults(pPixels, offsetCenter); test->Test->GetReadBackData("U2", &data); pPixels = (float *)data.data(); LogCommentFmt(L"Verifying derivatives in amplification shader results"); VerifyDerivResults(pPixels, offsetCenter); } } // Final test with not divisible by 4 dispatch size just to make sure it runs for (st::ShaderOpShader &S : pShaderOp->Shaders) S.Arguments = "-D DISPATCHX=3 -D DISPATCHY=3 -D DISPATCHZ=3 " "-D MESHDISPATCHX=3 -D MESHDISPATCHY=3 -D MESHDISPATCHZ=3"; pShaderOp->DispatchX = 3; pShaderOp->DispatchY = 3; pShaderOp->DispatchZ = 3; // Test Compute Shader pShaderOp->CS = CS; std::shared_ptr test = RunShaderOpTestAfterParse(pDevice, m_support, "Derivatives", nullptr, ShaderOpSet); if (DoesDeviceSupportMeshAmpDerivatives(pDevice)) { pShaderOp->CS = nullptr; test = RunShaderOpTestAfterParse(pDevice, m_support, "Derivatives", nullptr, ShaderOpSet); } } // Verify the results for the quad starting with the given index void VerifyQuadReadResults(const UINT *pPixels, UINT quadIndex) { for (UINT i = 0; i < 4; i++) { UINT ix = quadIndex + i; VERIFY_ARE_EQUAL(pPixels[4*ix + 0], ix); // ReadLaneAt own quad index VERIFY_ARE_EQUAL(pPixels[4*ix + 1], (ix^1));// ReadAcrossX VERIFY_ARE_EQUAL(pPixels[4*ix + 2], (ix^2));// ReadAcrossY VERIFY_ARE_EQUAL(pPixels[4*ix + 3], (ix^3));// ReadAcrossDiagonal } } TEST_F(ExecutionTest, QuadReadTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) return; if (GetTestParamUseWARP(UseWarpByDefault())) { WEX::Logging::Log::Comment(L"WARP does not support QuadRead in compute shaders."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); st::ShaderOp *pShaderOp = ShaderOpSet->GetShaderOp("QuadRead"); LPCSTR CS = pShaderOp->CS; struct Dispatch { int x, y, z; int mx, my, mz; }; //std::vector> dispatches = std::vector dispatches = { {32, 32, 1, 8, 8, 1}, {64, 4, 1, 64, 2, 1}, {1, 4, 64, 1, 4, 32}, {64, 1, 1, 64, 1, 1}, {1, 64, 1, 1, 64, 1}, {1, 1, 64, 1, 1, 64}, {16, 16, 3, 4, 4, 3}, {32, 3, 8, 8, 3, 2}, {3, 1, 64, 3, 1, 32} }; for (Dispatch &D : dispatches) { UINT width = D.x; UINT height = D.y; UINT depth = D.z; UINT mwidth = D.mx; UINT mheight = D.my; UINT mdepth = D.mz; // format compiler args char compilerOptions[256]; VERIFY_IS_TRUE(sprintf_s(compilerOptions, sizeof(compilerOptions), "-D DISPATCHX=%d -D DISPATCHY=%d -D DISPATCHZ=%d " "-D MESHDISPATCHX=%d -D MESHDISPATCHY=%d -D MESHDISPATCHZ=%d", width, height, depth, mwidth, mheight, mdepth)); for (st::ShaderOpShader &S : pShaderOp->Shaders) S.Arguments = compilerOptions; pShaderOp->DispatchX = width; pShaderOp->DispatchY = height; pShaderOp->DispatchZ = depth; // Test Compute Shader pShaderOp->CS = CS; std::shared_ptr test = RunShaderOpTestAfterParse(pDevice, m_support, "QuadRead", nullptr, ShaderOpSet); MappedData data; test->Test->GetReadBackData("U0", &data); const UINT *pPixels = (UINT *)data.data(); // To find roughly the center for compute, divide the pixel count in half // and truncate to next lowest power of 4 to start at a quad UINT offsetCenter = ((UINT64)(width * height * depth)/2) & ~0x3; // Test first, second and center quads LogCommentFmt(L"Verifying QuadRead* in compute shader results"); VerifyQuadReadResults(pPixels, 0); VerifyQuadReadResults(pPixels, 4); VerifyQuadReadResults(pPixels, offsetCenter); if (DoesDeviceSupportMeshAmpDerivatives(pDevice)) { offsetCenter = ((UINT64)(mwidth * mheight * mdepth)/2) & ~0x3; // Disable CS so mesh goes forward pShaderOp->CS = nullptr; test = RunShaderOpTestAfterParse(pDevice, m_support, "QuadRead", nullptr, ShaderOpSet); test->Test->GetReadBackData("U1", &data); pPixels = (UINT *)data.data(); // Test first, second and center quads LogCommentFmt(L"Verifying QuadRead* in mesh shader results"); VerifyQuadReadResults(pPixels, 0); VerifyQuadReadResults(pPixels, 4); VerifyQuadReadResults(pPixels, offsetCenter); test->Test->GetReadBackData("U2", &data); pPixels = (UINT *)data.data(); // Test first, second and center quads LogCommentFmt(L"Verifying QuadRead* in amplification shader results"); VerifyQuadReadResults(pPixels, 0); VerifyQuadReadResults(pPixels, 4); VerifyQuadReadResults(pPixels, offsetCenter); } } } void VerifySampleResults(const UINT *pPixels, UINT width) { UINT xlod = 0; UINT ylod = 0; // Each pixel contains 4 samples and 4 LOD calculations. // 2 of these (called 'left' and 'right') have X values that vary and a constant Y // 2 others (called 'top' and 'bot') have Y values that vary and a constant X // Only of the X variant sample results and one of the Y variant results // are actually reported for the pixel. // The other 2 serve as "helpers" to the other pixels in the quad. // On the left side of the quad, the 'left' samples are reported. // Op the top of the quad, the 'top' samples are reported and so on. // The varying coordinate values alternate between zero and a // value whose magnitude increases with the index. // As a result, the LOD level should steadily increas. // Due to vagaries of implementation, the same derivatives // in both directions might result in different levels for different locations // in the quad. So only comparisons between sample results and LOD calculations // and ensuring that the LOD increased and reaches the max can be tested reliably. for (unsigned i = 0; i < width; i++) { // CalculateLOD and Sample from texture with mip levels containing LOD index should match VERIFY_ARE_EQUAL(pPixels[4*i + 0], pPixels[4*i + 1]); VERIFY_ARE_EQUAL(pPixels[4*i + 2], pPixels[4*i + 3]); // Make sure LODs are ever climbing as magnitudes increase VERIFY_IS_TRUE(pPixels[4*i] >= xlod); xlod = pPixels[4*i]; VERIFY_IS_TRUE(pPixels[4*i + 2] >= ylod); ylod = pPixels[4*i + 2]; } // Make sure we reached the max lod level for both tracks VERIFY_ARE_EQUAL(xlod, 6u); VERIFY_ARE_EQUAL(ylod, 6u); } TEST_F(ExecutionTest, ComputeSampleTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL_6_6)) return; std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); st::ShaderOp *pShaderOp = ShaderOpSet->GetShaderOp("ComputeSample"); // Initialize texture with the LOD number in each corresponding mip level auto SampleInitFn = [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { UNREFERENCED_PARAMETER(pShaderOp); VERIFY_ARE_EQUAL(0, _stricmp(Name, "T0")); D3D12_RESOURCE_DESC &texDesc = pShaderOp->GetResourceByName("T0")->Desc; UINT texWidth = (UINT)texDesc.Width; UINT texHeight = (UINT)texDesc.Height; size_t size = sizeof(float) * texWidth * texHeight * 2; Data.resize(size); float *pPrimitives = (float *)Data.data(); float lod = 0.0; int ix = 0; while (texHeight > 0 && texWidth > 0) { if(!texHeight) texHeight = 1; if(!texWidth) texWidth = 1; for (size_t j = 0; j < texHeight; ++j) { for (size_t i = 0; i < texWidth; ++i) { pPrimitives[ix++] = lod; } } lod += 1.0; texHeight >>= 1; texWidth >>= 1; } }; LPCSTR CS2 = nullptr, AS2 = nullptr, MS2 = nullptr; for (st::ShaderOpShader &S : pShaderOp->Shaders) { if (!strcmp(S.Name, "CS2")) CS2 = S.Name; if (!strcmp(S.Name, "AS2")) AS2 = S.Name; if (!strcmp(S.Name, "MS2")) MS2 = S.Name; } // Test 1D compute shader std::shared_ptr test = RunShaderOpTestAfterParse(pDevice, m_support, "ComputeSample", SampleInitFn, ShaderOpSet); MappedData data; test->Test->GetReadBackData("U0", &data); const UINT *pPixels = (UINT *)data.data(); VerifySampleResults(pPixels, 84*4); // Test 2D compute shader pShaderOp->CS = CS2; test = RunShaderOpTestAfterParse(pDevice, m_support, "ComputeSample", SampleInitFn, ShaderOpSet); test->Test->GetReadBackData("U0", &data); pPixels = (UINT *)data.data(); VerifySampleResults(pPixels, 84*4); if (DoesDeviceSupportMeshAmpDerivatives(pDevice)) { // Disable CS so mesh goes forward pShaderOp->CS = nullptr; test = RunShaderOpTestAfterParse(pDevice, m_support, "ComputeSample", SampleInitFn, ShaderOpSet); test->Test->GetReadBackData("U1", &data); pPixels = (UINT *)data.data(); VerifySampleResults(pPixels, 116); test->Test->GetReadBackData("U2", &data); pPixels = (UINT *)data.data(); VerifySampleResults(pPixels, 84); pShaderOp->AS = AS2; pShaderOp->MS = MS2; test = RunShaderOpTestAfterParse(pDevice, m_support, "ComputeSample", SampleInitFn, ShaderOpSet); test->Test->GetReadBackData("U1", &data); pPixels = (UINT *)data.data(); VerifySampleResults(pPixels, 116); test->Test->GetReadBackData("U2", &data); pPixels = (UINT *)data.data(); VerifySampleResults(pPixels, 84); } } // Executing a simple binop to verify shadel model 6.1 support; runs with // ShaderModel61.CoreRequirement TEST_F(ExecutionTest, BasicShaderModel61) { RunBasicShaderModelTest(D3D_SHADER_MODEL_6_1); } // Executing a simple binop to verify shadel model 6.3 support; runs with // ShaderModel63.CoreRequirement TEST_F(ExecutionTest, BasicShaderModel63) { RunBasicShaderModelTest(D3D_SHADER_MODEL_6_3); } void ExecutionTest::RunBasicShaderModelTest(D3D_SHADER_MODEL shaderModel) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pDevice; if (!CreateDevice(&pDevice, shaderModel)) { return; } char *pShaderModelStr; if (shaderModel == D3D_SHADER_MODEL_6_1) { pShaderModelStr = "cs_6_1"; } else if (shaderModel == D3D_SHADER_MODEL_6_3) { pShaderModelStr = "cs_6_3"; } else { DXASSERT_NOMSG("Invalid Shader Model Parameter"); pShaderModelStr = nullptr; } const char shaderTemplate[] = "struct SBinaryOp { %s input1; %s input2; %s output; };" "RWStructuredBuffer g_buf : register(u0);" "[numthreads(8,8,1)]" "void main(uint GI : SV_GroupIndex) {" " SBinaryOp l = g_buf[GI];" " l.output = l.input1 + l.input2;" " g_buf[GI] = l;" "}"; char shader[sizeof(shaderTemplate) + 50]; // Run simple shader with float data types char* sTy = "float"; float inputFloatPairs[] = { 1.5f, -2.8f, 3.23e-5f, 6.0f, 181.621f, 14.978f }; VERIFY_IS_TRUE(sprintf(shader, shaderTemplate, sTy, sTy, sTy) > 0); WEX::Logging::Log::Comment(L"BasicShaderModel float"); RunBasicShaderModelTest(pDevice, pShaderModelStr, shader, inputFloatPairs, sizeof(inputFloatPairs) / (2 * sizeof(float))); // Run simple shader with double data types if (DoesDeviceSupportDouble(pDevice)) { sTy = "double"; double inputDoublePairs[] = { 1.5891020, -2.8, 3.23e-5, 1 / 3, 181.91621, 14.654978 }; VERIFY_IS_TRUE(sprintf(shader, shaderTemplate, sTy, sTy, sTy) > 0); WEX::Logging::Log::Comment(L"BasicShaderModel double"); RunBasicShaderModelTest(pDevice, pShaderModelStr, shader, inputDoublePairs, sizeof(inputDoublePairs) / (2 * sizeof(double))); } else { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support double operations."); } // Run simple shader with int64 types if (DoesDeviceSupportInt64(pDevice)) { sTy = "int64_t"; int64_t inputInt64Pairs[] = { 1, -100, 6814684, -9814810, 654, 1021248900 }; VERIFY_IS_TRUE(sprintf(shader, shaderTemplate, sTy, sTy, sTy) > 0); WEX::Logging::Log::Comment(L"BasicShaderModel int64_t"); RunBasicShaderModelTest(pDevice, pShaderModelStr, shader, inputInt64Pairs, sizeof(inputInt64Pairs) / (2 * sizeof(int64_t))); } else { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support int64 operations."); } } template const wchar_t* ExecutionTest::BasicShaderModelTest_GetFormatString() { DXASSERT_NOMSG("Unsupported type"); return ""; } template <> const wchar_t* ExecutionTest::BasicShaderModelTest_GetFormatString() { return L"element #%u: input1 = %6.8f, input1 = %6.8f, output = %6.8f, expected = %6.8f"; } template <> const wchar_t* ExecutionTest::BasicShaderModelTest_GetFormatString() { return BasicShaderModelTest_GetFormatString(); } template <> const wchar_t* ExecutionTest::BasicShaderModelTest_GetFormatString() { return L"element #%u: input1 = %ld, input1 = %ld, output = %ld, expected = %ld"; } template void ExecutionTest::RunBasicShaderModelTest(CComPtr pDevice, const char *pShaderModelStr, const char *pShader, Ty *pInputDataPairs, unsigned inputDataCount) { struct SBinaryOp { Ty input1; Ty input2; Ty output; }; CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "BinaryFPOp", // this callbacked is called when the test is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { UNREFERENCED_PARAMETER(Name); pShaderOp->Shaders.at(0).Target = pShaderModelStr; pShaderOp->Shaders.at(0).Text = pShader; size_t size = sizeof(SBinaryOp) * inputDataCount; Data.resize(size); SBinaryOp *pPrimitives = (SBinaryOp*)Data.data(); Ty *pIn = pInputDataPairs; for (size_t i = 0; i < inputDataCount; i++, pIn += 2) { SBinaryOp *p = &pPrimitives[i]; p->input1 = pIn[0]; p->input2 = pIn[1]; } }); VERIFY_SUCCEEDED(S_OK); MappedData data; test->Test->GetReadBackData("SBinaryFPOp", &data); SBinaryOp *pPrimitives = (SBinaryOp*)data.data(); const wchar_t* formatStr = BasicShaderModelTest_GetFormatString(); Ty *pIn = pInputDataPairs; for (unsigned i = 0; i < inputDataCount; i++, pIn += 2) { Ty expValue = pIn[0] + pIn[1]; SBinaryOp *p = &pPrimitives[i]; LogCommentFmt(formatStr, i, pIn[0], pIn[1], p->output, expValue); VERIFY_ARE_EQUAL(p->output, expValue); } } // Resource structure for data-driven tests. struct SUnaryFPOp { float input; float output; }; struct SBinaryFPOp { float input1; float input2; float output1; float output2; }; struct STertiaryFPOp { float input1; float input2; float input3; float output; }; struct SUnaryHalfOp { uint16_t input; uint16_t output; }; struct SBinaryHalfOp { uint16_t input1; uint16_t input2; uint16_t output1; uint16_t output2; }; struct STertiaryHalfOp { uint16_t input1; uint16_t input2; uint16_t input3; uint16_t output; }; struct SUnaryIntOp { int input; int output; }; struct SUnaryUintOp { unsigned int input; unsigned int output; }; struct SBinaryIntOp { int input1; int input2; int output1; int output2; }; struct STertiaryIntOp { int input1; int input2; int input3; int output; }; struct SBinaryUintOp { unsigned int input1; unsigned int input2; unsigned int output1; unsigned int output2; }; struct STertiaryUintOp { unsigned int input1; unsigned int input2; unsigned int input3; unsigned int output; }; struct SUnaryInt16Op { short input; short output; }; struct SUnaryUint16Op { unsigned short input; unsigned short output; }; struct SBinaryInt16Op { short input1; short input2; short output1; short output2; }; struct STertiaryInt16Op { short input1; short input2; short input3; short output; }; struct SBinaryUint16Op { unsigned short input1; unsigned short input2; unsigned short output1; unsigned short output2; }; struct STertiaryUint16Op { unsigned short input1; unsigned short input2; unsigned short input3; unsigned short output; }; // representation for HLSL float vectors struct SDotOp { XMFLOAT4 input1; XMFLOAT4 input2; float o_dot2; float o_dot3; float o_dot4; }; struct Half2 { uint16_t x; uint16_t y; Half2() = default; Half2(const Half2&) = default; Half2& operator=(const Half2&) = default; Half2(Half2&&) = default; Half2& operator=(Half2&&) = default; constexpr Half2(uint16_t _x, uint16_t _y) : x(_x), y(_y) {} explicit Half2(_In_reads_(2) const uint16_t *pArray) : x(pArray[0]), y(pArray[1]) {} }; struct SDot2AddHalfOp { Half2 input1; Half2 input2; float acc; float result; }; struct SDot4AddI8PackedOp { uint32_t input1; uint32_t input2; int32_t acc; int32_t result; }; struct SDot4AddU8PackedOp { uint32_t input1; uint32_t input2; uint32_t acc; uint32_t result; }; struct SMsad4 { unsigned int ref; XMUINT2 src; XMUINT4 accum; XMUINT4 result; }; struct SPackUnpackOpOutPacked { uint32_t packedUint32; uint32_t packedInt32; uint32_t packedUint16; uint32_t packedInt16; uint32_t packedClampedUint32; uint32_t packedClampedInt32; uint32_t packedClampedUint16; uint32_t packedClampedInt16; }; struct SPackUnpackOpOutUnpacked { std::array outputUint32; std::array outputInt32; std::array outputUint16; std::array outputInt16; std::array outputClampedUint32; std::array outputClampedInt32; std::array outputClampedUint16; std::array outputClampedInt16; }; // Parameter representation for taef data-driven tests struct TableParameter { LPCWSTR m_name; enum TableParameterType { INT8, INT16, INT32, UINT, FLOAT, HALF, DOUBLE, STRING, BOOL, INT8_TABLE, INT16_TABLE, INT32_TABLE, FLOAT_TABLE, HALF_TABLE, DOUBLE_TABLE, STRING_TABLE, UINT8_TABLE, UINT16_TABLE, UINT32_TABLE, BOOL_TABLE }; TableParameterType m_type; bool m_required; // required parameter int8_t m_int8; int16_t m_int16; int m_int32; unsigned int m_uint; float m_float; uint16_t m_half; // no such thing as half type in c++. Use int16 instead double m_double; bool m_bool; WEX::Common::String m_str; std::vector m_int8Table; std::vector m_int16Table; std::vector m_int32Table; std::vector m_uint8Table; std::vector m_uint16Table; std::vector m_uint32Table; std::vector m_floatTable; std::vector m_halfTable; // no such thing as half type in c++ std::vector m_doubleTable; std::vector m_boolTable; std::vector m_StringTable; }; class TableParameterHandler { private: HRESULT ParseTableRow(); public: TableParameter* m_table; size_t m_tableSize; TableParameterHandler(TableParameter *pTable, size_t size) : m_table(pTable), m_tableSize(size) { clearTableParameter(); VERIFY_SUCCEEDED(ParseTableRow()); } TableParameter* GetTableParamByName(LPCWSTR name) { for (size_t i = 0; i < m_tableSize; ++i) { if (_wcsicmp(name, m_table[i].m_name) == 0) { return &m_table[i]; } } DXASSERT_ARGS(false, "Invalid Table Parameter Name %s", name); return nullptr; } void clearTableParameter() { for (size_t i = 0; i < m_tableSize; ++i) { m_table[i].m_int32 = 0; m_table[i].m_uint = 0; m_table[i].m_double = 0; m_table[i].m_bool = false; m_table[i].m_str = WEX::Common::String(); } } template std::vector *GetDataArray(LPCWSTR name) { return nullptr; } template <> std::vector *GetDataArray(LPCWSTR name) { for (size_t i = 0; i < m_tableSize; ++i) { if (_wcsicmp(name, m_table[i].m_name) == 0) { return &(m_table[i].m_int32Table); } } DXASSERT_ARGS(false, "Invalid Table Parameter Name %s", name); return nullptr; } template <> std::vector *GetDataArray(LPCWSTR name) { for (size_t i = 0; i < m_tableSize; ++i) { if (_wcsicmp(name, m_table[i].m_name) == 0) { return &(m_table[i].m_int8Table); } } DXASSERT_ARGS(false, "Invalid Table Parameter Name %s", name); return nullptr; } template <> std::vector *GetDataArray(LPCWSTR name) { for (size_t i = 0; i < m_tableSize; ++i) { if (_wcsicmp(name, m_table[i].m_name) == 0) { return &(m_table[i].m_int16Table); } } DXASSERT_ARGS(false, "Invalid Table Parameter Name %s", name); return nullptr; } template <> std::vector *GetDataArray(LPCWSTR name) { for (size_t i = 0; i < m_tableSize; ++i) { if (_wcsicmp(name, m_table[i].m_name) == 0) { return &(m_table[i].m_uint32Table); } } DXASSERT_ARGS(false, "Invalid Table Parameter Name %s", name); return nullptr; } template <> std::vector *GetDataArray(LPCWSTR name) { for (size_t i = 0; i < m_tableSize; ++i) { if (_wcsicmp(name, m_table[i].m_name) == 0) { return &(m_table[i].m_floatTable); } } DXASSERT_ARGS(false, "Invalid Table Parameter Name %s", name); return nullptr; } // TODO: uin16_t may be used to represent two different types when we introduce uint16 template <> std::vector *GetDataArray(LPCWSTR name) { for (size_t i = 0; i < m_tableSize; ++i) { if (_wcsicmp(name, m_table[i].m_name) == 0) { return &(m_table[i].m_halfTable); } } DXASSERT_ARGS(false, "Invalid Table Parameter Name %s", name); return nullptr; } template <> std::vector *GetDataArray(LPCWSTR name) { for (size_t i = 0; i < m_tableSize; ++i) { if (_wcsicmp(name, m_table[i].m_name) == 0) { return &(m_table[i].m_doubleTable); } } DXASSERT_ARGS(false, "Invalid Table Parameter Name %s", name); return nullptr; } template <> std::vector *GetDataArray(LPCWSTR name) { for (size_t i = 0; i < m_tableSize; ++i) { if (_wcsicmp(name, m_table[i].m_name) == 0) { return &(m_table[i].m_boolTable); } } DXASSERT_ARGS(false, "Invalid Table Parameter Name %s", name); return nullptr; } }; static TableParameter UnaryFPOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::FLOAT_TABLE, true }, { L"Validation.Expected1", TableParameter::FLOAT_TABLE, true }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, { L"Warp.Version", TableParameter::UINT, false } }; static TableParameter BinaryFPOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::FLOAT_TABLE, true }, { L"Validation.Input2", TableParameter::FLOAT_TABLE, true }, { L"Validation.Expected1", TableParameter::FLOAT_TABLE, true }, { L"Validation.Expected2", TableParameter::FLOAT_TABLE, false }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, }; static TableParameter TertiaryFPOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::FLOAT_TABLE, true }, { L"Validation.Input2", TableParameter::FLOAT_TABLE, true }, { L"Validation.Input3", TableParameter::FLOAT_TABLE, true }, { L"Validation.Expected1", TableParameter::FLOAT_TABLE, true }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, }; static TableParameter UnaryHalfOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"ShaderOp.Arguments", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::HALF_TABLE, true }, { L"Validation.Expected1", TableParameter::HALF_TABLE, true }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, { L"Warp.Version", TableParameter::UINT, false } }; static TableParameter BinaryHalfOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"ShaderOp.Arguments", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::HALF_TABLE, true }, { L"Validation.Input2", TableParameter::HALF_TABLE, true }, { L"Validation.Expected1", TableParameter::HALF_TABLE, true }, { L"Validation.Expected2", TableParameter::HALF_TABLE, false }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, }; static TableParameter TertiaryHalfOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"ShaderOp.Arguments", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::HALF_TABLE, true }, { L"Validation.Input2", TableParameter::HALF_TABLE, true }, { L"Validation.Input3", TableParameter::HALF_TABLE, true }, { L"Validation.Expected1", TableParameter::HALF_TABLE, true }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, }; static TableParameter UnaryIntOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::INT32_TABLE, true }, { L"Validation.Expected1", TableParameter::INT32_TABLE, true }, { L"Validation.Tolerance", TableParameter::INT32, true }, }; static TableParameter UnaryUintOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::UINT32_TABLE, true }, { L"Validation.Expected1", TableParameter::UINT32_TABLE, true }, { L"Validation.Tolerance", TableParameter::INT32, true }, }; static TableParameter BinaryIntOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::INT32_TABLE, true }, { L"Validation.Input2", TableParameter::INT32_TABLE, true }, { L"Validation.Expected1", TableParameter::INT32_TABLE, true }, { L"Validation.Expected2", TableParameter::INT32_TABLE, false }, { L"Validation.Tolerance", TableParameter::INT32, true }, }; static TableParameter TertiaryIntOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::INT32_TABLE, true }, { L"Validation.Input2", TableParameter::INT32_TABLE, true }, { L"Validation.Input3", TableParameter::INT32_TABLE, true }, { L"Validation.Expected1", TableParameter::INT32_TABLE, true }, { L"Validation.Tolerance", TableParameter::INT32, true }, }; static TableParameter BinaryUintOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::UINT32_TABLE, true }, { L"Validation.Input2", TableParameter::UINT32_TABLE, true }, { L"Validation.Expected1", TableParameter::UINT32_TABLE, true }, { L"Validation.Expected2", TableParameter::UINT32_TABLE, false }, { L"Validation.Tolerance", TableParameter::INT32, true }, }; static TableParameter TertiaryUintOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::UINT32_TABLE, true }, { L"Validation.Input2", TableParameter::UINT32_TABLE, true }, { L"Validation.Input3", TableParameter::UINT32_TABLE, true }, { L"Validation.Expected1", TableParameter::UINT32_TABLE, true }, { L"Validation.Tolerance", TableParameter::INT32, true }, }; static TableParameter UnaryInt16OpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"ShaderOp.Arguments", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::INT16_TABLE, true }, { L"Validation.Expected1", TableParameter::INT16_TABLE, true }, { L"Validation.Tolerance", TableParameter::INT32, true }, }; static TableParameter UnaryUint16OpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"ShaderOp.Arguments", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::UINT16_TABLE, true }, { L"Validation.Expected1", TableParameter::UINT16_TABLE, true }, { L"Validation.Tolerance", TableParameter::INT32, true }, }; static TableParameter BinaryInt16OpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"ShaderOp.Arguments", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::INT16_TABLE, true }, { L"Validation.Input2", TableParameter::INT16_TABLE, true }, { L"Validation.Expected1", TableParameter::INT16_TABLE, true }, { L"Validation.Expected2", TableParameter::INT16_TABLE, false }, { L"Validation.Tolerance", TableParameter::INT32, true }, }; static TableParameter TertiaryInt16OpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"ShaderOp.Arguments", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::INT16_TABLE, true }, { L"Validation.Input2", TableParameter::INT16_TABLE, true }, { L"Validation.Input3", TableParameter::INT16_TABLE, true }, { L"Validation.Expected1", TableParameter::INT16_TABLE, true }, { L"Validation.Tolerance", TableParameter::INT32, true }, }; static TableParameter BinaryUint16OpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"ShaderOp.Arguments", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::UINT16_TABLE, true }, { L"Validation.Input2", TableParameter::UINT16_TABLE, true }, { L"Validation.Expected1", TableParameter::UINT16_TABLE, true }, { L"Validation.Expected2", TableParameter::UINT16_TABLE, false }, { L"Validation.Tolerance", TableParameter::INT32, true }, }; static TableParameter TertiaryUint16OpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"ShaderOp.Arguments", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::UINT16_TABLE, true }, { L"Validation.Input2", TableParameter::UINT16_TABLE, true }, { L"Validation.Input3", TableParameter::UINT16_TABLE, true }, { L"Validation.Expected1", TableParameter::UINT16_TABLE, true }, { L"Validation.Tolerance", TableParameter::INT32, true }, }; static TableParameter DotOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::STRING_TABLE, true }, { L"Validation.Input2", TableParameter::STRING_TABLE, true }, { L"Validation.Expected1", TableParameter::STRING_TABLE, true }, { L"Validation.Expected2", TableParameter::STRING_TABLE, true }, { L"Validation.Expected3", TableParameter::STRING_TABLE, true }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, }; static TableParameter Dot2AddHalfOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"ShaderOp.Arguments", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::STRING_TABLE, true }, { L"Validation.Input2", TableParameter::STRING_TABLE, true }, { L"Validation.Input3", TableParameter::FLOAT_TABLE, true }, { L"Validation.Expected1", TableParameter::FLOAT_TABLE, true }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, }; static TableParameter Dot4AddI8PackedOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::UINT32_TABLE, true }, { L"Validation.Input2", TableParameter::UINT32_TABLE, true }, { L"Validation.Input3", TableParameter::INT32_TABLE, true }, { L"Validation.Expected1", TableParameter::INT32_TABLE, true }, }; static TableParameter Dot4AddU8PackedOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::UINT32_TABLE, true }, { L"Validation.Input2", TableParameter::UINT32_TABLE, true }, { L"Validation.Input3", TableParameter::UINT32_TABLE, true }, { L"Validation.Expected1", TableParameter::UINT32_TABLE, true }, }; static TableParameter Msad4OpParameters[] = { { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, { L"Validation.Input1", TableParameter::UINT32_TABLE, true}, { L"Validation.Input2", TableParameter::STRING_TABLE, true }, { L"Validation.Input3", TableParameter::STRING_TABLE, true }, { L"Validation.Expected1", TableParameter::STRING_TABLE, true } }; static TableParameter WaveIntrinsicsActiveIntParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.NumInputSet", TableParameter::UINT, true }, { L"Validation.InputSet1", TableParameter::INT32_TABLE, true }, { L"Validation.InputSet2", TableParameter::INT32_TABLE, false }, { L"Validation.InputSet3", TableParameter::INT32_TABLE, false }, { L"Validation.InputSet4", TableParameter::INT32_TABLE, false } }; static TableParameter WaveIntrinsicsPrefixIntParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.NumInputSet", TableParameter::UINT, true }, { L"Validation.InputSet1", TableParameter::INT32_TABLE, true }, { L"Validation.InputSet2", TableParameter::INT32_TABLE, false }, { L"Validation.InputSet3", TableParameter::INT32_TABLE, false }, { L"Validation.InputSet4", TableParameter::INT32_TABLE, false } }; static TableParameter WaveIntrinsicsActiveUintParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.NumInputSet", TableParameter::UINT, true }, { L"Validation.InputSet1", TableParameter::UINT32_TABLE, true }, { L"Validation.InputSet2", TableParameter::UINT32_TABLE, false }, { L"Validation.InputSet3", TableParameter::UINT32_TABLE, false }, { L"Validation.InputSet4", TableParameter::UINT32_TABLE, false } }; static TableParameter WaveIntrinsicsPrefixUintParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.NumInputSet", TableParameter::UINT, true }, { L"Validation.InputSet1", TableParameter::UINT32_TABLE, true }, { L"Validation.InputSet2", TableParameter::UINT32_TABLE, false }, { L"Validation.InputSet3", TableParameter::UINT32_TABLE, false }, { L"Validation.InputSet4", TableParameter::UINT32_TABLE, false } }; static TableParameter WaveIntrinsicsMultiPrefixIntParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Keys", TableParameter::INT32_TABLE, true }, { L"Validation.Values", TableParameter::INT32_TABLE, true }, }; static TableParameter WaveIntrinsicsMultiPrefixUintParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Keys", TableParameter::UINT32_TABLE, true }, { L"Validation.Values", TableParameter::UINT32_TABLE, true }, }; static TableParameter WaveIntrinsicsActiveBoolParameters[] = { { L"ShaderOp.Name", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.NumInputSet", TableParameter::UINT, true }, { L"Validation.InputSet1", TableParameter::BOOL_TABLE, true }, { L"Validation.InputSet2", TableParameter::BOOL_TABLE, false }, { L"Validation.InputSet3", TableParameter::BOOL_TABLE, false }, }; static TableParameter CBufferTestHalfParameters[] = { { L"Validation.InputSet", TableParameter::HALF_TABLE, true }, }; static TableParameter DenormBinaryFPOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"ShaderOp.Arguments", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::STRING_TABLE, true }, { L"Validation.Input2", TableParameter::STRING_TABLE, true }, { L"Validation.Expected1", TableParameter::STRING_TABLE, true }, { L"Validation.Expected2", TableParameter::STRING_TABLE, false }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, }; static TableParameter DenormTertiaryFPOpParameters[] = { { L"ShaderOp.Target", TableParameter::STRING, true }, { L"ShaderOp.Text", TableParameter::STRING, true }, { L"ShaderOp.Arguments", TableParameter::STRING, true }, { L"Validation.Input1", TableParameter::STRING_TABLE, true }, { L"Validation.Input2", TableParameter::STRING_TABLE, true }, { L"Validation.Input3", TableParameter::STRING_TABLE, true }, { L"Validation.Expected1", TableParameter::STRING_TABLE, true }, { L"Validation.Expected2", TableParameter::STRING_TABLE, false }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::DOUBLE, true }, }; static TableParameter PackUnpackOpParameters[] = { { L"ShaderOp.Text", TableParameter::STRING, true }, { L"Validation.Type", TableParameter::STRING, true }, { L"Validation.Tolerance", TableParameter::UINT, true }, { L"Validation.Input", TableParameter::UINT32_TABLE, true }, }; static bool IsHexString(PCWSTR str, uint16_t *value) { std::wstring wString(str); wString.erase(std::remove(wString.begin(), wString.end(), L' '), wString.end()); LPCWSTR wstr = wString.c_str(); if (wcsncmp(wstr, L"0x", 2) == 0 || wcsncmp(wstr, L"0b", 2) == 0) { *value = (uint16_t)wcstol(wstr, NULL, 0); return true; } return false; } static HRESULT ParseDataToFloat(PCWSTR str, float &value) { std::wstring wString(str); wString.erase(std::remove(wString.begin(), wString.end(), L' '), wString.end()); PCWSTR wstr = wString.data(); if (_wcsicmp(wstr, L"NaN") == 0) { value = NAN; } else if (_wcsicmp(wstr, L"-inf") == 0) { value = -(INFINITY); } else if (_wcsicmp(wstr, L"inf") == 0) { value = INFINITY; } else if (_wcsicmp(wstr, L"-denorm") == 0) { value = -(FLT_MIN / 2); } else if (_wcsicmp(wstr, L"denorm") == 0) { value = FLT_MIN / 2; } else if (_wcsicmp(wstr, L"-0.0f") == 0 || _wcsicmp(wstr, L"-0.0") == 0 || _wcsicmp(wstr, L"-0") == 0) { value = -0.0f; } else if (_wcsicmp(wstr, L"0.0f") == 0 || _wcsicmp(wstr, L"0.0") == 0 || _wcsicmp(wstr, L"0") == 0) { value = 0.0f; } else if (_wcsnicmp(wstr, L"0x", 2) == 0) { // For hex values, take values literally unsigned temp_i = std::stoul(wstr, nullptr, 16); value = (float&)temp_i; } else { // evaluate the expression of wstring double val = _wtof(wstr); if (val == 0) { LogErrorFmt(L"Failed to parse parameter %s to float", wstr); return E_FAIL; } value = (float)val; } return S_OK; } static HRESULT ParseDataToInt(PCWSTR str, int &value) { std::wstring wString(str); wString.erase(std::remove(wString.begin(), wString.end(), L' '), wString.end()); PCWSTR wstr = wString.data(); // evaluate the expression of string if (_wcsicmp(wstr, L"0.0") == 0 || _wcsicmp(wstr, L"0") == 0) { value = 0; return S_OK; } int val = _wtoi(wstr); if (val == 0) { LogErrorFmt(L"Failed to parse parameter %s to int", wstr); return E_FAIL; } value = val; return S_OK; } static HRESULT ParseDataToUint(PCWSTR str, unsigned int &value) { std::wstring wString(str); wString.erase(std::remove(wString.begin(), wString.end(), L' '), wString.end()); PCWSTR wstr = wString.data(); // evaluate the expression of string if (_wcsicmp(wstr, L"0") == 0 || _wcsicmp(wstr, L"0x00000000") == 0) { value = 0; return S_OK; } wchar_t *end; unsigned int val = std::wcstoul(wstr, &end, 0); if (val == 0) { LogErrorFmt(L"Failed to parse parameter %s to int", wstr); return E_FAIL; } value = val; return S_OK; } static HRESULT ParseDataToVectorFloat(PCWSTR str, float *ptr, size_t count) { std::wstring wstr(str); size_t curPosition = 0; // parse a string of dot product separated by commas for (size_t i = 0; i < count; ++i) { size_t nextPosition = wstr.find(L",", curPosition); if (FAILED(ParseDataToFloat( wstr.substr(curPosition, nextPosition - curPosition).data(), *(ptr + i)))) { return E_FAIL; } curPosition = nextPosition + 1; } return S_OK; } static HRESULT ParseDataToVectorHalf(PCWSTR str, uint16_t *ptr, size_t count) { std::wstring wstr(str); size_t curPosition = 0; // parse a string of dot product separated by commas for (size_t i = 0; i < count; ++i) { size_t nextPosition = wstr.find(L",", curPosition); float floatValue; if (FAILED(ParseDataToFloat( wstr.substr(curPosition, nextPosition - curPosition).data(), floatValue))) { return E_FAIL; } *(ptr + i) = ConvertFloat32ToFloat16(floatValue); curPosition = nextPosition + 1; } return S_OK; } static HRESULT ParseDataToVectorUint(PCWSTR str, unsigned int *ptr, size_t count) { std::wstring wstr(str); size_t curPosition = 0; // parse a string of dot product separated by commas for (size_t i = 0; i < count; ++i) { size_t nextPosition = wstr.find(L",", curPosition); if (FAILED(ParseDataToUint( wstr.substr(curPosition, nextPosition - curPosition).data(), *(ptr + i)))) { return E_FAIL; } curPosition = nextPosition + 1; } return S_OK; } HRESULT TableParameterHandler::ParseTableRow() { TableParameter *table = m_table; for (unsigned int i = 0; i < m_tableSize; ++i) { switch (table[i].m_type) { case TableParameter::INT8: if (FAILED(WEX::TestExecution::TestData::TryGetValue(table[i].m_name, table[i].m_int32)) && table[i].m_required) { // TryGetValue does not suppport reading from int16 LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } table[i].m_int8 = (int8_t)(table[i].m_int32); break; case TableParameter::INT16: if (FAILED(WEX::TestExecution::TestData::TryGetValue(table[i].m_name, table[i].m_int32)) && table[i].m_required) { // TryGetValue does not suppport reading from int16 LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } table[i].m_int16 = (short)(table[i].m_int32); break; case TableParameter::INT32: if (FAILED(WEX::TestExecution::TestData::TryGetValue(table[i].m_name, table[i].m_int32)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; case TableParameter::UINT: if (FAILED(WEX::TestExecution::TestData::TryGetValue(table[i].m_name, table[i].m_uint)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; case TableParameter::DOUBLE: if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, table[i].m_double)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; case TableParameter::STRING: if (FAILED(WEX::TestExecution::TestData::TryGetValue(table[i].m_name, table[i].m_str)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; case TableParameter::BOOL: if (FAILED(WEX::TestExecution::TestData::TryGetValue(table[i].m_name, table[i].m_str)) && table[i].m_bool) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } break; case TableParameter::INT8_TABLE: { WEX::TestExecution::TestDataArray tempTable; if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, tempTable)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } // TryGetValue does not suppport reading from int8 table[i].m_int8Table.resize(tempTable.GetSize()); for (size_t j = 0, end = tempTable.GetSize(); j != end; ++j) { table[i].m_int8Table[j] = (int8_t)tempTable[j]; } break; } case TableParameter::INT16_TABLE: { WEX::TestExecution::TestDataArray tempTable; if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, tempTable)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } // TryGetValue does not suppport reading from int8 table[i].m_int16Table.resize(tempTable.GetSize()); for (size_t j = 0, end = tempTable.GetSize(); j != end; ++j) { table[i].m_int16Table[j] = (int16_t)tempTable[j]; } break; }case TableParameter::INT32_TABLE: { WEX::TestExecution::TestDataArray tempTable; if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, tempTable)) && table[i].m_required) { // TryGetValue does not suppport reading from int8 LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } table[i].m_int32Table.resize(tempTable.GetSize()); for (size_t j = 0, end = tempTable.GetSize(); j != end; ++j) { table[i].m_int32Table[j] = tempTable[j]; } break; } case TableParameter::UINT8_TABLE: { WEX::TestExecution::TestDataArray tempTable; if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, tempTable)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } // TryGetValue does not suppport reading from int8 table[i].m_int8Table.resize(tempTable.GetSize()); for (size_t j = 0, end = tempTable.GetSize(); j != end; ++j) { table[i].m_int8Table[j] = (uint8_t)tempTable[j]; } break; } case TableParameter::UINT16_TABLE: { WEX::TestExecution::TestDataArray tempTable; if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, tempTable)) && table[i].m_required) { LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } // TryGetValue does not suppport reading from int8 table[i].m_uint16Table.resize(tempTable.GetSize()); for (size_t j = 0, end = tempTable.GetSize(); j != end; ++j) { table[i].m_uint16Table[j] = (uint16_t)tempTable[j]; } break; } case TableParameter::UINT32_TABLE: { WEX::TestExecution::TestDataArray tempTable; if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, tempTable)) && table[i].m_required) { // TryGetValue does not suppport reading from int8 LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } table[i].m_uint32Table.resize(tempTable.GetSize()); for (size_t j = 0, end = tempTable.GetSize(); j != end; ++j) { table[i].m_uint32Table[j] = tempTable[j]; } break; } case TableParameter::FLOAT_TABLE: { WEX::TestExecution::TestDataArray tempTable; if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, tempTable)) && table[i].m_required) { // TryGetValue does not suppport reading from int8 LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } table[i].m_floatTable.resize(tempTable.GetSize()); for (size_t j = 0, end = tempTable.GetSize(); j != end; ++j) { ParseDataToFloat(tempTable[j], table[i].m_floatTable[j]); } break; } case TableParameter::HALF_TABLE: { WEX::TestExecution::TestDataArray tempTable; if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, tempTable)) && table[i].m_required) { // TryGetValue does not suppport reading from int8 LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } table[i].m_halfTable.resize(tempTable.GetSize()); for (size_t j = 0, end = tempTable.GetSize(); j != end; ++j) { uint16_t value = 0; if (IsHexString(tempTable[j], &value)) { table[i].m_halfTable[j] = value; } else { float val; ParseDataToFloat(tempTable[j], val); if (isdenorm(val)) table[i].m_halfTable[j] = signbit(val) ? Float16NegDenorm : Float16PosDenorm; else table[i].m_halfTable[j] = ConvertFloat32ToFloat16(val); } } break; } case TableParameter::DOUBLE_TABLE: { WEX::TestExecution::TestDataArray tempTable; if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, tempTable)) && table[i].m_required) { // TryGetValue does not suppport reading from int8 LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } table[i].m_doubleTable.resize(tempTable.GetSize()); for (size_t j = 0, end = tempTable.GetSize(); j != end; ++j) { table[i].m_doubleTable[j] = tempTable[j]; } break; } case TableParameter::BOOL_TABLE: { WEX::TestExecution::TestDataArray tempTable; if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, tempTable)) && table[i].m_required) { // TryGetValue does not suppport reading from int8 LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } table[i].m_boolTable.resize(tempTable.GetSize()); for (size_t j = 0, end = tempTable.GetSize(); j != end; ++j) { table[i].m_boolTable[j] = tempTable[j]; } break; } case TableParameter::STRING_TABLE: { WEX::TestExecution::TestDataArray tempTable; if (FAILED(WEX::TestExecution::TestData::TryGetValue( table[i].m_name, tempTable)) && table[i].m_required) { // TryGetValue does not suppport reading from int8 LogErrorFmt(L"Failed to get %s", table[i].m_name); return E_FAIL; } table[i].m_StringTable.resize(tempTable.GetSize()); for (size_t j = 0, end = tempTable.GetSize(); j != end; ++j) { table[i].m_StringTable[j] = tempTable[j]; } break; } default: DXASSERT_NOMSG("Invalid Parameter Type"); } if (errno == ERANGE) { LogErrorFmt(L"got out of range value for table %s", table[i].m_name); return E_FAIL; } } return S_OK; } static void VerifyOutputWithExpectedValueInt(int output, int ref, int tolerance) { VERIFY_IS_TRUE(output - ref <= tolerance && ref - output <= tolerance); } static void VerifyOutputWithExpectedValueUInt(uint32_t output, uint32_t ref, uint32_t tolerance) { VERIFY_IS_TRUE(output - ref <= tolerance && ref - output <= tolerance); } static void VerifyOutputWithExpectedValueUInt4(XMUINT4 output, XMUINT4 ref) { VERIFY_ARE_EQUAL(output.x, ref.x); VERIFY_ARE_EQUAL(output.y, ref.y); VERIFY_ARE_EQUAL(output.z, ref.z); VERIFY_ARE_EQUAL(output.w, ref.w); } static void VerifyOutputWithExpectedValueFloat( float output, float ref, LPCWSTR type, double tolerance, hlsl::DXIL::Float32DenormMode mode = hlsl::DXIL::Float32DenormMode::Any) { if (_wcsicmp(type, L"Relative") == 0) { VERIFY_IS_TRUE(CompareFloatRelativeEpsilon(output, ref, (int)tolerance, mode)); } else if (_wcsicmp(type, L"Epsilon") == 0) { VERIFY_IS_TRUE(CompareFloatEpsilon(output, ref, (float)tolerance, mode)); } else if (_wcsicmp(type, L"ULP") == 0) { VERIFY_IS_TRUE(CompareFloatULP(output, ref, (int)tolerance, mode)); } else { LogErrorFmt(L"Failed to read comparison type %S", type); } } static bool CompareOutputWithExpectedValueFloat( float output, float ref, LPCWSTR type, double tolerance, hlsl::DXIL::Float32DenormMode mode = hlsl::DXIL::Float32DenormMode::Any) { if (_wcsicmp(type, L"Relative") == 0) { return CompareFloatRelativeEpsilon(output, ref, (int)tolerance, mode); } else if (_wcsicmp(type, L"Epsilon") == 0) { return CompareFloatEpsilon(output, ref, (float)tolerance, mode); } else if (_wcsicmp(type, L"ULP") == 0) { return CompareFloatULP(output, ref, (int)tolerance, mode); } else { LogErrorFmt(L"Failed to read comparison type %S", type); return false; } } static void VerifyOutputWithExpectedValueHalf( uint16_t output, uint16_t ref, LPCWSTR type, double tolerance) { if (_wcsicmp(type, L"Relative") == 0) { VERIFY_IS_TRUE(CompareHalfRelativeEpsilon(output, ref, (int)tolerance)); } else if (_wcsicmp(type, L"Epsilon") == 0) { VERIFY_IS_TRUE(CompareHalfEpsilon(output, ref, (float)tolerance)); } else if (_wcsicmp(type, L"ULP") == 0) { VERIFY_IS_TRUE(CompareHalfULP(output, ref, (float)tolerance)); } else { LogErrorFmt(L"Failed to read comparison type %S", type); } } TEST_F(ExecutionTest, UnaryFloatOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table int tableSize = sizeof(UnaryFPOpParameters) / sizeof(TableParameter); TableParameterHandler handler(UnaryFPOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); unsigned int WarpVersion = handler.GetTableParamByName(L"Warp.Version")->m_uint; if (GetTestParamUseWARP(true) && !IsValidWarpDllVersion(WarpVersion)) { return; } std::vector *Validation_Input = &(handler.GetTableParamByName(L"Validation.Input1")->m_floatTable); std::vector *Validation_Expected = &(handler.GetTableParamByName(L"Validation.Expected1")->m_floatTable); LPCWSTR Validation_Type = handler.GetTableParamByName(L"Validation.Type")->m_str; double Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; size_t count = Validation_Input->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "UnaryFPOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SUnaryFPOp")); size_t size = sizeof(SUnaryFPOp) * count; Data.resize(size); SUnaryFPOp *pPrimitives = (SUnaryFPOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SUnaryFPOp *p = &pPrimitives[i]; p->input = (*Validation_Input)[i % Validation_Input->size()]; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; }); MappedData data; test->Test->GetReadBackData("SUnaryFPOp", &data); SUnaryFPOp *pPrimitives = (SUnaryFPOp*)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { SUnaryFPOp *p = &pPrimitives[i]; float val = (*Validation_Expected)[i % Validation_Expected->size()]; LogCommentFmt( L"element #%u, input = %6.8f, output = %6.8f, expected = %6.8f", i, p->input, p->output, val); VerifyOutputWithExpectedValueFloat(p->output, val, Validation_Type, Validation_Tolerance); } } TEST_F(ExecutionTest, BinaryFloatOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table int tableSize = sizeof(BinaryFPOpParameters) / sizeof(TableParameter); TableParameterHandler handler(BinaryFPOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); std::vector *Validation_Input1 = &(handler.GetTableParamByName(L"Validation.Input1")->m_floatTable); std::vector *Validation_Input2 = &(handler.GetTableParamByName(L"Validation.Input2")->m_floatTable); std::vector *Validation_Expected1 = &(handler.GetTableParamByName(L"Validation.Expected1")->m_floatTable); std::vector *Validation_Expected2 = &(handler.GetTableParamByName(L"Validation.Expected2")->m_floatTable); LPCWSTR Validation_Type = handler.GetTableParamByName(L"Validation.Type")->m_str; double Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; size_t count = Validation_Input1->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "BinaryFPOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SBinaryFPOp")); size_t size = sizeof(SBinaryFPOp) * count; Data.resize(size); SBinaryFPOp *pPrimitives = (SBinaryFPOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SBinaryFPOp *p = &pPrimitives[i]; p->input1 = (*Validation_Input1)[i % Validation_Input1->size()]; p->input2 = (*Validation_Input2)[i % Validation_Input2->size()]; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; }); MappedData data; test->Test->GetReadBackData("SBinaryFPOp", &data); SBinaryFPOp *pPrimitives = (SBinaryFPOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; unsigned numExpected = Validation_Expected2->size() == 0 ? 1 : 2; if (numExpected == 2) { for (unsigned i = 0; i < count; ++i) { SBinaryFPOp *p = &pPrimitives[i]; float val1 = (*Validation_Expected1)[i % Validation_Expected1->size()]; float val2 = (*Validation_Expected2)[i % Validation_Expected2->size()]; LogCommentFmt(L"element #%u, input1 = %6.8f, input2 = %6.8f, output1 = " L"%6.8f, expected1 = %6.8f, output2 = %6.8f, expected2 = %6.8f", i, p->input1, p->input2, p->output1, val1, p->output2, val2); VerifyOutputWithExpectedValueFloat(p->output1, val1, Validation_Type, Validation_Tolerance); VerifyOutputWithExpectedValueFloat(p->output2, val2, Validation_Type, Validation_Tolerance); } } else if (numExpected == 1) { for (unsigned i = 0; i < count; ++i) { SBinaryFPOp *p = &pPrimitives[i]; float val1 = (*Validation_Expected1)[i % Validation_Expected1->size()]; LogCommentFmt(L"element #%u, input1 = %6.8f, input2 = %6.8f, output1 = " L"%6.8f, expected1 = %6.8f", i, p->input1, p->input2, p->output1, val1); VerifyOutputWithExpectedValueFloat(p->output1, val1, Validation_Type, Validation_Tolerance); } } else { LogErrorFmt(L"Unexpected number of expected values for operation %i", numExpected); } } TEST_F(ExecutionTest, TertiaryFloatOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table int tableSize = sizeof(TertiaryFPOpParameters) / sizeof(TableParameter); TableParameterHandler handler(TertiaryFPOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); std::vector *Validation_Input1 = &(handler.GetTableParamByName(L"Validation.Input1")->m_floatTable); std::vector *Validation_Input2 = &(handler.GetTableParamByName(L"Validation.Input2")->m_floatTable); std::vector *Validation_Input3 = &(handler.GetTableParamByName(L"Validation.Input3")->m_floatTable); std::vector *Validation_Expected = &(handler.GetTableParamByName(L"Validation.Expected1")->m_floatTable); LPCWSTR Validation_Type = handler.GetTableParamByName(L"Validation.Type")->m_str; double Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; size_t count = Validation_Input1->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "TertiaryFPOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "STertiaryFPOp")); size_t size = sizeof(STertiaryFPOp) * count; Data.resize(size); STertiaryFPOp *pPrimitives = (STertiaryFPOp *)Data.data(); for (size_t i = 0; i < count; ++i) { STertiaryFPOp *p = &pPrimitives[i]; p->input1 = (*Validation_Input1)[i % Validation_Input1->size()]; p->input2 = (*Validation_Input2)[i % Validation_Input2->size()]; p->input3 = (*Validation_Input3)[i % Validation_Input3->size()]; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; }); MappedData data; test->Test->GetReadBackData("STertiaryFPOp", &data); STertiaryFPOp *pPrimitives = (STertiaryFPOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { STertiaryFPOp *p = &pPrimitives[i]; float val = (*Validation_Expected)[i % Validation_Expected->size()]; LogCommentFmt(L"element #%u, input1 = %6.8f, input2 = %6.8f, input3 = %6.8f, output1 = " L"%6.8f, expected = %6.8f", i, p->input1, p->input2, p->input3, p->output, val); VerifyOutputWithExpectedValueFloat(p->output, val, Validation_Type, Validation_Tolerance); } } TEST_F(ExecutionTest, UnaryHalfOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL::D3D_SHADER_MODEL_6_2)) { return; } if (!DoesDeviceSupportNative16bitOps(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support native 16-bit operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } // Read data from the table int tableSize = sizeof(UnaryHalfOpParameters) / sizeof(TableParameter); TableParameterHandler handler(UnaryHalfOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); CW2A Arguments(handler.GetTableParamByName(L"ShaderOp.Arguments")->m_str); unsigned int WarpVersion = handler.GetTableParamByName(L"Warp.Version")->m_uint; if (GetTestParamUseWARP(true) && !IsValidWarpDllVersion(WarpVersion)) { return; } std::vector *Validation_Input = &(handler.GetTableParamByName(L"Validation.Input1")->m_halfTable); std::vector *Validation_Expected = &(handler.GetTableParamByName(L"Validation.Expected1")->m_halfTable); LPCWSTR Validation_Type = handler.GetTableParamByName(L"Validation.Type")->m_str; double Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; size_t count = Validation_Input->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "UnaryFPOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SUnaryFPOp")); size_t size = sizeof(SUnaryHalfOp) * count; Data.resize(size); SUnaryHalfOp *pPrimitives = (SUnaryHalfOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SUnaryHalfOp *p = &pPrimitives[i]; p->input = (*Validation_Input)[i % Validation_Input->size()]; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; pShaderOp->Shaders.at(0).Arguments = Arguments.m_psz; }); MappedData data; test->Test->GetReadBackData("SUnaryFPOp", &data); SUnaryHalfOp *pPrimitives = (SUnaryHalfOp*)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { SUnaryHalfOp *p = &pPrimitives[i]; uint16_t expected = (*Validation_Expected)[i % Validation_Input->size()]; LogCommentFmt(L"element #%u, input = %6.8f(0x%04x), output = " L"%6.8f(0x%04x), expected = %6.8f(0x%04x)", i, ConvertFloat16ToFloat32(p->input), p->input, ConvertFloat16ToFloat32(p->output), p->output, ConvertFloat16ToFloat32(expected), expected); VerifyOutputWithExpectedValueHalf(p->output, expected, Validation_Type, Validation_Tolerance); } } TEST_F(ExecutionTest, BinaryHalfOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL::D3D_SHADER_MODEL_6_2)) { return; } if (!DoesDeviceSupportNative16bitOps(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support native 16-bit operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } // Read data from the table int tableSize = sizeof(BinaryHalfOpParameters) / sizeof(TableParameter); TableParameterHandler handler(BinaryHalfOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); CW2A Arguments(handler.GetTableParamByName(L"ShaderOp.Arguments")->m_str); std::vector *Validation_Input1 = &(handler.GetTableParamByName(L"Validation.Input1")->m_halfTable); std::vector *Validation_Input2 = &(handler.GetTableParamByName(L"Validation.Input2")->m_halfTable); std::vector *Validation_Expected1 = &(handler.GetTableParamByName(L"Validation.Expected1")->m_halfTable); std::vector *Validation_Expected2 = &(handler.GetTableParamByName(L"Validation.Expected2")->m_halfTable); LPCWSTR Validation_Type = handler.GetTableParamByName(L"Validation.Type")->m_str; double Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; size_t count = Validation_Input1->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "BinaryFPOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SBinaryFPOp")); size_t size = sizeof(SBinaryHalfOp) * count; Data.resize(size); SBinaryHalfOp *pPrimitives = (SBinaryHalfOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SBinaryHalfOp *p = &pPrimitives[i]; p->input1 = (*Validation_Input1)[i % Validation_Input1->size()]; p->input2 = (*Validation_Input2)[i % Validation_Input2->size()]; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; pShaderOp->Shaders.at(0).Arguments = Arguments.m_psz; }); MappedData data; test->Test->GetReadBackData("SBinaryFPOp", &data); SBinaryHalfOp *pPrimitives = (SBinaryHalfOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; unsigned numExpected = Validation_Expected2->size() == 0 ? 1 : 2; if (numExpected == 2) { for (unsigned i = 0; i < count; ++i) { SBinaryHalfOp *p = &pPrimitives[i]; uint16_t expected1 = (*Validation_Expected1)[i % Validation_Input1->size()]; uint16_t expected2 = (*Validation_Expected2)[i % Validation_Input2->size()]; LogCommentFmt(L"element #%u, input1 = %6.8f(0x%04x), input2 = %6.8f(0x%04x), output1 = " L"%6.8f(0x%04x), expected1 = %6.8f(0x%04x), output2 = %6.8f(0x%04x), expected2 = %6.8f(0x%04x)", i, ConvertFloat16ToFloat32(p->input1), p->input1, ConvertFloat16ToFloat32(p->input2), p->input2, ConvertFloat16ToFloat32(p->output1), p->output1, ConvertFloat16ToFloat32(p->output2), p->output2, ConvertFloat16ToFloat32(expected1), expected1, ConvertFloat16ToFloat32(expected2), expected2); VerifyOutputWithExpectedValueHalf(p->output1, expected1, Validation_Type, Validation_Tolerance); VerifyOutputWithExpectedValueHalf(p->output2, expected2, Validation_Type, Validation_Tolerance); } } else if (numExpected == 1) { for (unsigned i = 0; i < count; ++i) { uint16_t expected = (*Validation_Expected1)[i % Validation_Input1->size()]; SBinaryHalfOp *p = &pPrimitives[i]; LogCommentFmt(L"element #%u, input = %6.8f(0x%04x), output = " L"%6.8f(0x%04x), expected = %6.8f(0x%04x)", i, ConvertFloat16ToFloat32(p->input1), p->input1, ConvertFloat16ToFloat32(p->output1), p->output1, ConvertFloat16ToFloat32(expected), expected); VerifyOutputWithExpectedValueHalf(p->output1, expected, Validation_Type, Validation_Tolerance); } } else { LogErrorFmt(L"Unexpected number of expected values for operation %i", numExpected); } } TEST_F(ExecutionTest, TertiaryHalfOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL::D3D_SHADER_MODEL_6_2)) { return; } if (!DoesDeviceSupportNative16bitOps(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support native 16-bit operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } // Read data from the table int tableSize = sizeof(TertiaryHalfOpParameters) / sizeof(TableParameter); TableParameterHandler handler(TertiaryHalfOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); CW2A Arguments(handler.GetTableParamByName(L"ShaderOp.Arguments")->m_str); std::vector *Validation_Input1 = &(handler.GetTableParamByName(L"Validation.Input1")->m_halfTable); std::vector *Validation_Input2 = &(handler.GetTableParamByName(L"Validation.Input2")->m_halfTable); std::vector *Validation_Input3 = &(handler.GetTableParamByName(L"Validation.Input3")->m_halfTable); std::vector *Validation_Expected = &(handler.GetTableParamByName(L"Validation.Expected1")->m_halfTable); LPCWSTR Validation_Type = handler.GetTableParamByName(L"Validation.Type")->m_str; double Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; size_t count = Validation_Input1->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "TertiaryFPOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "STertiaryFPOp")); size_t size = sizeof(STertiaryHalfOp) * count; Data.resize(size); STertiaryHalfOp *pPrimitives = (STertiaryHalfOp *)Data.data(); for (size_t i = 0; i < count; ++i) { STertiaryHalfOp *p = &pPrimitives[i]; p->input1 = (*Validation_Input1)[i % Validation_Input1->size()]; p->input2 = (*Validation_Input2)[i % Validation_Input2->size()]; p->input3 = (*Validation_Input3)[i % Validation_Input3->size()]; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; pShaderOp->Shaders.at(0).Arguments = Arguments.m_psz; }); MappedData data; test->Test->GetReadBackData("STertiaryFPOp", &data); STertiaryHalfOp *pPrimitives = (STertiaryHalfOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { STertiaryHalfOp *p = &pPrimitives[i]; uint16_t expected = (*Validation_Expected)[i % Validation_Expected->size()]; LogCommentFmt(L"element #%u, input1 = %6.8f(0x%04x), input2 = %6.8f(0x%04x), input3 = %6.8f(0x%04x), output = " L"%6.8f(0x%04x), expected = %6.8f(0x%04x)", i, ConvertFloat16ToFloat32(p->input1), p->input1, ConvertFloat16ToFloat32(p->input2), p->input2, ConvertFloat16ToFloat32(p->input3), p->input3, ConvertFloat16ToFloat32(p->output), p->output, ConvertFloat16ToFloat32(expected), expected); VerifyOutputWithExpectedValueHalf(p->output, expected, Validation_Type, Validation_Tolerance); } } TEST_F(ExecutionTest, UnaryIntOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table int tableSize = sizeof(UnaryIntOpParameters) / sizeof(TableParameter); TableParameterHandler handler(UnaryIntOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); std::vector *Validation_Input = &handler.GetTableParamByName(L"Validation.Input1")->m_int32Table; std::vector *Validation_Expected = &handler.GetTableParamByName(L"Validation.Expected1")->m_int32Table; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int32; size_t count = Validation_Input->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "UnaryIntOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SUnaryIntOp")); size_t size = sizeof(SUnaryIntOp) * count; Data.resize(size); SUnaryIntOp *pPrimitives = (SUnaryIntOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SUnaryIntOp *p = &pPrimitives[i]; int val = (*Validation_Input)[i % Validation_Input->size()]; p->input = val; } // use shader data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; }); MappedData data; test->Test->GetReadBackData("SUnaryIntOp", &data); SUnaryIntOp *pPrimitives = (SUnaryIntOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { SUnaryIntOp *p = &pPrimitives[i]; int val = (*Validation_Expected)[i % Validation_Expected->size()]; LogCommentFmt(L"element #%u, input = %11i(0x%08x), output = %11i(0x%08x), " L"expected = %11i(0x%08x)", i, p->input, p->input, p->output, p->output, val, val); VerifyOutputWithExpectedValueInt(p->output, val, Validation_Tolerance); } } TEST_F(ExecutionTest, UnaryUintOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table int tableSize = sizeof(UnaryUintOpParameters) / sizeof(TableParameter); TableParameterHandler handler(UnaryUintOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); std::vector *Validation_Input = &handler.GetTableParamByName(L"Validation.Input1")->m_uint32Table; std::vector *Validation_Expected = &handler.GetTableParamByName(L"Validation.Expected1")->m_uint32Table; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int32; size_t count = Validation_Input->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "UnaryUintOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SUnaryUintOp")); size_t size = sizeof(SUnaryUintOp) * count; Data.resize(size); SUnaryUintOp *pPrimitives = (SUnaryUintOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SUnaryUintOp *p = &pPrimitives[i]; unsigned int val = (*Validation_Input)[i % Validation_Input->size()]; p->input = val; } // use shader data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; }); MappedData data; test->Test->GetReadBackData("SUnaryUintOp", &data); SUnaryUintOp *pPrimitives = (SUnaryUintOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { SUnaryUintOp *p = &pPrimitives[i]; unsigned int val = (*Validation_Expected)[i % Validation_Expected->size()]; LogCommentFmt(L"element #%u, input = %11u(0x%08x), output = %11u(0x%08x), " L"expected = %11u(0x%08x)", i, p->input, p->input, p->output, p->output, val, val); VerifyOutputWithExpectedValueInt(p->output, val, Validation_Tolerance); } } TEST_F(ExecutionTest, BinaryIntOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table size_t tableSize = sizeof(BinaryIntOpParameters) / sizeof(TableParameter); TableParameterHandler handler(BinaryIntOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); std::vector *Validation_Input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_int32Table; std::vector *Validation_Input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_int32Table; std::vector *Validation_Expected1 = &handler.GetTableParamByName(L"Validation.Expected1")->m_int32Table; std::vector *Validation_Expected2 = &handler.GetTableParamByName(L"Validation.Expected2")->m_int32Table; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int32; size_t count = Validation_Input1->size(); size_t numExpected = Validation_Expected2->size() == 0 ? 1 : 2; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "BinaryIntOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SBinaryIntOp")); size_t size = sizeof(SBinaryIntOp) * count; Data.resize(size); SBinaryIntOp *pPrimitives = (SBinaryIntOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SBinaryIntOp *p = &pPrimitives[i]; int val1 = (*Validation_Input1)[i % Validation_Input1->size()]; int val2 = (*Validation_Input2)[i % Validation_Input2->size()]; p->input1 = val1; p->input2 = val2; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; }); MappedData data; test->Test->GetReadBackData("SBinaryIntOp", &data); SBinaryIntOp *pPrimitives = (SBinaryIntOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; if (numExpected == 2) { for (unsigned i = 0; i < count; ++i) { SBinaryIntOp *p = &pPrimitives[i]; int val1 = (*Validation_Expected1)[i % Validation_Expected1->size()]; int val2 = (*Validation_Expected2)[i % Validation_Expected2->size()]; LogCommentFmt(L"element #%u, input1 = %11i(0x%08x), input2 = " L"%11i(0x%08x), output1 = " L"%11i(0x%08x), expected1 = %11i(0x%08x), output2 = " L"%11i(0x%08x), expected2 = %11i(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->output1, p->output1, val1, val1, p->output2, p->output2, val2, val2); VerifyOutputWithExpectedValueInt(p->output1, val1, Validation_Tolerance); VerifyOutputWithExpectedValueInt(p->output2, val2, Validation_Tolerance); } } else if (numExpected == 1) { for (unsigned i = 0; i < count; ++i) { SBinaryIntOp *p = &pPrimitives[i]; int val1 = (*Validation_Expected1)[i % Validation_Expected1->size()]; LogCommentFmt(L"element #%u, input1 = %11i(0x%08x), input2 = " L"%11i(0x%08x), output = " L"%11i(0x%08x), expected = %11i(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->output1, p->output1, val1, val1); VerifyOutputWithExpectedValueInt(p->output1, val1, Validation_Tolerance); } } else { LogErrorFmt(L"Unexpected number of expected values for operation %i", numExpected); } } TEST_F(ExecutionTest, TertiaryIntOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table size_t tableSize = sizeof(TertiaryIntOpParameters) / sizeof(TableParameter); TableParameterHandler handler(TertiaryIntOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); std::vector *Validation_Input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_int32Table; std::vector *Validation_Input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_int32Table; std::vector *Validation_Input3 = &handler.GetTableParamByName(L"Validation.Input3")->m_int32Table; std::vector *Validation_Expected = &handler.GetTableParamByName(L"Validation.Expected1")->m_int32Table; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int32; size_t count = Validation_Input1->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "TertiaryIntOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "STertiaryIntOp")); size_t size = sizeof(STertiaryIntOp) * count; Data.resize(size); STertiaryIntOp *pPrimitives = (STertiaryIntOp *)Data.data(); for (size_t i = 0; i < count; ++i) { STertiaryIntOp *p = &pPrimitives[i]; int val1 = (*Validation_Input1)[i % Validation_Input1->size()]; int val2 = (*Validation_Input2)[i % Validation_Input2->size()]; int val3 = (*Validation_Input3)[i % Validation_Input3->size()]; p->input1 = val1; p->input2 = val2; p->input3 = val3; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; }); MappedData data; test->Test->GetReadBackData("STertiaryIntOp", &data); STertiaryIntOp *pPrimitives = (STertiaryIntOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { STertiaryIntOp *p = &pPrimitives[i]; int val1 = (*Validation_Expected)[i % Validation_Expected->size()]; LogCommentFmt(L"element #%u, input1 = %11i(0x%08x), input2 = " L"%11i(0x%08x), input3= %11i(0x%08x), output = " L"%11i(0x%08x), expected = %11i(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->input3, p->input3, p->output, p->output, val1, val1); VerifyOutputWithExpectedValueInt(p->output, val1, Validation_Tolerance); } } TEST_F(ExecutionTest, BinaryUintOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table size_t tableSize = sizeof(BinaryUintOpParameters) / sizeof(TableParameter); TableParameterHandler handler(BinaryUintOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); std::vector *Validation_Input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_uint32Table; std::vector *Validation_Input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_uint32Table; std::vector *Validation_Expected1 = &handler.GetTableParamByName(L"Validation.Expected1")->m_uint32Table; std::vector *Validation_Expected2 = &handler.GetTableParamByName(L"Validation.Expected2")->m_uint32Table; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int32; size_t count = Validation_Input1->size(); int numExpected = Validation_Expected2->size() == 0 ? 1 : 2; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "BinaryUintOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SBinaryUintOp")); size_t size = sizeof(SBinaryUintOp) * count; Data.resize(size); SBinaryUintOp *pPrimitives = (SBinaryUintOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SBinaryUintOp *p = &pPrimitives[i]; unsigned int val1 = (*Validation_Input1)[i % Validation_Input1->size()]; unsigned int val2 = (*Validation_Input2)[i % Validation_Input2->size()]; p->input1 = val1; p->input2 = val2; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; }); MappedData data; test->Test->GetReadBackData("SBinaryUintOp", &data); SBinaryUintOp *pPrimitives = (SBinaryUintOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; if (numExpected == 2) { for (unsigned i = 0; i < count; ++i) { SBinaryUintOp *p = &pPrimitives[i]; unsigned int val1 = (*Validation_Expected1)[i % Validation_Expected1->size()]; unsigned int val2 = (*Validation_Expected2)[i % Validation_Expected2->size()]; LogCommentFmt(L"element #%u, input1 = %11u(0x%08x), input2 = " L"%11u(0x%08x), output1 = " L"%11u(0x%08x), expected1 = %11u(0x%08x), output2 = " L"%11u(0x%08x), expected2 = %11u(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->output1, p->output1, val1, val1, p->output2, p->output2, val2, val2); VerifyOutputWithExpectedValueInt(p->output1, val1, Validation_Tolerance); VerifyOutputWithExpectedValueInt(p->output2, val2, Validation_Tolerance); } } else if (numExpected == 1) { for (unsigned i = 0; i < count; ++i) { SBinaryUintOp *p = &pPrimitives[i]; unsigned int val1 = (*Validation_Expected1)[i % Validation_Expected1->size()]; LogCommentFmt(L"element #%u, input1 = %11u(0x%08x), input2 = " L"%11u(0x%08x), output = " L"%11u(0x%08x), expected = %11u(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->output1, p->output1, val1, val1); VerifyOutputWithExpectedValueInt(p->output1, val1, Validation_Tolerance); } } else { LogErrorFmt(L"Unexpected number of expected values for operation %i", numExpected); } } TEST_F(ExecutionTest, TertiaryUintOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } // Read data from the table size_t tableSize = sizeof(TertiaryUintOpParameters) / sizeof(TableParameter); TableParameterHandler handler(TertiaryUintOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); std::vector *Validation_Input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_uint32Table; std::vector *Validation_Input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_uint32Table; std::vector *Validation_Input3 = &handler.GetTableParamByName(L"Validation.Input3")->m_uint32Table; std::vector *Validation_Expected = &handler.GetTableParamByName(L"Validation.Expected1")->m_uint32Table; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int32; size_t count = Validation_Input1->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "TertiaryUintOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "STertiaryUintOp")); size_t size = sizeof(STertiaryUintOp) * count; Data.resize(size); STertiaryUintOp *pPrimitives = (STertiaryUintOp *)Data.data(); for (size_t i = 0; i < count; ++i) { STertiaryUintOp *p = &pPrimitives[i]; unsigned int val1 = (*Validation_Input1)[i % Validation_Input1->size()]; unsigned int val2 = (*Validation_Input2)[i % Validation_Input2->size()]; unsigned int val3 = (*Validation_Input3)[i % Validation_Input3->size()]; p->input1 = val1; p->input2 = val2; p->input3 = val3; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; }); MappedData data; test->Test->GetReadBackData("STertiaryUintOp", &data); STertiaryUintOp *pPrimitives = (STertiaryUintOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { STertiaryUintOp *p = &pPrimitives[i]; unsigned int val1 = (*Validation_Expected)[i % Validation_Expected->size()]; LogCommentFmt(L"element #%u, input1 = %11u(0x%08x), input2 = " L"%11u(0x%08x), input3 = %11u(0x%08x), output = " L"%11u(0x%08x), expected = %11u(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->input3, p->input3, p->output, p->output, val1, val1); VerifyOutputWithExpectedValueInt(p->output, val1, Validation_Tolerance); } } // 16 bit integer type tests TEST_F(ExecutionTest, UnaryInt16OpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL::D3D_SHADER_MODEL_6_2)) { return; } if (!DoesDeviceSupportNative16bitOps(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support native 16-bit operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } // Read data from the table int tableSize = sizeof(UnaryInt16OpParameters) / sizeof(TableParameter); TableParameterHandler handler(UnaryInt16OpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); CW2A Arguments(handler.GetTableParamByName(L"ShaderOp.Arguments")->m_str); std::vector *Validation_Input = &handler.GetTableParamByName(L"Validation.Input1")->m_int16Table; std::vector *Validation_Expected = &handler.GetTableParamByName(L"Validation.Expected1")->m_int16Table; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int32; size_t count = Validation_Input->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "UnaryIntOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SUnaryIntOp")); size_t size = sizeof(SUnaryInt16Op) * count; Data.resize(size); SUnaryInt16Op *pPrimitives = (SUnaryInt16Op *)Data.data(); for (size_t i = 0; i < count; ++i) { SUnaryInt16Op *p = &pPrimitives[i]; p->input = (*Validation_Input)[i % Validation_Input->size()]; } // use shader data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; pShaderOp->Shaders.at(0).Arguments = Arguments.m_psz; }); MappedData data; test->Test->GetReadBackData("SUnaryIntOp", &data); SUnaryInt16Op *pPrimitives = (SUnaryInt16Op *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { SUnaryInt16Op *p = &pPrimitives[i]; short val = (*Validation_Expected)[i % Validation_Expected->size()]; LogCommentFmt(L"element #%u, input = %5hi(0x%08x), output = %5hi(0x%08x), " L"expected = %5hi(0x%08x)", i, p->input, p->input, p->output, p->output, val, val); VerifyOutputWithExpectedValueInt(p->output, val, Validation_Tolerance); } } TEST_F(ExecutionTest, UnaryUint16OpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL::D3D_SHADER_MODEL_6_2)) { return; } if (!DoesDeviceSupportNative16bitOps(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support native 16-bit operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } // Read data from the table int tableSize = sizeof(UnaryUint16OpParameters) / sizeof(TableParameter); TableParameterHandler handler(UnaryUint16OpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); CW2A Arguments(handler.GetTableParamByName(L"ShaderOp.Arguments")->m_str); std::vector *Validation_Input = &handler.GetTableParamByName(L"Validation.Input1")->m_uint16Table; std::vector *Validation_Expected = &handler.GetTableParamByName(L"Validation.Expected1")->m_uint16Table; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int32; size_t count = Validation_Input->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "UnaryUintOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SUnaryUintOp")); size_t size = sizeof(SUnaryUint16Op) * count; Data.resize(size); SUnaryUint16Op *pPrimitives = (SUnaryUint16Op *)Data.data(); for (size_t i = 0; i < count; ++i) { SUnaryUint16Op *p = &pPrimitives[i]; p->input = (*Validation_Input)[i % Validation_Input->size()]; } // use shader data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; pShaderOp->Shaders.at(0).Arguments = Arguments.m_psz; }); MappedData data; test->Test->GetReadBackData("SUnaryUintOp", &data); SUnaryUint16Op *pPrimitives = (SUnaryUint16Op *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { SUnaryUint16Op *p = &pPrimitives[i]; unsigned short val = (*Validation_Expected)[i % Validation_Expected->size()]; LogCommentFmt(L"element #%u, input = %5hu(0x%08x), output = %5hu(0x%08x), " L"expected = %5hu(0x%08x)", i, p->input, p->input, p->output, p->output, val, val); VerifyOutputWithExpectedValueInt(p->output, val, Validation_Tolerance); } } TEST_F(ExecutionTest, BinaryInt16OpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL::D3D_SHADER_MODEL_6_2)) { return; } if (!DoesDeviceSupportNative16bitOps(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support native 16-bit operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } // Read data from the table size_t tableSize = sizeof(BinaryInt16OpParameters) / sizeof(TableParameter); TableParameterHandler handler(BinaryInt16OpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); CW2A Arguments(handler.GetTableParamByName(L"ShaderOp.Arguments")->m_str); std::vector *Validation_Input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_int16Table; std::vector *Validation_Input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_int16Table; std::vector *Validation_Expected1 = &handler.GetTableParamByName(L"Validation.Expected1")->m_int16Table; std::vector *Validation_Expected2 = &handler.GetTableParamByName(L"Validation.Expected2")->m_int16Table; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int32; size_t count = Validation_Input1->size(); size_t numExpected = Validation_Expected2->size() == 0 ? 1 : 2; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "BinaryIntOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SBinaryIntOp")); size_t size = sizeof(SBinaryInt16Op) * count; Data.resize(size); SBinaryInt16Op *pPrimitives = (SBinaryInt16Op *)Data.data(); for (size_t i = 0; i < count; ++i) { SBinaryInt16Op *p = &pPrimitives[i]; p->input1 = (*Validation_Input1)[i % Validation_Input1->size()]; p->input2 = (*Validation_Input2)[i % Validation_Input2->size()]; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; pShaderOp->Shaders.at(0).Arguments = Arguments.m_psz; }); MappedData data; test->Test->GetReadBackData("SBinaryIntOp", &data); SBinaryInt16Op *pPrimitives = (SBinaryInt16Op *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; if (numExpected == 2) { for (unsigned i = 0; i < count; ++i) { SBinaryInt16Op *p = &pPrimitives[i]; short val1 = (*Validation_Expected1)[i % Validation_Expected1->size()]; short val2 = (*Validation_Expected2)[i % Validation_Expected2->size()]; LogCommentFmt(L"element #%u, input1 = %5hi(0x%08x), input2 = " L"%5hi(0x%08x), output1 = " L"%5hi(0x%08x), expected1 = %5hi(0x%08x), output2 = " L"%5hi(0x%08x), expected2 = %5hi(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->output1, p->output1, val1, val1, p->output2, p->output2, val2, val2); VerifyOutputWithExpectedValueInt(p->output1, val1, Validation_Tolerance); VerifyOutputWithExpectedValueInt(p->output2, val2, Validation_Tolerance); } } else if (numExpected == 1) { for (unsigned i = 0; i < count; ++i) { SBinaryInt16Op *p = &pPrimitives[i]; short val1 = (*Validation_Expected1)[i % Validation_Expected1->size()]; LogCommentFmt(L"element #%u, input1 = %5hi(0x%08x), input2 = " L"%5hi(0x%08x), output = " L"%5hi(0x%08x), expected = %5hi(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->output1, p->output1, val1, val1); VerifyOutputWithExpectedValueInt(p->output1, val1, Validation_Tolerance); } } else { LogErrorFmt(L"Unexpected number of expected values for operation %i", numExpected); } } TEST_F(ExecutionTest, TertiaryInt16OpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL::D3D_SHADER_MODEL_6_2)) { return; } if (!DoesDeviceSupportNative16bitOps(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support native 16-bit operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } // Read data from the table size_t tableSize = sizeof(TertiaryInt16OpParameters) / sizeof(TableParameter); TableParameterHandler handler(TertiaryInt16OpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); CW2A Arguments(handler.GetTableParamByName(L"ShaderOp.Arguments")->m_str); std::vector *Validation_Input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_int16Table; std::vector *Validation_Input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_int16Table; std::vector *Validation_Input3 = &handler.GetTableParamByName(L"Validation.Input3")->m_int16Table; std::vector *Validation_Expected = &handler.GetTableParamByName(L"Validation.Expected1")->m_int16Table; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int32; size_t count = Validation_Input1->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "TertiaryIntOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "STertiaryIntOp")); size_t size = sizeof(STertiaryInt16Op) * count; Data.resize(size); STertiaryInt16Op *pPrimitives = (STertiaryInt16Op *)Data.data(); for (size_t i = 0; i < count; ++i) { STertiaryInt16Op *p = &pPrimitives[i]; p->input1 = (*Validation_Input1)[i % Validation_Input1->size()]; p->input2 = (*Validation_Input2)[i % Validation_Input2->size()]; p->input3 = (*Validation_Input3)[i % Validation_Input3->size()]; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; pShaderOp->Shaders.at(0).Arguments = Arguments.m_psz; }); MappedData data; test->Test->GetReadBackData("STertiaryIntOp", &data); STertiaryInt16Op *pPrimitives = (STertiaryInt16Op *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { STertiaryInt16Op *p = &pPrimitives[i]; short val1 = (*Validation_Expected)[i % Validation_Expected->size()]; LogCommentFmt(L"element #%u, input1 = %11i(0x%08x), input2 = " L"%11i(0x%08x), input3= %11i(0x%08x), output = " L"%11i(0x%08x), expected = %11i(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->input3, p->input3, p->output, p->output, val1, val1); VerifyOutputWithExpectedValueInt(p->output, val1, Validation_Tolerance); } } TEST_F(ExecutionTest, BinaryUint16OpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL::D3D_SHADER_MODEL_6_2)) { return; } if (!DoesDeviceSupportNative16bitOps(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support native 16-bit operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } // Read data from the table size_t tableSize = sizeof(BinaryUint16OpParameters) / sizeof(TableParameter); TableParameterHandler handler(BinaryUint16OpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); CW2A Arguments(handler.GetTableParamByName(L"ShaderOp.Arguments")->m_str); std::vector *Validation_Input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_uint16Table; std::vector *Validation_Input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_uint16Table; std::vector *Validation_Expected1 = &handler.GetTableParamByName(L"Validation.Expected1")->m_uint16Table; std::vector *Validation_Expected2 = &handler.GetTableParamByName(L"Validation.Expected2")->m_uint16Table; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int32; size_t count = Validation_Input1->size(); int numExpected = Validation_Expected2->size() == 0 ? 1 : 2; std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "BinaryUintOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SBinaryUintOp")); size_t size = sizeof(SBinaryUint16Op) * count; Data.resize(size); SBinaryUint16Op *pPrimitives = (SBinaryUint16Op *)Data.data(); for (size_t i = 0; i < count; ++i) { SBinaryUint16Op *p = &pPrimitives[i]; p->input1 = (*Validation_Input1)[i % Validation_Input1->size()]; p->input2 = (*Validation_Input2)[i % Validation_Input2->size()]; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; pShaderOp->Shaders.at(0).Arguments = Arguments.m_psz; }); MappedData data; test->Test->GetReadBackData("SBinaryUintOp", &data); SBinaryUint16Op *pPrimitives = (SBinaryUint16Op *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; if (numExpected == 2) { for (unsigned i = 0; i < count; ++i) { SBinaryUint16Op *p = &pPrimitives[i]; unsigned short val1 = (*Validation_Expected1)[i % Validation_Expected1->size()]; unsigned short val2 = (*Validation_Expected2)[i % Validation_Expected2->size()]; LogCommentFmt(L"element #%u, input1 = %5hu(0x%08x), input2 = " L"%5hu(0x%08x), output1 = " L"%5hu(0x%08x), expected1 = %5hu(0x%08x), output2 = " L"%5hu(0x%08x), expected2 = %5hu(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->output1, p->output1, val1, val1, p->output2, p->output2, val2, val2); VerifyOutputWithExpectedValueInt(p->output1, val1, Validation_Tolerance); VerifyOutputWithExpectedValueInt(p->output2, val2, Validation_Tolerance); } } else if (numExpected == 1) { for (unsigned i = 0; i < count; ++i) { SBinaryUint16Op *p = &pPrimitives[i]; unsigned short val1 = (*Validation_Expected1)[i % Validation_Expected1->size()]; LogCommentFmt(L"element #%u, input1 = %5hu(0x%08x), input2 = " L"%5hu(0x%08x), output = " L"%5hu(0x%08x), expected = %5hu(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->output1, p->output1, val1, val1); VerifyOutputWithExpectedValueInt(p->output1, val1, Validation_Tolerance); } } else { LogErrorFmt(L"Unexpected number of expected values for operation %i", numExpected); } } TEST_F(ExecutionTest, TertiaryUint16OpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL::D3D_SHADER_MODEL_6_2)) { return; } if (!DoesDeviceSupportNative16bitOps(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support native 16-bit operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } // Read data from the table size_t tableSize = sizeof(TertiaryUint16OpParameters) / sizeof(TableParameter); TableParameterHandler handler(TertiaryUint16OpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); CW2A Arguments(handler.GetTableParamByName(L"ShaderOp.Arguments")->m_str); std::vector *Validation_Input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_uint16Table; std::vector *Validation_Input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_uint16Table; std::vector *Validation_Input3 = &handler.GetTableParamByName(L"Validation.Input3")->m_uint16Table; std::vector *Validation_Expected = &handler.GetTableParamByName(L"Validation.Expected1")->m_uint16Table; int Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_int32; size_t count = Validation_Input1->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "TertiaryUintOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "STertiaryUintOp")); size_t size = sizeof(STertiaryUint16Op) * count; Data.resize(size); STertiaryUint16Op *pPrimitives = (STertiaryUint16Op *)Data.data(); for (size_t i = 0; i < count; ++i) { STertiaryUint16Op *p = &pPrimitives[i]; p->input1 = (*Validation_Input1)[i % Validation_Input1->size()]; p->input2 = (*Validation_Input2)[i % Validation_Input2->size()]; p->input3 = (*Validation_Input3)[i % Validation_Input3->size()]; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; pShaderOp->Shaders.at(0).Arguments = Arguments.m_psz; }); MappedData data; test->Test->GetReadBackData("STertiaryUintOp", &data); STertiaryUint16Op *pPrimitives = (STertiaryUint16Op *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { STertiaryUint16Op *p = &pPrimitives[i]; unsigned short val1 = (*Validation_Expected)[i % Validation_Expected->size()]; LogCommentFmt(L"element #%u, input1 = %5hu(0x%08x), input2 = " L"%5hu(0x%08x), input3 = %5hu(0x%08x), output = " L"%5hu(0x%08x), expected = %5hu(0x%08x)", i, p->input1, p->input1, p->input2, p->input2, p->input3, p->input3, p->output, p->output, val1, val1); VerifyOutputWithExpectedValueInt(p->output, val1, Validation_Tolerance); } } TEST_F(ExecutionTest, DotTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } int tableSize = sizeof(DotOpParameters) / sizeof(TableParameter); TableParameterHandler handler(DotOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); std::vector *Validation_Input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_StringTable; std::vector *Validation_Input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_StringTable; std::vector *Validation_dot2 = &handler.GetTableParamByName(L"Validation.Expected1")->m_StringTable; std::vector *Validation_dot3 = &handler.GetTableParamByName(L"Validation.Expected2")->m_StringTable; std::vector *Validation_dot4 = &handler.GetTableParamByName(L"Validation.Expected3")->m_StringTable; PCWSTR Validation_type = handler.GetTableParamByName(L"Validation.Type")->m_str; double tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; size_t count = Validation_Input1->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "DotOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SDotOp")); size_t size = sizeof(SDotOp) * count; Data.resize(size); SDotOp *pPrimitives = (SDotOp*)Data.data(); for (size_t i = 0; i < count; ++i) { SDotOp *p = &pPrimitives[i]; XMFLOAT4 val1,val2; VERIFY_SUCCEEDED(ParseDataToVectorFloat((*Validation_Input1)[i], (float *)&val1, 4)); VERIFY_SUCCEEDED(ParseDataToVectorFloat((*Validation_Input2)[i], (float *)&val2, 4)); p->input1 = val1; p->input2 = val2; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; }); MappedData data; test->Test->GetReadBackData("SDotOp", &data); SDotOp *pPrimitives = (SDotOp*)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (size_t i = 0; i < count; ++i) { SDotOp *p = &pPrimitives[i]; float dot2, dot3, dot4; VERIFY_SUCCEEDED(ParseDataToFloat((*Validation_dot2)[i], dot2)); VERIFY_SUCCEEDED(ParseDataToFloat((*Validation_dot3)[i], dot3)); VERIFY_SUCCEEDED(ParseDataToFloat((*Validation_dot4)[i], dot4)); LogCommentFmt( L"element #%u, input1 = (%f, %f, %f, %f), input2 = (%f, %f, " L"%f, %f), \n dot2 = %f, dot2_expected = %f, dot3 = %f, " L"dot3_expected = %f, dot4 = %f, dot4_expected = %f", i, p->input1.x, p->input1.y, p->input1.z, p->input1.w, p->input2.x, p->input2.y, p->input2.z, p->input2.w, p->o_dot2, dot2, p->o_dot3, dot3, p->o_dot4, dot4); VerifyOutputWithExpectedValueFloat(p->o_dot2, dot2, Validation_type, tolerance); VerifyOutputWithExpectedValueFloat(p->o_dot3, dot3, Validation_type, tolerance); VerifyOutputWithExpectedValueFloat(p->o_dot4, dot4, Validation_type, tolerance); } } TEST_F(ExecutionTest, Dot2AddHalfTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL::D3D_SHADER_MODEL_6_4, false)) { return; } if (!DoesDeviceSupportNative16bitOps(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support native 16-bit operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } int tableSize = sizeof(Dot2AddHalfOpParameters) / sizeof(TableParameter); TableParameterHandler handler(Dot2AddHalfOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); CW2A Arguments(handler.GetTableParamByName(L"ShaderOp.Arguments")->m_str); std::vector *validation_input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_StringTable; std::vector *validation_input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_StringTable; std::vector *validation_acc = &handler.GetTableParamByName(L"Validation.Input3")->m_floatTable; std::vector *validation_result = &handler.GetTableParamByName(L"Validation.Expected1")->m_floatTable; PCWSTR Validation_type = handler.GetTableParamByName(L"Validation.Type")->m_str; double tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; size_t count = validation_input1->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "Dot2AddHalfOp", // this callback is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SDot2AddHalfOp")); size_t size = sizeof(SDot2AddHalfOp) * count; Data.resize(size); SDot2AddHalfOp *pPrimitives = (SDot2AddHalfOp*)Data.data(); for (size_t i = 0; i < count; ++i) { SDot2AddHalfOp *p = &pPrimitives[i]; Half2 val1,val2; VERIFY_SUCCEEDED(ParseDataToVectorHalf((*validation_input1)[i], (uint16_t *)&val1, 2)); VERIFY_SUCCEEDED(ParseDataToVectorHalf((*validation_input2)[i], (uint16_t *)&val2, 2)); p->input1 = val1; p->input2 = val2; p->acc = (*validation_acc)[i]; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; pShaderOp->Shaders.at(0).Arguments = Arguments.m_psz; }); MappedData data; test->Test->GetReadBackData("SDot2AddHalfOp", &data); SDot2AddHalfOp *pPrimitives = (SDot2AddHalfOp*)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (size_t i = 0; i < count; ++i) { SDot2AddHalfOp *p = &pPrimitives[i]; float expectedResult = (*validation_result)[i]; float input1x = ConvertFloat16ToFloat32(p->input1.x); float input1y = ConvertFloat16ToFloat32(p->input1.y); float input2x = ConvertFloat16ToFloat32(p->input2.x); float input2y = ConvertFloat16ToFloat32(p->input2.y); LogCommentFmt( L"element #%u, input1 = (%f, %f), input2 = (%f, %f), acc = %f\n" L"result = %f, result_expected = %f", i, input1x, input1y, input2x, input2y, p->acc, p->result, expectedResult); VerifyOutputWithExpectedValueFloat(p->result, expectedResult, Validation_type, tolerance); } } TEST_F(ExecutionTest, Dot4AddI8PackedTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL::D3D_SHADER_MODEL_6_4, false)) { return; } int tableSize = sizeof(Dot4AddI8PackedOpParameters) / sizeof(TableParameter); TableParameterHandler handler(Dot4AddI8PackedOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); std::vector *validation_input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_uint32Table; std::vector *validation_input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_uint32Table; std::vector *validation_acc = &handler.GetTableParamByName(L"Validation.Input3")->m_int32Table; std::vector *validation_result = &handler.GetTableParamByName(L"Validation.Expected1")->m_int32Table; size_t count = validation_input1->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "Dot4AddI8PackedOp", // this callback is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SDot4AddI8PackedOp")); size_t size = sizeof(SDot4AddI8PackedOp) * count; Data.resize(size); SDot4AddI8PackedOp *pPrimitives = (SDot4AddI8PackedOp*)Data.data(); for (size_t i = 0; i < count; ++i) { SDot4AddI8PackedOp *p = &pPrimitives[i]; p->input1 = (*validation_input1)[i]; p->input2 = (*validation_input2)[i]; p->acc = (*validation_acc)[i]; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; }); MappedData data; test->Test->GetReadBackData("SDot4AddI8PackedOp", &data); SDot4AddI8PackedOp *pPrimitives = (SDot4AddI8PackedOp*)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (size_t i = 0; i < count; ++i) { SDot4AddI8PackedOp *p = &pPrimitives[i]; int32_t expectedResult = (*validation_result)[i]; LogCommentFmt( L"element #%u, input1 = %u, input2 = %u, acc = %d \n" L"result = %d, result_expected = %d", i, p->input1, p->input2, p->acc, p->result, expectedResult); VerifyOutputWithExpectedValueInt(p->result, expectedResult, 0); } } TEST_F(ExecutionTest, Dot4AddU8PackedTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL::D3D_SHADER_MODEL_6_4, false)) { return; } int tableSize = sizeof(Dot4AddU8PackedOpParameters) / sizeof(TableParameter); TableParameterHandler handler(Dot4AddU8PackedOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); std::vector *validation_input1 = &handler.GetTableParamByName(L"Validation.Input1")->m_uint32Table; std::vector *validation_input2 = &handler.GetTableParamByName(L"Validation.Input2")->m_uint32Table; std::vector *validation_acc = &handler.GetTableParamByName(L"Validation.Input3")->m_uint32Table; std::vector *validation_result = &handler.GetTableParamByName(L"Validation.Expected1")->m_uint32Table; size_t count = validation_input1->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "Dot4AddU8PackedOp", // this callback is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SDot4AddU8PackedOp")); size_t size = sizeof(SDot4AddU8PackedOp) * count; Data.resize(size); SDot4AddU8PackedOp *pPrimitives = (SDot4AddU8PackedOp*)Data.data(); for (size_t i = 0; i < count; ++i) { SDot4AddU8PackedOp *p = &pPrimitives[i]; p->input1 = (*validation_input1)[i]; p->input2 = (*validation_input2)[i]; p->acc = (*validation_acc)[i]; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; }); MappedData data; test->Test->GetReadBackData("SDot4AddU8PackedOp", &data); SDot4AddU8PackedOp *pPrimitives = (SDot4AddU8PackedOp*)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (size_t i = 0; i < count; ++i) { SDot4AddU8PackedOp *p = &pPrimitives[i]; uint32_t expectedResult = (*validation_result)[i]; LogCommentFmt( L"element #%u, input1 = %u, input2 = %u, acc = %u \n" L"result = %u, result_expected = %u, ", i, p->input1, p->input2, p->acc, p->result, expectedResult); VerifyOutputWithExpectedValueUInt(p->result, expectedResult, 0); } } TEST_F(ExecutionTest, Msad4Test) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } size_t tableSize = sizeof(Msad4OpParameters) / sizeof(TableParameter); TableParameterHandler handler(Msad4OpParameters, tableSize); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); double tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; std::vector *Validation_Reference = &handler.GetTableParamByName(L"Validation.Input1")->m_uint32Table; std::vector *Validation_Source = &handler.GetTableParamByName(L"Validation.Input2")->m_StringTable; std::vector *Validation_Accum = &handler.GetTableParamByName(L"Validation.Input3")->m_StringTable; std::vector *Validation_Expected = &handler.GetTableParamByName(L"Validation.Expected1")->m_StringTable; size_t count = Validation_Expected->size(); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "Msad4", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SMsad4")); size_t size = sizeof(SMsad4) * count; Data.resize(size); SMsad4 *pPrimitives = (SMsad4*)Data.data(); for (size_t i = 0; i < count; ++i) { SMsad4 *p = &pPrimitives[i]; XMUINT2 src; XMUINT4 accum; VERIFY_SUCCEEDED(ParseDataToVectorUint((*Validation_Source)[i], (unsigned int*)&src, 2)); VERIFY_SUCCEEDED(ParseDataToVectorUint((*Validation_Accum)[i], (unsigned int*)&accum, 4)); p->ref = (*Validation_Reference)[i]; p->src = src; p->accum = accum; } // use shader from data table pShaderOp->Shaders.at(0).Text = Text.m_psz; }); MappedData data; test->Test->GetReadBackData("SMsad4", &data); SMsad4 *pPrimitives = (SMsad4*)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (size_t i = 0; i < count; ++i) { SMsad4 *p = &pPrimitives[i]; XMUINT4 result; VERIFY_SUCCEEDED(ParseDataToVectorUint((*Validation_Expected)[i], (unsigned int *)&result, 4)); LogCommentFmt( L"element #%u, ref = %u(0x%08x), src = %u(0x%08x), %u(0x%08x), " L"accum = %u(0x%08x), %u(0x%08x), %u(0x%08x), %u(0x%08x),\n" L"result = %u(0x%08x), %u(0x%08x), %u(0x%08x), %u(0x%08x),\n" L"expected = %u(0x%08x), %u(0x%08x), %u(0x%08x), %u(0x%08x)", i, p->ref, p->ref, p->src.x, p->src.x, p->src.y, p->src.y, p->accum.x, p->accum.x, p->accum.y, p->accum.y, p->accum.z, p->accum.z, p->accum.w, p->accum.w, p->result.x, p->result.x, p->result.y, p->result.y, p->result.z, p->result.z, p->result.w, p->result.w, result.x, result.x, result.y, result.y, result.z, result.z, result.w, result.w); int toleranceInt = (int)tolerance; VerifyOutputWithExpectedValueInt(p->result.x, result.x, toleranceInt); VerifyOutputWithExpectedValueInt(p->result.y, result.y, toleranceInt); VerifyOutputWithExpectedValueInt(p->result.z, result.z, toleranceInt); VerifyOutputWithExpectedValueInt(p->result.w, result.w, toleranceInt); } } TEST_F(ExecutionTest, DenormBinaryFloatOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL::D3D_SHADER_MODEL_6_2)) { return; } // Read data from the table int tableSize = sizeof(DenormBinaryFPOpParameters) / sizeof(TableParameter); TableParameterHandler handler(DenormBinaryFPOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); CW2A Arguments(handler.GetTableParamByName(L"ShaderOp.Arguments")->m_str); std::vector *Validation_Input1 = &(handler.GetTableParamByName(L"Validation.Input1")->m_StringTable); std::vector *Validation_Input2 = &(handler.GetTableParamByName(L"Validation.Input2")->m_StringTable); std::vector *Validation_Expected1 = &(handler.GetTableParamByName(L"Validation.Expected1")->m_StringTable); // two expected outputs for any mode std::vector *Validation_Expected2 = &(handler.GetTableParamByName(L"Validation.Expected2")->m_StringTable); LPCWSTR Validation_Type = handler.GetTableParamByName(L"Validation.Type")->m_str; double Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; size_t count = Validation_Input1->size(); using namespace hlsl::DXIL; Float32DenormMode mode = Float32DenormMode::Any; if (strcmp(Arguments.m_psz, "-denorm preserve") == 0) { mode = Float32DenormMode::Preserve; } else if (strcmp(Arguments.m_psz, "-denorm ftz") == 0) { mode = Float32DenormMode::FTZ; } if (mode == Float32DenormMode::Any) { DXASSERT(Validation_Expected2->size() == Validation_Expected1->size(), "must have same number of expected values"); } std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "BinaryFPOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SBinaryFPOp")); size_t size = sizeof(SBinaryFPOp) * count; Data.resize(size); SBinaryFPOp *pPrimitives = (SBinaryFPOp *)Data.data(); for (size_t i = 0; i < count; ++i) { SBinaryFPOp *p = &pPrimitives[i]; PCWSTR str1 = (*Validation_Input1)[i % Validation_Input1->size()]; PCWSTR str2 = (*Validation_Input2)[i % Validation_Input2->size()]; float val1, val2; VERIFY_SUCCEEDED(ParseDataToFloat(str1, val1)); VERIFY_SUCCEEDED(ParseDataToFloat(str2, val2)); p->input1 = val1; p->input2 = val2; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; pShaderOp->Shaders.at(0).Arguments = Arguments.m_psz; }); MappedData data; test->Test->GetReadBackData("SBinaryFPOp", &data); SBinaryFPOp *pPrimitives = (SBinaryFPOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { SBinaryFPOp *p = &pPrimitives[i]; if (mode == Float32DenormMode::Any) { LPCWSTR str1 = (*Validation_Expected1)[i % Validation_Expected1->size()]; LPCWSTR str2 = (*Validation_Expected2)[i % Validation_Expected2->size()]; float val1; float val2; VERIFY_SUCCEEDED(ParseDataToFloat(str1, val1)); VERIFY_SUCCEEDED(ParseDataToFloat(str2, val2)); LogCommentFmt(L"element #%u, input1 = %6.8f, input2 = %6.8f, output = " L"%6.8f, expected = %6.8f(%x) or %6.8f(%x)", i, p->input1, p->input2, p->output1, val1, *(int *)&val1, val2, *(int *)&val2); VERIFY_IS_TRUE( CompareOutputWithExpectedValueFloat( p->output1, val1, Validation_Type, Validation_Tolerance, mode) || CompareOutputWithExpectedValueFloat( p->output1, val2, Validation_Type, Validation_Tolerance, mode)); } else { LPCWSTR str1 = (*Validation_Expected1)[i % Validation_Expected1->size()]; float val1; VERIFY_SUCCEEDED(ParseDataToFloat(str1, val1)); LogCommentFmt(L"element #%u, input1 = %6.8f, input2 = %6.8f, output = " L"%6.8f, expected = %6.8f(%a)", i, p->input1, p->input2, p->output1, val1, *(int *)&val1); VerifyOutputWithExpectedValueFloat(p->output1, val1, Validation_Type, Validation_Tolerance, mode); } } } TEST_F(ExecutionTest, DenormTertiaryFloatOpTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL::D3D_SHADER_MODEL_6_2)) { return; } // Read data from the table int tableSize = sizeof(DenormTertiaryFPOpParameters) / sizeof(TableParameter); TableParameterHandler handler(DenormTertiaryFPOpParameters, tableSize); CW2A Target(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); CW2A Arguments(handler.GetTableParamByName(L"ShaderOp.Arguments")->m_str); std::vector *Validation_Input1 = &(handler.GetTableParamByName(L"Validation.Input1")->m_StringTable); std::vector *Validation_Input2 = &(handler.GetTableParamByName(L"Validation.Input2")->m_StringTable); std::vector *Validation_Input3 = &(handler.GetTableParamByName(L"Validation.Input3")->m_StringTable); std::vector *Validation_Expected1 = &(handler.GetTableParamByName(L"Validation.Expected1")->m_StringTable); // two expected outputs for any mode std::vector *Validation_Expected2 = &(handler.GetTableParamByName(L"Validation.Expected2")->m_StringTable); LPCWSTR Validation_Type = handler.GetTableParamByName(L"Validation.Type")->m_str; double Validation_Tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_double; size_t count = Validation_Input1->size(); using namespace hlsl::DXIL; Float32DenormMode mode = Float32DenormMode::Any; if (strcmp(Arguments.m_psz, "-denorm preserve") == 0) { mode = Float32DenormMode::Preserve; } else if (strcmp(Arguments.m_psz, "-denorm ftz") == 0) { mode = Float32DenormMode::FTZ; } if (mode == Float32DenormMode::Any) { DXASSERT(Validation_Expected2->size() == Validation_Expected1->size(), "must have same number of expected values"); } std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "TertiaryFPOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "STertiaryFPOp")); size_t size = sizeof(STertiaryFPOp) * count; Data.resize(size); STertiaryFPOp *pPrimitives = (STertiaryFPOp *)Data.data(); for (size_t i = 0; i < count; ++i) { STertiaryFPOp *p = &pPrimitives[i]; PCWSTR str1 = (*Validation_Input1)[i % Validation_Input1->size()]; PCWSTR str2 = (*Validation_Input2)[i % Validation_Input2->size()]; PCWSTR str3 = (*Validation_Input3)[i % Validation_Input3->size()]; float val1, val2, val3; VERIFY_SUCCEEDED(ParseDataToFloat(str1, val1)); VERIFY_SUCCEEDED(ParseDataToFloat(str2, val2)); VERIFY_SUCCEEDED(ParseDataToFloat(str3, val3)); p->input1 = val1; p->input2 = val2; p->input3 = val3; } // use shader from data table pShaderOp->Shaders.at(0).Target = Target.m_psz; pShaderOp->Shaders.at(0).Text = Text.m_psz; pShaderOp->Shaders.at(0).Arguments = Arguments.m_psz; }); MappedData data; test->Test->GetReadBackData("STertiaryFPOp", &data); STertiaryFPOp *pPrimitives = (STertiaryFPOp *)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; for (unsigned i = 0; i < count; ++i) { STertiaryFPOp *p = &pPrimitives[i]; if (mode == Float32DenormMode::Any) { LPCWSTR str1 = (*Validation_Expected1)[i % Validation_Expected1->size()]; LPCWSTR str2 = (*Validation_Expected2)[i % Validation_Expected2->size()]; float val1; float val2; VERIFY_SUCCEEDED(ParseDataToFloat(str1, val1)); VERIFY_SUCCEEDED(ParseDataToFloat(str2, val2)); LogCommentFmt(L"element #%u, input1 = %6.8f, input2 = %6.8f, input3 = %6.8f, output = " L"%6.8f, expected = %6.8f(%x) or %6.8f(%x)", i, p->input1, p->input2, p->input3, p->output, val1, *(int *)&val1, val2, *(int *)&val2); VERIFY_IS_TRUE( CompareOutputWithExpectedValueFloat( p->output, val1, Validation_Type, Validation_Tolerance, mode) || CompareOutputWithExpectedValueFloat( p->output, val2, Validation_Type, Validation_Tolerance, mode)); } else { LPCWSTR str1 = (*Validation_Expected1)[i % Validation_Expected1->size()]; float val1; VERIFY_SUCCEEDED(ParseDataToFloat(str1, val1)); LogCommentFmt(L"element #%u, input1 = %6.8f, input2 = %6.8f, input3 = %6.8f, output = " L"%6.8f, expected = %6.8f(%a)", i, p->input1, p->input2, p->input3, p->output, val1, *(int *)&val1); VerifyOutputWithExpectedValueFloat(p->output, val1, Validation_Type, Validation_Tolerance, mode); } } } // Setup for wave intrinsics tests enum class ShaderOpKind { WaveSum, WaveProduct, WaveActiveMax, WaveActiveMin, WaveCountBits, WaveActiveAllEqual, WaveActiveAnyTrue, WaveActiveAllTrue, WaveActiveBitOr, WaveActiveBitAnd, WaveActiveBitXor, ShaderOpInvalid }; struct ShaderOpKindPair { LPCWSTR name; ShaderOpKind kind; }; static ShaderOpKindPair ShaderOpKindTable[] = { { L"WaveActiveSum", ShaderOpKind::WaveSum }, { L"WaveActiveUSum", ShaderOpKind::WaveSum }, { L"WaveActiveProduct", ShaderOpKind::WaveProduct }, { L"WaveActiveUProduct", ShaderOpKind::WaveProduct }, { L"WaveActiveMax", ShaderOpKind::WaveActiveMax }, { L"WaveActiveUMax", ShaderOpKind::WaveActiveMax }, { L"WaveActiveMin", ShaderOpKind::WaveActiveMin }, { L"WaveActiveUMin", ShaderOpKind::WaveActiveMin }, { L"WaveActiveCountBits", ShaderOpKind::WaveCountBits }, { L"WaveActiveAllEqual", ShaderOpKind::WaveActiveAllEqual }, { L"WaveActiveAnyTrue", ShaderOpKind::WaveActiveAnyTrue }, { L"WaveActiveAllTrue", ShaderOpKind::WaveActiveAllTrue }, { L"WaveActiveBitOr", ShaderOpKind::WaveActiveBitOr }, { L"WaveActiveBitAnd", ShaderOpKind::WaveActiveBitAnd }, { L"WaveActiveBitXor", ShaderOpKind::WaveActiveBitXor }, { L"WavePrefixSum", ShaderOpKind::WaveSum }, { L"WavePrefixUSum", ShaderOpKind::WaveSum }, { L"WavePrefixProduct", ShaderOpKind::WaveProduct }, { L"WavePrefixUProduct", ShaderOpKind::WaveProduct }, { L"WavePrefixMax", ShaderOpKind::WaveActiveMax }, { L"WavePrefixUMax", ShaderOpKind::WaveActiveMax }, { L"WavePrefixMin", ShaderOpKind::WaveActiveMin }, { L"WavePrefixUMin", ShaderOpKind::WaveActiveMin }, { L"WavePrefixCountBits", ShaderOpKind::WaveCountBits } }; ShaderOpKind GetShaderOpKind(LPCWSTR str) { for (size_t i = 0; i < sizeof(ShaderOpKindTable)/sizeof(ShaderOpKindPair); ++i) { if (_wcsicmp(ShaderOpKindTable[i].name, str) == 0) { return ShaderOpKindTable[i].kind; } } DXASSERT_ARGS(false, "Invalid ShaderOp name: %s", str); return ShaderOpKind::ShaderOpInvalid; } template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { return 0; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType sum = 0; for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue) { sum += inputs.at(i); } } return sum; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType prod = 1; for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue) { prod *= inputs.at(i); } } return prod; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType maximum = std::numeric_limits::min(); for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue && inputs.at(i) > maximum) maximum = inputs.at(i); } return maximum; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType minimum = std::numeric_limits::max(); for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue && inputs.at(i) < minimum) minimum = inputs.at(i); } return minimum; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType count = 0; for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue && inputs.at(i) > 3) { count++; } } return count; } }; // In HLSL, boolean is represented in a 4 byte (uint32) format, // So we cannot use c++ bool type to represent bool in HLSL // HLSL returns 0 for false and 1 for true template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue && inputs.at(i) != 0) { return 1; } } return 0; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue && inputs.at(i) == 0) { return 0; } } return 1; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { const InType *val = nullptr; for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue) { if (val && *val != inputs.at(i)) { return 0; } val = &inputs.at(i); } } return 1; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType bits = 0x00000000; for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue) { bits |= inputs.at(i); } } return bits; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType bits = 0xffffffff; for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue) { bits &= inputs.at(i); } } return bits; } }; template struct computeExpected { OutType operator()(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index) { OutType bits = 0x00000000; for (size_t i = 0; i < index; ++i) { if (masks.at(i) == maskValue) { bits ^= inputs.at(i); } } return bits; } }; // Mask functions used to control active lanes static int MaskAll(int i) { UNREFERENCED_PARAMETER(i); return 1; } static int MaskEveryOther(int i) { return i % 2 == 0 ? 1 : 0; } static int MaskEveryThird(int i) { return i % 3 == 0 ? 1 : 0; } typedef int(*MaskFunction)(int); static MaskFunction MaskFunctionTable[] = { MaskAll, MaskEveryOther, MaskEveryThird }; template static OutType computeExpectedWithShaderOp(const std::vector &inputs, const std::vector &masks, int maskValue, unsigned int index, LPCWSTR str) { ShaderOpKind kind = GetShaderOpKind(str); switch (kind) { case ShaderOpKind::WaveSum: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveProduct: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveMax: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveMin: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveCountBits: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveBitOr: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveBitAnd: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveBitXor: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveAnyTrue: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveAllTrue: return computeExpected()(inputs, masks, maskValue, index); case ShaderOpKind::WaveActiveAllEqual: return computeExpected()(inputs, masks, maskValue, index); default: DXASSERT_ARGS(false, "Invalid ShaderOp Name: %s", str); return (OutType) 0; } }; // A framework for testing individual wave intrinsics tests. // This test case is assuming that functions 1) WaveIsFirstLane and 2) WaveGetLaneIndex are correct for all lanes. template void ExecutionTest::WaveIntrinsicsActivePrefixTest( TableParameter *pParameterList, size_t numParameter, bool isPrefix) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); // Resource representation for compute shader // firstLaneId is used to group different waves // laneIndex is used to identify lane within the wave. // Lane ids are not necessarily in same order as thread ids. struct PerThreadData { unsigned firstLaneId; unsigned laneIndex; int mask; T1 input; T2 output; }; unsigned int NumThreadsX = 8; unsigned int NumThreadsY = 12; unsigned int NumThreadsZ = 1; static const unsigned int ThreadsPerGroup = NumThreadsX * NumThreadsY * NumThreadsZ; static const unsigned int DispatchGroupCount = 1; static const unsigned int ThreadCount = ThreadsPerGroup * DispatchGroupCount; CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) { return; } if (!DoesDeviceSupportWaveOps(pDevice)) { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support wave operations."); return; } TableParameterHandler handler(pParameterList, numParameter); unsigned int numInputSet = handler.GetTableParamByName(L"Validation.NumInputSet")->m_uint; // Obtain the list of input lists std::vector*> InputDataList; for (unsigned int i = 0; i < numInputSet; ++i) { std::wstring inputName = L"Validation.InputSet"; inputName.append(std::to_wstring(i + 1)); InputDataList.push_back(handler.GetDataArray(inputName.data())); } CW2A Text(handler.GetTableParamByName(L"ShaderOp.text")->m_str); std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); // Running compute shader for each input set with different masks for (size_t setIndex = 0; setIndex < numInputSet; ++setIndex) { for (size_t maskIndex = 0; maskIndex < sizeof(MaskFunctionTable) / sizeof(MaskFunction); ++maskIndex) { std::shared_ptr test = RunShaderOpTestAfterParse( pDevice, m_support, "WaveIntrinsicsOp", // this callbacked is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "SWaveIntrinsicsOp")); size_t size = sizeof(PerThreadData) * ThreadCount; Data.resize(size); PerThreadData *pPrimitives = (PerThreadData*)Data.data(); // 4 different inputs for each operation test size_t index = 0; std::vector *IntList = InputDataList[setIndex]; while (index < ThreadCount) { PerThreadData *p = &pPrimitives[index]; p->firstLaneId = 0xFFFFBFFF; p->laneIndex = 0xFFFFBFFF; p->mask = MaskFunctionTable[maskIndex]((int)index); p->input = (*IntList)[index % IntList->size()]; p->output = 0xFFFFBFFF; index++; } // use shader from data table pShaderOp->Shaders.at(0).Text = Text.m_psz; }, ShaderOpSet); // Check the value MappedData data; test->Test->GetReadBackData("SWaveIntrinsicsOp", &data); PerThreadData *pPrimitives = (PerThreadData*)data.data(); WEX::TestExecution::DisableVerifyExceptions dve; // Grouping data by waves std::vector firstLaneIds; for (size_t i = 0; i < ThreadCount; ++i) { PerThreadData *p = &pPrimitives[i]; int firstLaneId = p->firstLaneId; if (!contains(firstLaneIds, firstLaneId)) { firstLaneIds.push_back(firstLaneId); } } std::map>> waves; for (size_t i = 0; i < firstLaneIds.size(); ++i) { waves[firstLaneIds.at(i)] = std::make_unique>(); } for (size_t i = 0; i < ThreadCount; ++i) { PerThreadData *p = &pPrimitives[i]; waves[p->firstLaneId].get()->push_back(p); } // validate for each wave for (size_t i = 0; i < firstLaneIds.size(); ++i) { // collect inputs and masks for a given wave std::vector *waveData = waves[firstLaneIds.at(i)].get(); std::vector inputList(waveData->size()); std::vector maskList(waveData->size(), -1); std::vector outputList(waveData->size()); // sort inputList and masklist by lane id. input for each lane can be computed for its group index for (size_t j = 0, end = waveData->size(); j < end; ++j) { unsigned laneID = waveData->at(j)->laneIndex; // ensure that each lane ID is unique and within the range VERIFY_IS_TRUE(0 <= laneID && laneID < waveData->size()); VERIFY_IS_TRUE(maskList.at(laneID) == -1); maskList.at(laneID) = waveData->at(j)->mask; inputList.at(laneID) = waveData->at(j)->input; outputList.at(laneID) = waveData->at(j)->output; } std::wstring inputStr = L"Wave Inputs: "; std::wstring maskStr = L"Wave Masks: "; std::wstring outputStr = L"Wave Outputs: "; // append input string and mask string in lane id order for (size_t j = 0, end = waveData->size(); j < end; ++j) { maskStr.append(std::to_wstring(maskList.at(j))); maskStr.append(L" "); inputStr.append(std::to_wstring(inputList.at(j))); inputStr.append(L" "); outputStr.append(std::to_wstring(outputList.at(j))); outputStr.append(L" "); } LogCommentFmt(inputStr.data()); LogCommentFmt(maskStr.data()); LogCommentFmt(outputStr.data()); LogCommentFmt(L"\n"); // Compute expected output for a given inputs, masks, and index for (size_t laneIndex = 0, laneEnd = inputList.size(); laneIndex < laneEnd; ++laneIndex) { T2 expected; // WaveActive is equivalent to WavePrefix lane # lane count unsigned index = isPrefix ? (unsigned)laneIndex : (unsigned)inputList.size(); if (maskList.at(laneIndex) == 1) { expected = computeExpectedWithShaderOp( inputList, maskList, 1, index, handler.GetTableParamByName(L"ShaderOp.Name")->m_str); } else { expected = computeExpectedWithShaderOp( inputList, maskList, 0, index, handler.GetTableParamByName(L"ShaderOp.Name")->m_str); } // TODO: use different comparison for floating point inputs bool equal = outputList.at(laneIndex) == expected; if (!equal) { LogCommentFmt(L"lane%d: %4d, Expected : %4d", laneIndex, outputList.at(laneIndex), expected); } VERIFY_IS_TRUE(equal); } } } } } static const unsigned int MinWarpVersionForWaveIntrinsics = 16202; TEST_F(ExecutionTest, WaveIntrinsicsActiveIntTest) { if (GetTestParamUseWARP(true) && !IsValidWarpDllVersion(MinWarpVersionForWaveIntrinsics)) { return; } WaveIntrinsicsActivePrefixTest( WaveIntrinsicsActiveIntParameters, sizeof(WaveIntrinsicsActiveIntParameters) / sizeof(TableParameter), /*isPrefix*/ false); } TEST_F(ExecutionTest, WaveIntrinsicsActiveUintTest) { if (GetTestParamUseWARP(true) && !IsValidWarpDllVersion(MinWarpVersionForWaveIntrinsics)) { return; } WaveIntrinsicsActivePrefixTest( WaveIntrinsicsActiveUintParameters, sizeof(WaveIntrinsicsActiveUintParameters) / sizeof(TableParameter), /*isPrefix*/ false); } TEST_F(ExecutionTest, WaveIntrinsicsPrefixIntTest) { if (GetTestParamUseWARP(true) && !IsValidWarpDllVersion(MinWarpVersionForWaveIntrinsics)) { return; } WaveIntrinsicsActivePrefixTest( WaveIntrinsicsPrefixIntParameters, sizeof(WaveIntrinsicsPrefixIntParameters) / sizeof(TableParameter), /*isPrefix*/ true); } TEST_F(ExecutionTest, WaveIntrinsicsPrefixUintTest) { if (GetTestParamUseWARP(true) && !IsValidWarpDllVersion(MinWarpVersionForWaveIntrinsics)) { return; } WaveIntrinsicsActivePrefixTest( WaveIntrinsicsPrefixUintParameters, sizeof(WaveIntrinsicsPrefixUintParameters) / sizeof(TableParameter), /*isPrefix*/ true); } template static T GetWaveMultiPrefixInitialAccumValue(LPCWSTR testName) { if (_wcsicmp(testName, L"WaveMultiPrefixProduct") == 0 || _wcsicmp(testName, L"WaveMultiPrefixUProduct") == 0) { return static_cast(1); } else if (_wcsicmp(testName, L"WaveMultiPrefixSum") == 0 || _wcsicmp(testName, L"WaveMultiPrefixUSum") == 0 || _wcsicmp(testName, L"WaveMultiPrefixBitOr") == 0 || _wcsicmp(testName, L"WaveMultiPrefixUBitOr") == 0 || _wcsicmp(testName, L"WaveMultiPrefixBitXor") == 0 || _wcsicmp(testName, L"WaveMultiPrefixUBitXor") == 0 || _wcsicmp(testName, L"WaveMultiPrefixCountBits") == 0 || _wcsicmp(testName, L"WaveMultiPrefixUCountBits") == 0) { return static_cast(0); } else if (_wcsicmp(testName, L"WaveMultiPrefixBitAnd") == 0 || _wcsicmp(testName, L"WaveMultiPrefixUBitAnd") == 0) { return static_cast(-1); } else { return static_cast(0); } } template std::function GetWaveMultiPrefixReferenceFunction(LPCWSTR testName) { if (_wcsicmp(testName, L"WaveMultiPrefixProduct") == 0 || _wcsicmp(testName, L"WaveMultiPrefixUProduct") == 0) { return [] (T lhs, T rhs) -> T { return lhs * rhs; }; } else if (_wcsicmp(testName, L"WaveMultiPrefixSum") == 0 || _wcsicmp(testName, L"WaveMultiPrefixUSum") == 0) { return [] (T lhs, T rhs) -> T { return lhs + rhs; }; } else if (_wcsicmp(testName, L"WaveMultiPrefixBitAnd") == 0 || _wcsicmp(testName, L"WaveMultiPrefixUBitAnd") == 0) { return [] (T lhs, T rhs) -> T { return lhs & rhs; }; } else if (_wcsicmp(testName, L"WaveMultiPrefixBitOr") == 0 || _wcsicmp(testName, L"WaveMultiPrefixUBitOr") == 0) { return [] (T lhs, T rhs) -> T { return lhs | rhs; }; } else if (_wcsicmp(testName, L"WaveMultiPrefixBitXor") == 0 || _wcsicmp(testName, L"WaveMultiPrefixUBitXor") == 0) { return [] (T lhs, T rhs) -> T { return lhs ^ rhs; }; } else if (_wcsicmp(testName, L"WaveMultiPrefixCountBits") == 0 || _wcsicmp(testName, L"WaveMultiPrefixUCountBits") == 0) { // For CountBits, each lane contributes a boolean value. The test input is // a zero or non-zero integer. If the input is a non-zero value then the // condition is true, thus we contribute one to the bit count. return [] (T lhs, T rhs) -> T { return lhs + (rhs ? 1 : 0); }; } else { return [] (T lhs, T rhs) -> T { UNREFERENCED_PARAMETER(lhs); UNREFERENCED_PARAMETER(rhs); return 0; }; } } template void ExecutionTest::WaveIntrinsicsMultiPrefixOpTest(TableParameter *pParameterList, size_t numParameters) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); struct PerThreadData { uint32_t key; uint32_t firstLaneId; uint32_t laneId; uint32_t mask; T value; T result; }; constexpr size_t NumThreadsX = 8; constexpr size_t NumThreadsY = 12; constexpr size_t NumThreadsZ = 1; constexpr size_t ThreadsPerGroup = NumThreadsX * NumThreadsY * NumThreadsZ; constexpr size_t DispatchGroupSize = 1; constexpr size_t ThreadCount = ThreadsPerGroup * DispatchGroupSize; CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL_6_5)) { return; } if (!DoesDeviceSupportWaveOps(pDevice)) { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support wave operations."); return; } std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); TableParameterHandler handler(pParameterList, numParameters); CW2A shaderSource(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); CW2A shaderProfile(handler.GetTableParamByName(L"ShaderOp.Target")->m_str); auto testName = handler.GetTableParamByName(L"ShaderOp.Name")->m_str; std::vector *keys = handler.GetDataArray(L"Validation.Keys"); std::vector *values = handler.GetDataArray(L"Validation.Values"); for (size_t maskIndex = 0; maskIndex < _countof(MaskFunctionTable); ++maskIndex) { std::shared_ptr test = RunShaderOpTestAfterParse(pDevice, m_support, "WaveIntrinsicsOp", [&] (LPCSTR name, std::vector &data, st::ShaderOp *pShaderOp) { UNREFERENCED_PARAMETER(name); const size_t dataSize = sizeof(PerThreadData) * ThreadCount; data.resize(dataSize); PerThreadData *pThreadData = reinterpret_cast(data.data()); for (size_t i = 0; i != ThreadCount; ++i) { pThreadData[i].key = keys->at(i % keys->size()); pThreadData[i].value = values->at(i % values->size()); pThreadData[i].firstLaneId = 0xdeadbeef; pThreadData[i].laneId = 0xdeadbeef; pThreadData[i].mask = MaskFunctionTable[maskIndex]((int)i); pThreadData[i].result = 0xdeadbeef; } pShaderOp->Shaders.at(0).Text = shaderSource; pShaderOp->Shaders.at(0).Target = shaderProfile; }, ShaderOpSet); MappedData mappedData; test->Test->GetReadBackData("SWaveIntrinsicsOp", &mappedData); PerThreadData *resultData = reinterpret_cast(mappedData.data()); // Partition our data into waves std::map> waves; for (size_t i = 0, e = ThreadCount; i != e; ++i) { PerThreadData *elt = &resultData[i]; // Basic sanity checks VERIFY_IS_TRUE(elt->firstLaneId != 0xdeadbeef); VERIFY_IS_TRUE(elt->laneId != 0xdeadbeef); waves[elt->firstLaneId].push_back(elt); } // Verify each wave auto refFn = GetWaveMultiPrefixReferenceFunction(testName); for (auto &w : waves) { std::vector &waveData = w.second; struct { bool operator()(PerThreadData *a, PerThreadData *b) const { return (a->laneId < b->laneId); } } compare; // Need to sort based on the lane id std::sort(waveData.begin(), waveData.end(), compare); LogCommentFmt(L"LaneId Mask Key Value Result Expected"); LogCommentFmt(L"-------- -------- -------- -------- -------- --------"); for (size_t i = 0, e = waveData.size(); i != e; ++i) { PerThreadData *data = waveData[i]; // Compute prefix operation over each previous lane element that has the // same key value, and is part of the same active thread group T accum = GetWaveMultiPrefixInitialAccumValue(testName); for (unsigned j = 0; j < i; ++j) { if (waveData[j]->key == data->key && waveData[j]->mask == data->mask) { accum = refFn(accum, waveData[j]->value); } } LogCommentFmt(L"%08X %08X %08X %08X %08X %08X", data->laneId, data->mask, data->key, data->value, data->result, accum); VERIFY_IS_TRUE(accum == data->result); } LogCommentFmt(L"\n"); } } } TEST_F(ExecutionTest, WaveIntrinsicsSM65IntTest) { WaveIntrinsicsMultiPrefixOpTest(WaveIntrinsicsMultiPrefixIntParameters, _countof(WaveIntrinsicsMultiPrefixIntParameters)); } TEST_F(ExecutionTest, WaveIntrinsicsSM65UintTest) { WaveIntrinsicsMultiPrefixOpTest(WaveIntrinsicsMultiPrefixUintParameters, _countof(WaveIntrinsicsMultiPrefixUintParameters)); } TEST_F(ExecutionTest, CBufferTestHalf) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); // Single operation test at the moment. CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL_6_2)) return; if (!DoesDeviceSupportNative16bitOps(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support native 16-bit operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } uint16_t InputData[] = { 0x3F80, 0x3F00, 0x3D80, 0x7BFF }; std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, "CBufferTestHalf", [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { UNREFERENCED_PARAMETER(pShaderOp); VERIFY_IS_TRUE(0 == _stricmp(Name, "CB0")); // use shader from data table. Data.resize(sizeof(InputData)); uint16_t *pData = (uint16_t *)Data.data(); for (size_t i = 0; i < 4; ++i, ++pData) { *pData = InputData[i]; } }); { MappedData data; test->Test->GetReadBackData("RTarget", &data); const uint16_t *pPixels = (uint16_t *)data.data(); for (int i = 0; i < 4; ++i) { uint16_t output = *(pPixels + i); float outputFloat = ConvertFloat16ToFloat32(output); float inputFloat = ConvertFloat16ToFloat32(InputData[i]); LogCommentFmt(L"element #%u: input = %6.8f(0x%04x), output = %6.8f(0x%04x)", i, inputFloat, InputData[i], outputFloat, output); VERIFY_ARE_EQUAL(inputFloat, outputFloat); } } } TEST_F(ExecutionTest, BarycentricsTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL_6_1)) return; if (!DoesDeviceSupportBarycentrics(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support barycentrics."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, "Barycentrics", nullptr); MappedData data; D3D12_RESOURCE_DESC &D = test->ShaderOp->GetResourceByName("RTarget")->Desc; UINT width = (UINT)D.Width; UINT height = D.Height; UINT pixelSize = GetByteSizeForFormat(D.Format); test->Test->GetReadBackData("RTarget", &data); //const uint8_t *pPixels = (uint8_t *)data.data(); const float *pPixels = (float *)data.data(); // Get the vertex of barycentric coordinate using VBuffer MappedData triangleData; test->Test->GetReadBackData("VBuffer", &triangleData); const float *pTriangleData = (float*)triangleData.data(); // get the size of the input data unsigned triangleVertexSizeInFloat = 0; for (auto element : test->ShaderOp->InputElements) triangleVertexSizeInFloat += GetByteSizeForFormat(element.Format) / 4; XMFLOAT2 p0(pTriangleData[0], pTriangleData[1]); XMFLOAT2 p1(pTriangleData[triangleVertexSizeInFloat], pTriangleData[triangleVertexSizeInFloat + 1]); XMFLOAT2 p2(pTriangleData[triangleVertexSizeInFloat * 2], pTriangleData[triangleVertexSizeInFloat * 2 + 1]); XMFLOAT3 barycentricWeights[4] = { XMFLOAT3(0.3333f, 0.3333f, 0.3333f), XMFLOAT3(0.5f, 0.25f, 0.25f), XMFLOAT3(0.25f, 0.5f, 0.25f), XMFLOAT3(0.25f, 0.25f, 0.50f) }; float tolerance = 0.001f; for (unsigned i = 0; i < sizeof(barycentricWeights) / sizeof(XMFLOAT3); ++i) { float w0 = barycentricWeights[i].x; float w1 = barycentricWeights[i].y; float w2 = barycentricWeights[i].z; float x1 = w0 * p0.x + w1 * p1.x + w2 * p2.x; float y1 = w0 * p0.y + w1 * p1.y + w2 * p2.y; // map from x1 y1 to rtv pixels int pixelX = (int)((x1 + 1) * (width - 1) / 2); int pixelY = (int)((1 - y1) * (height - 1) / 2); int offset = pixelSize * (pixelX + pixelY * width) / sizeof(pPixels[0]); LogCommentFmt(L"location %u %u, value %f, %f, %f", pixelX, pixelY, pPixels[offset], pPixels[offset + 1], pPixels[offset + 2]); VERIFY_IS_TRUE(CompareFloatEpsilon(pPixels[offset], w0, tolerance)); VERIFY_IS_TRUE(CompareFloatEpsilon(pPixels[offset + 1], w1, tolerance)); VERIFY_IS_TRUE(CompareFloatEpsilon(pPixels[offset + 2], w2, tolerance)); } //SavePixelsToFile(pPixels, DXGI_FORMAT_R32G32B32A32_FLOAT, width, height, L"barycentric.bmp"); } static const char RawBufferTestShaderDeclarations[] = "// Note: COMPONENT_TYPE and COMPONENT_SIZE will be defined via compiler option -D\r\n" "typedef COMPONENT_TYPE scalar; \r\n" "typedef vector vector2; \r\n" "typedef vector vector3; \r\n" "typedef vector vector4; \r\n" "\r\n" "struct TestData { \r\n" " scalar v1; \r\n" " vector2 v2; \r\n" " vector3 v3; \r\n" " vector4 v4; \r\n" "}; \r\n" "\r\n" "struct UavData {\r\n" " TestData input; \r\n" " TestData output; \r\n" " TestData srvOut; \r\n" "}; \r\n" "\r\n" "ByteAddressBuffer srv0 : register(t0); \r\n" "StructuredBuffer srv1 : register(t1); \r\n" "ByteAddressBuffer srv2 : register(t2); \r\n" "StructuredBuffer srv3 : register(t3); \r\n" "\r\n" "RWByteAddressBuffer uav0 : register(u0); \r\n" "RWStructuredBuffer uav1 : register(u1); \r\n" "RWByteAddressBuffer uav2 : register(u2); \r\n" "RWStructuredBuffer uav3 : register(u3); \r\n"; static const char RawBufferTestShaderBody[] = " // offset of 'out' in 'UavData'\r\n" " const int out_offset = COMPONENT_SIZE * 10; \r\n" "\r\n" " // offset of 'srv_out' in 'UavData'\r\n" " const int srv_out_offset = COMPONENT_SIZE * 10 * 2; \r\n" "\r\n" " // offsets within the 'Data' struct\r\n" " const int v1_offset = 0; \r\n" " const int v2_offset = COMPONENT_SIZE; \r\n" " const int v3_offset = COMPONENT_SIZE * 3; \r\n" " const int v4_offset = COMPONENT_SIZE * 6; \r\n" "\r\n" " uav0.Store(srv_out_offset + v1_offset, srv0.Load(v1_offset)); \r\n" " uav0.Store(srv_out_offset + v2_offset, srv0.Load(v2_offset)); \r\n" " uav0.Store(srv_out_offset + v3_offset, srv0.Load(v3_offset)); \r\n" " uav0.Store(srv_out_offset + v4_offset, srv0.Load(v4_offset)); \r\n" "\r\n" " uav1[0].srvOut.v1 = srv1[0].v1; \r\n" " uav1[0].srvOut.v2 = srv1[0].v2; \r\n" " uav1[0].srvOut.v3 = srv1[0].v3; \r\n" " uav1[0].srvOut.v4 = srv1[0].v4; \r\n" "\r\n" " uav2.Store(srv_out_offset + v1_offset, srv2.Load(v1_offset)); \r\n" " uav2.Store(srv_out_offset + v2_offset, srv2.Load(v2_offset)); \r\n" " uav2.Store(srv_out_offset + v3_offset, srv2.Load(v3_offset)); \r\n" " uav2.Store(srv_out_offset + v4_offset, srv2.Load(v4_offset)); \r\n" "\r\n" " uav3[0].srvOut.v1 = srv3[0].v1; \r\n" " uav3[0].srvOut.v2 = srv3[0].v2; \r\n" " uav3[0].srvOut.v3 = srv3[0].v3; \r\n" " uav3[0].srvOut.v4 = srv3[0].v4; \r\n" "\r\n" " uav0.Store(out_offset + v1_offset, uav0.Load(v1_offset)); \r\n" " uav0.Store(out_offset + v2_offset, uav0.Load(v2_offset)); \r\n" " uav0.Store(out_offset + v3_offset, uav0.Load(v3_offset)); \r\n" " uav0.Store(out_offset + v4_offset, uav0.Load(v4_offset)); \r\n" "\r\n" " uav1[0].output.v1 = uav1[0].input.v1; \r\n" " uav1[0].output.v2 = uav1[0].input.v2; \r\n" " uav1[0].output.v3 = uav1[0].input.v3; \r\n" " uav1[0].output.v4 = uav1[0].input.v4; \r\n" "\r\n" " uav2.Store(out_offset + v1_offset, uav2.Load(v1_offset)); \r\n" " uav2.Store(out_offset + v2_offset, uav2.Load(v2_offset)); \r\n" " uav2.Store(out_offset + v3_offset, uav2.Load(v3_offset)); \r\n" " uav2.Store(out_offset + v4_offset, uav2.Load(v4_offset)); \r\n" "\r\n" " uav3[0].output.v1 = uav3[0].input.v1; \r\n" " uav3[0].output.v2 = uav3[0].input.v2; \r\n" " uav3[0].output.v3 = uav3[0].input.v3; \r\n" " uav3[0].output.v4 = uav3[0].input.v4; \r\n"; static const char RawBufferTestComputeShaderTemplate[] = "%s\r\n" // <- RawBufferTestShaderDeclarations "[numthreads(1, 1, 1)]\r\n" "void main(uint GI : SV_GroupIndex) {\r\n" "%s\r\n" // <- RawBufferTestShaderBody "};"; static const char RawBufferTestGraphicsPixelShaderTemplate[] = "%s\r\n" // <- RawBufferTestShaderDeclarations "struct PSInput { \r\n" " float4 pos : SV_POSITION; \r\n" "}; \r\n" "uint4 main(PSInput input) : SV_TARGET{ \r\n" " if (input.pos.x + input.pos.y == 1.0f) { // pixel { 0.5, 0.5, 0 } \r\n" "%s\r\n" // <- RawBufferTestShaderBody " } \r\n" " return uint4(1, 2, 3, 4); \r\n" "};"; TEST_F(ExecutionTest, ComputeRawBufferLdStI32) { RawBufferLdStTestData data = { { 1 }, { 2, -1 }, { 256, -10517, 980 }, { 465, 13, -89, MAXUINT32 / 2 } }; RunComputeRawBufferLdStTest(D3D_SHADER_MODEL_6_2, RawBufferLdStType::I32, "ComputeRawBufferLdSt32Bit", data); } TEST_F(ExecutionTest, ComputeRawBufferLdStFloat) { RawBufferLdStTestData data = { { 3e-10f }, { 1.5f, -1.99988f }, { 256.0f, -105.17f, 980.0f }, { 465.1652f, -1.5694e2f, -0.8543e-2f, 1333.5f } }; RunComputeRawBufferLdStTest(D3D_SHADER_MODEL_6_2, RawBufferLdStType::Float, "ComputeRawBufferLdSt32Bit", data); } TEST_F(ExecutionTest, ComputeRawBufferLdStI64) { RawBufferLdStTestData data = { { 1 }, { 2, -1 }, { 256, -105171532, 980 }, { 465, 13, -89, MAXUINT64 / 2 } }; RunComputeRawBufferLdStTest(D3D_SHADER_MODEL_6_3, RawBufferLdStType::I64, "ComputeRawBufferLdSt64Bit", data); } TEST_F(ExecutionTest, ComputeRawBufferLdStDouble) { RawBufferLdStTestData data = { { 3e-10 }, { 1.5, -1.99988 }, { 256.0, -105.17, 980.0 }, { 465.1652, -1.5694e2, -0.8543e-2, 1333.5 } }; RunComputeRawBufferLdStTest(D3D_SHADER_MODEL_6_3, RawBufferLdStType::I64, "ComputeRawBufferLdSt64Bit", data); } TEST_F(ExecutionTest, ComputeRawBufferLdStI16) { RawBufferLdStTestData data = { { 1 }, { 2, -1 }, { 256, -10517, 980 }, { 465, 13, -89, MAXUINT16 / 2 } }; RunComputeRawBufferLdStTest(D3D_SHADER_MODEL_6_2, RawBufferLdStType::I16, "ComputeRawBufferLdSt16Bit", data); } TEST_F(ExecutionTest, ComputeRawBufferLdStHalf) { RawBufferLdStTestData floatData = { { 3e-10f }, { 1.5f, -1.99988f }, { 256.0f, 105.17f, 980.0f }, { 465.1652f, -1.5694e2f, -0.8543e-2f, 1333.5f } }; RawBufferLdStTestData halfData; for (int i = 0; i < sizeof(floatData)/sizeof(float); i++) { ((uint16_t*)&halfData)[i] = ConvertFloat32ToFloat16(((float*)&floatData)[i]); } RunComputeRawBufferLdStTest(D3D_SHADER_MODEL_6_2, RawBufferLdStType::Half, "ComputeRawBufferLdSt16Bit", halfData); } TEST_F(ExecutionTest, GraphicsRawBufferLdStI32) { RawBufferLdStTestData data = { { 1 }, { 2, -1 }, { 256, -10517, 980 }, { 465, 13, -89, MAXUINT32 / 2 } }; RunGraphicsRawBufferLdStTest(D3D_SHADER_MODEL_6_2, RawBufferLdStType::I32, "GraphicsRawBufferLdSt32Bit", data); } TEST_F(ExecutionTest, GraphicsRawBufferLdStFloat) { RawBufferLdStTestData data = { { 3e-10f }, { 1.5f, -1.99988f }, { 256.0f, -105.17f, 980.0f }, { 465.1652f, -1.5694e2f, -0.8543e-2f, 1333.5f } }; RunGraphicsRawBufferLdStTest(D3D_SHADER_MODEL_6_2, RawBufferLdStType::Float, "GraphicsRawBufferLdSt32Bit", data); } TEST_F(ExecutionTest, GraphicsRawBufferLdStI64) { RawBufferLdStTestData data = { { 1 }, { 2, -1 }, { 256, -105171532, 980 }, { 465, 13, -89, MAXUINT64 / 2 } }; RunGraphicsRawBufferLdStTest(D3D_SHADER_MODEL_6_3, RawBufferLdStType::I64, "GraphicsRawBufferLdSt64Bit", data); } TEST_F(ExecutionTest, GraphicsRawBufferLdStDouble) { RawBufferLdStTestData data = { { 3e-10 }, { 1.5, -1.99988 }, { 256.0, -105.17, 980.0 }, { 465.1652, -1.5694e2, -0.8543e-2, 1333.5 } }; RunGraphicsRawBufferLdStTest(D3D_SHADER_MODEL_6_3, RawBufferLdStType::Double, "GraphicsRawBufferLdSt64Bit", data); } TEST_F(ExecutionTest, GraphicsRawBufferLdStI16) { RawBufferLdStTestData data = { { 1 }, { 2, -1 }, { 256, -10517, 980 }, { 465, 13, -89, MAXUINT16 / 2 } }; RunGraphicsRawBufferLdStTest(D3D_SHADER_MODEL_6_2, RawBufferLdStType::I16, "GraphicsRawBufferLdSt16Bit", data); } TEST_F(ExecutionTest, GraphicsRawBufferLdStHalf) { RawBufferLdStTestData floatData = { { 3e-10f }, { 1.5f, -1.99988f }, { 256.0f, 105.17f, 0.0f }, { 465.1652f, -1.5694e2f, -0.8543e-2f, 1333.5f } }; RawBufferLdStTestData halfData; for (int i = 0; i < sizeof(floatData) / sizeof(float); i++) { ((uint16_t*)&halfData)[i] = ConvertFloat32ToFloat16(((float*)&floatData)[i]); } RunGraphicsRawBufferLdStTest(D3D_SHADER_MODEL_6_2, RawBufferLdStType::Half, "GraphicsRawBufferLdSt16Bit", halfData); } bool ExecutionTest::SetupRawBufferLdStTest(D3D_SHADER_MODEL shaderModel, RawBufferLdStType dataType, CComPtr &pDevice, CComPtr &pStream, char *&sTy, char *&additionalOptions) { if (!CreateDevice(&pDevice, shaderModel)) { return false; } additionalOptions = ""; switch (dataType) { case RawBufferLdStType::I64: if (!DoesDeviceSupportInt64(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support int64 operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return false; } sTy = "int64_t"; break; case RawBufferLdStType::Double: if (!DoesDeviceSupportDouble(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support double operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return false; } sTy = "double"; break; case RawBufferLdStType::I16: case RawBufferLdStType::Half: if (!DoesDeviceSupportNative16bitOps(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support native 16-bit operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return false; } additionalOptions = "-enable-16bit-types"; sTy = (dataType == RawBufferLdStType::I16 ? "int16_t" : "half"); break; case RawBufferLdStType::I32: sTy = "int32_t"; break; case RawBufferLdStType::Float: sTy = "float"; break; default: DXASSERT_NOMSG("Invalid RawBufferLdStType"); } // read shader config ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); return true; } template void ExecutionTest::VerifyRawBufferLdStTestResults(const std::shared_ptr test, const RawBufferLdStTestData &testData) { // read buffers back & verify expected values static const int UavBufferCount = 4; char bufferName[11] = "UAVBufferX"; for (unsigned i = 0; i < UavBufferCount; i++) { MappedData dataUav; RawBufferLdStUavData *pOutData; bufferName[sizeof(bufferName) - 2] = (char)(i + '0'); test->GetReadBackData(bufferName, &dataUav); VERIFY_ARE_EQUAL(sizeof(RawBufferLdStUavData), dataUav.size()); pOutData = (RawBufferLdStUavData *)dataUav.data(); LogCommentFmt(L"Verifying UAVBuffer%d Load -> UAVBuffer%d Store", i, i); // scalar VERIFY_ARE_EQUAL(pOutData->output.v1, testData.v1); // vector 2 VERIFY_ARE_EQUAL(pOutData->output.v2[0], testData.v2[0]); VERIFY_ARE_EQUAL(pOutData->output.v2[1], testData.v2[1]); // vector 3 VERIFY_ARE_EQUAL(pOutData->output.v3[0], testData.v3[0]); VERIFY_ARE_EQUAL(pOutData->output.v3[1], testData.v3[1]); VERIFY_ARE_EQUAL(pOutData->output.v3[2], testData.v3[2]); // vector 4 VERIFY_ARE_EQUAL(pOutData->output.v4[0], testData.v4[0]); VERIFY_ARE_EQUAL(pOutData->output.v4[1], testData.v4[1]); VERIFY_ARE_EQUAL(pOutData->output.v4[2], testData.v4[2]); VERIFY_ARE_EQUAL(pOutData->output.v4[3], testData.v4[3]); // verify SRV Store LogCommentFmt(L"Verifying SRVBuffer%d Load -> UAVBuffer%d Store", i, i); // scalar VERIFY_ARE_EQUAL(pOutData->srvOut.v1, testData.v1); // vector 2 VERIFY_ARE_EQUAL(pOutData->srvOut.v2[0], testData.v2[0]); VERIFY_ARE_EQUAL(pOutData->srvOut.v2[1], testData.v2[1]); // vector 3 VERIFY_ARE_EQUAL(pOutData->srvOut.v3[0], testData.v3[0]); VERIFY_ARE_EQUAL(pOutData->srvOut.v3[1], testData.v3[1]); VERIFY_ARE_EQUAL(pOutData->srvOut.v3[2], testData.v3[2]); // vector 4 VERIFY_ARE_EQUAL(pOutData->srvOut.v4[0], testData.v4[0]); VERIFY_ARE_EQUAL(pOutData->srvOut.v4[1], testData.v4[1]); VERIFY_ARE_EQUAL(pOutData->srvOut.v4[2], testData.v4[2]); VERIFY_ARE_EQUAL(pOutData->srvOut.v4[3], testData.v4[3]); } } template void ExecutionTest::RunComputeRawBufferLdStTest(D3D_SHADER_MODEL shaderModel, RawBufferLdStType dataType, const char *shaderOpName, const RawBufferLdStTestData &testData) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pDevice; CComPtr pStream; char *sTy = nullptr, *additionalOptions = nullptr; if (!SetupRawBufferLdStTest(shaderModel, dataType, pDevice, pStream, sTy, additionalOptions)) { return; } // format shader source char rawBufferTestShaderText[sizeof(RawBufferTestComputeShaderTemplate) + sizeof(RawBufferTestShaderDeclarations) + sizeof(RawBufferTestShaderBody)]; VERIFY_IS_TRUE(sprintf_s(rawBufferTestShaderText, sizeof(rawBufferTestShaderText), RawBufferTestComputeShaderTemplate, RawBufferTestShaderDeclarations, RawBufferTestShaderBody) != -1); // format compiler args char compilerOptions[256]; VERIFY_IS_TRUE(sprintf_s(compilerOptions, sizeof(compilerOptions), "-D COMPONENT_TYPE=%s -D COMPONENT_SIZE=%d %s", sTy, (int)sizeof(Ty), additionalOptions) != -1); // run the shader std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, shaderOpName, [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(((0 == strncmp(Name, "SRVBuffer", 9)) || (0 == strncmp(Name, "UAVBuffer", 9))) && (Name[9] >= '0' && Name[9] <= '3')); pShaderOp->Shaders.at(0).Arguments = compilerOptions; pShaderOp->Shaders.at(0).Text = rawBufferTestShaderText; VERIFY_IS_TRUE(sizeof(RawBufferLdStTestData) <= Data.size()); RawBufferLdStTestData *pInData = (RawBufferLdStTestData*)Data.data(); memcpy(pInData, &testData, sizeof(RawBufferLdStTestData)); }); // verify expected values VerifyRawBufferLdStTestResults(test->Test, testData); } template void ExecutionTest::RunGraphicsRawBufferLdStTest(D3D_SHADER_MODEL shaderModel, RawBufferLdStType dataType, const char *shaderOpName, const RawBufferLdStTestData &testData) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pDevice; CComPtr pStream; char *sTy = nullptr, *additionalOptions = nullptr; if (!SetupRawBufferLdStTest(shaderModel, dataType, pDevice, pStream, sTy, additionalOptions)) { return; } // format shader source char rawBufferTestPixelShaderText[sizeof(RawBufferTestGraphicsPixelShaderTemplate) + sizeof(RawBufferTestShaderDeclarations) + sizeof(RawBufferTestShaderBody)]; VERIFY_IS_TRUE(sprintf_s(rawBufferTestPixelShaderText, sizeof(rawBufferTestPixelShaderText), RawBufferTestGraphicsPixelShaderTemplate, RawBufferTestShaderDeclarations, RawBufferTestShaderBody) != -1); // format compiler args char compilerOptions[256]; VERIFY_IS_TRUE(sprintf_s(compilerOptions, sizeof(compilerOptions), "-D COMPONENT_TYPE=%s -D COMPONENT_SIZE=%d %s", sTy, (int)sizeof(Ty), additionalOptions) != -1); // run the shader std::shared_ptr test = RunShaderOpTest(pDevice, m_support, pStream, shaderOpName, [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE(((0 == strncmp(Name, "SRVBuffer", 9)) || (0 == strncmp(Name, "UAVBuffer", 9))) && (Name[9] >= '0' && Name[9] <= '3')); // pixel shader is at index 1, vertex shader at index 0 pShaderOp->Shaders.at(1).Arguments = compilerOptions; pShaderOp->Shaders.at(1).Text = rawBufferTestPixelShaderText; VERIFY_IS_TRUE(sizeof(RawBufferLdStTestData) <= Data.size()); RawBufferLdStTestData *pInData = (RawBufferLdStTestData*)Data.data(); memcpy(pInData, &testData, sizeof(RawBufferLdStTestData)); }); // verify expected values VerifyRawBufferLdStTestResults(test->Test, testData); } template uint32_t pack(std::array unpackedVals) { uint32_t dst = 0; constexpr uint32_t bitMask = 0xFF; for (uint32_t i = 0U; i < 4U; ++i) { dst |= (unpackedVals[i] & bitMask) << (i * 8); } return dst; } template uint32_t pack_clamp_u8(std::array unpackedVals) { int32_t clamp_min = std::numeric_limits::min(); int32_t clamp_max = std::numeric_limits::max(); uint32_t dst = 0; for (uint32_t i = 0U; i < 4U; ++i) { int32_t clamped = std::min(std::max((int32_t)unpackedVals[i], clamp_min), clamp_max); dst |= ((uint8_t)clamped) << (i * 8); } return dst; } template uint32_t pack_clamp_s8(std::array unpackedVals) { int32_t clamp_min = std::numeric_limits::min(); int32_t clamp_max = std::numeric_limits::max(); uint32_t dst = 0; for (uint32_t i = 0U; i < 4U; ++i) { int32_t clamped = std::min(std::max((int32_t)unpackedVals[i], clamp_min), clamp_max); dst |= ((uint8_t)clamped) << (i * 8); } return dst; } template std::array unpack_u(uint32_t packedVal) { std::array ret; ret[0] = (uint8_t)((packedVal & 0x000000FF) >> 0 ); ret[1] = (uint8_t)((packedVal & 0x0000FF00) >> 8 ); ret[2] = (uint8_t)((packedVal & 0x00FF0000) >> 16); ret[3] = (uint8_t)((packedVal & 0xFF000000) >> 24); return ret; } template std::array unpack_s(uint32_t packedVal) { std::array ret; ret[0] = (int8_t)((packedVal & 0x000000FF) >> 0 ); ret[1] = (int8_t)((packedVal & 0x0000FF00) >> 8 ); ret[2] = (int8_t)((packedVal & 0x00FF0000) >> 16); ret[3] = (int8_t)((packedVal & 0xFF000000) >> 24); return ret; } TEST_F(ExecutionTest, PackUnpackTest) { WEX::TestExecution::SetVerifyOutput verifySettings( WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; #ifdef PACKUNPACK_PLACEHOLDER string args = "-enable-16bit-types -DPACKUNPACK_PLACEHOLDER"; string target = "cs_6_2"; if (!CreateDevice(&pDevice)) { return; } #else string args = "-enable-16bit-types"; string target = "cs_6_6"; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL_6_6)) { return; } #endif int tableSize = sizeof(PackUnpackOpParameters) / sizeof(TableParameter); TableParameterHandler handler(PackUnpackOpParameters, tableSize); CW2A Text(handler.GetTableParamByName(L"ShaderOp.Text")->m_str); std::vector *validation_input = &handler.GetTableParamByName(L"Validation.Input")->m_uint32Table; uint32_t validation_tolerance = handler.GetTableParamByName(L"Validation.Tolerance")->m_uint; size_t count = validation_input->size(); std::vector expectedPacked(count / 4); std::vector expectedUnpacked(count / 4); std::shared_ptr test = RunShaderOpTest( pDevice, m_support, pStream, "PackUnpackOp", // this callback is called when the test // is creating the resource to run the test [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { if (0 == _stricmp(Name, "g_bufIn")) { size_t size = sizeof(uint32_t) * 4 * count; Data.resize(size); uint32_t *pPrimitives = (uint32_t*)Data.data(); for (size_t i = 0; i < count / 4; ++i) { uint32_t *p = &pPrimitives[i * 4]; uint32_t x = (*validation_input)[i * 4 + 0]; uint32_t y = (*validation_input)[i * 4 + 1]; uint32_t z = (*validation_input)[i * 4 + 2]; uint32_t w = (*validation_input)[i * 4 + 3]; p[0] = x; p[1] = y; p[2] = z; p[3] = w; std::array inputUint32 = { x, y, z, w }; std::array inputInt32 = { (int32_t)x, (int32_t)y, (int32_t)z, (int32_t)w }; std::array inputUint16 = { (uint16_t)x, (uint16_t)y, (uint16_t)z, (uint16_t)w }; std::array inputInt16 = { (int16_t)x, (int16_t)y, (int16_t)z, (int16_t)w }; // Pack unclamped expectedPacked[i].packedUint32 = pack(inputUint32); expectedPacked[i].packedInt32 = pack(inputInt32); expectedPacked[i].packedUint16 = pack(inputUint16); expectedPacked[i].packedInt16 = pack(inputInt16); // pack clamped expectedPacked[i].packedClampedUint32 = pack_clamp_u8(inputInt32); expectedPacked[i].packedClampedInt32 = pack_clamp_s8(inputInt32); expectedPacked[i].packedClampedUint16 = pack_clamp_u8(inputInt16); expectedPacked[i].packedClampedInt16 = pack_clamp_s8(inputInt16); // unpack expectedUnpacked[i].outputUint32 = unpack_u(expectedPacked[i].packedUint32); expectedUnpacked[i].outputInt32 = unpack_s(expectedPacked[i].packedInt32 ); expectedUnpacked[i].outputUint16 = unpack_u(expectedPacked[i].packedUint16); expectedUnpacked[i].outputInt16 = unpack_s(expectedPacked[i].packedInt16 ); expectedUnpacked[i].outputClampedUint32 = unpack_u(expectedPacked[i].packedClampedUint32); expectedUnpacked[i].outputClampedInt32 = unpack_s(expectedPacked[i].packedClampedInt32 ); expectedUnpacked[i].outputClampedUint16 = unpack_u(expectedPacked[i].packedClampedUint16); expectedUnpacked[i].outputClampedInt16 = unpack_s(expectedPacked[i].packedClampedInt16 ); } } else { std::fill(Data.begin(), Data.end(), (BYTE)0); } // use shader from data table pShaderOp->Shaders.at(0).Target = target.c_str(); pShaderOp->Shaders.at(0).Text = Text.m_psz; pShaderOp->Shaders.at(0).Arguments = args.c_str(); }); MappedData packedData; test->Test->GetReadBackData("g_bufOutPacked", &packedData); SPackUnpackOpOutPacked *readBackPacked = (SPackUnpackOpOutPacked *)packedData.data(); MappedData unpackedData; test->Test->GetReadBackData("g_bufOutPackedUnpacked", &unpackedData); SPackUnpackOpOutUnpacked *readBackUnpacked = (SPackUnpackOpOutUnpacked *)unpackedData.data(); for (size_t i = 0; i < count / 4; ++i) { VerifyOutputWithExpectedValueUInt(readBackPacked[i].packedUint32, expectedPacked[i].packedUint32, validation_tolerance); VerifyOutputWithExpectedValueInt (readBackPacked[i].packedInt32 , expectedPacked[i].packedInt32 , validation_tolerance); VerifyOutputWithExpectedValueUInt(readBackPacked[i].packedUint16, expectedPacked[i].packedUint16, validation_tolerance); VerifyOutputWithExpectedValueInt (readBackPacked[i].packedInt16 , expectedPacked[i].packedInt16 , validation_tolerance); VerifyOutputWithExpectedValueUInt(readBackPacked[i].packedClampedUint32, expectedPacked[i].packedClampedUint32, validation_tolerance); VerifyOutputWithExpectedValueInt (readBackPacked[i].packedClampedInt32 , expectedPacked[i].packedClampedInt32 , validation_tolerance); VerifyOutputWithExpectedValueUInt(readBackPacked[i].packedClampedUint16, expectedPacked[i].packedClampedUint16, validation_tolerance); VerifyOutputWithExpectedValueInt (readBackPacked[i].packedClampedInt16 , expectedPacked[i].packedClampedInt16 , validation_tolerance); for (uint32_t j = 0; j < 4; ++j) { VerifyOutputWithExpectedValueUInt(readBackUnpacked[i].outputUint32[j], expectedUnpacked[i].outputUint32[j], validation_tolerance); VerifyOutputWithExpectedValueInt (readBackUnpacked[i].outputInt32 [j], expectedUnpacked[i].outputInt32 [j], validation_tolerance); VerifyOutputWithExpectedValueUInt(readBackUnpacked[i].outputUint16[j], expectedUnpacked[i].outputUint16[j], validation_tolerance); VerifyOutputWithExpectedValueInt (readBackUnpacked[i].outputInt16 [j], expectedUnpacked[i].outputInt16 [j], validation_tolerance); VerifyOutputWithExpectedValueUInt(readBackUnpacked[i].outputClampedUint32[j], expectedUnpacked[i].outputClampedUint32[j], validation_tolerance); VerifyOutputWithExpectedValueInt (readBackUnpacked[i].outputClampedInt32 [j], expectedUnpacked[i].outputClampedInt32 [j], validation_tolerance); VerifyOutputWithExpectedValueUInt(readBackUnpacked[i].outputClampedUint16[j], expectedUnpacked[i].outputClampedUint16[j], validation_tolerance); VerifyOutputWithExpectedValueInt (readBackUnpacked[i].outputClampedInt16 [j], expectedUnpacked[i].outputClampedInt16 [j], validation_tolerance); } } } // This test expects a that retrieves a signal value from each of a few // resources that are initialized here. determines if it uses the // 6.6 Dynamic Resources feature. // Values are read back from the result UAV and compared to the expected signals void ExecutionTest::RunResourceTest(ID3D12Device *pDevice, const char *pShader, const wchar_t *sm, bool isDynamic) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); const int NumSRVs = 3; const int NumUAVs = 4; const int NumResources = NumSRVs + NumUAVs; const int NumSamplers = 2; const int valueSize = 16; static const int DispatchGroupX = 1; static const int DispatchGroupY = 1; static const int DispatchGroupZ = 1; CComPtr pCommandList; CComPtr pCommandQueue; CComPtr pCommandAllocator; FenceObj FO; UINT valueSizeInBytes = valueSize * sizeof(float); CreateComputeCommandQueue(pDevice, L"DynamicResourcesTest Command Queue", &pCommandQueue); InitFenceObj(pDevice, &FO); // Create root signature. CComPtr pRootSignature; if (!isDynamic) { // Not dynamic, create a range for each resource and from them, the root signature CD3DX12_DESCRIPTOR_RANGE ranges[NumResources]; CD3DX12_DESCRIPTOR_RANGE srange[NumSamplers]; for (int i = 0; i < NumSRVs; i++) ranges[i].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, i, 0); for (int i = NumSRVs; i < NumResources; i++) ranges[i].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, i - NumSRVs, 0); for (int i = 0; i < NumSamplers; i++) srange[i].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER, 1, i, 0); CreateRootSignatureFromRanges(pDevice, &pRootSignature, ranges, NumResources, srange, NumSamplers); } else { // Dynamic just requires the flags indicating that the builtin arrays should be accessible #if !defined(D3D12_ROOT_SIGNATURE_FLAG_CBV_SRV_UAV_HEAP_DIRECTLY_INDEXED) #define D3D12_ROOT_SIGNATURE_FLAG_CBV_SRV_UAV_HEAP_DIRECTLY_INDEXED (D3D12_ROOT_SIGNATURE_FLAGS)0x400 #define D3D12_ROOT_SIGNATURE_FLAG_SAMPLER_HEAP_DIRECTLY_INDEXED (D3D12_ROOT_SIGNATURE_FLAGS)0x800 #endif CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc; rootSignatureDesc.Init(0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_CBV_SRV_UAV_HEAP_DIRECTLY_INDEXED | D3D12_ROOT_SIGNATURE_FLAG_SAMPLER_HEAP_DIRECTLY_INDEXED); CreateRootSignatureFromDesc(pDevice, &rootSignatureDesc, &pRootSignature); } // Create pipeline state object. CComPtr pComputeState; CreateComputePSO(pDevice, pRootSignature, pShader, sm, &pComputeState); // Create a command allocator and list for compute. VERIFY_SUCCEEDED(pDevice->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_COMPUTE, IID_PPV_ARGS(&pCommandAllocator))); VERIFY_SUCCEEDED(pDevice->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COMPUTE, pCommandAllocator, pComputeState, IID_PPV_ARGS(&pCommandList))); // Set up SRV resources CComPtr pSRVResources[NumSRVs]; CComPtr pUAVResources[NumUAVs]; CComPtr pUploadResources[NumResources]; { D3D12_RESOURCE_DESC bufDesc = CD3DX12_RESOURCE_DESC::Buffer(valueSizeInBytes); float values[valueSize]; for (int i = 0; i < NumSRVs - 1; i++) { for (int j = 0; j < valueSize; j++) values[j] = 10.0f + i; CreateTestResources(pDevice, pCommandList, values, valueSizeInBytes, bufDesc, &pSRVResources[i], &pUploadResources[i]); } D3D12_RESOURCE_DESC tex2dDesc = CD3DX12_RESOURCE_DESC::Tex2D(DXGI_FORMAT_R32_FLOAT, 4, 4); for (int j = 0; j < valueSize; j++) values[j] = 10.0 + (NumSRVs - 1); CreateTestResources(pDevice, pCommandList, values, valueSizeInBytes, tex2dDesc, &pSRVResources[NumSRVs - 1], &pUploadResources[NumSRVs - 1]); } // Set up UAV resources CComPtr pReadBuffer; float values[valueSize]; for (int i = 0; i < NumUAVs - 2; i++) { for (int j = 0; j < valueSize; j++) values[j] = 20.0f + i; CreateTestUavs(pDevice, pCommandList, values, valueSizeInBytes, &pUAVResources[i], &pUploadResources[NumSRVs + i]); } for (int j = 0; j < valueSize; j++) values[j] = 20.0 + (NumUAVs - 1); CreateTestUavs(pDevice, pCommandList, values, valueSizeInBytes, &pUAVResources[NumUAVs - 2], &pUploadResources[NumResources - 2], &pReadBuffer); for (int j = 0; j < valueSize; j++) values[j] = 20.0 + (NumUAVs - 2); D3D12_RESOURCE_DESC tex1dDesc = CD3DX12_RESOURCE_DESC::Tex1D(DXGI_FORMAT_R32_FLOAT, valueSize, 1, 0, D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS); CreateTestResources(pDevice, pCommandList, values, valueSizeInBytes, tex1dDesc, &pUAVResources[NumUAVs - 1], &pUploadResources[NumResources - 1]); // Close the command list and execute it to perform the GPU setup. pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); VERIFY_SUCCEEDED(pCommandAllocator->Reset()); VERIFY_SUCCEEDED(pCommandList->Reset(pCommandAllocator, pComputeState)); CComPtr pResHeap; CComPtr pSampHeap; CreateDefaultDescHeaps(pDevice, NumSRVs + NumUAVs, NumSamplers, &pResHeap, &pSampHeap); // Create Rootsignature and descriptor tables { ID3D12DescriptorHeap *descHeaps[2] = {pResHeap, pSampHeap}; pCommandList->SetDescriptorHeaps(2, descHeaps); pCommandList->SetComputeRootSignature(pRootSignature); if (!isDynamic) { // Only non-dynamic resources require descriptortables pCommandList->SetComputeRootDescriptorTable(0, pResHeap->GetGPUDescriptorHandleForHeapStart()); pCommandList->SetComputeRootDescriptorTable(1, pSampHeap->GetGPUDescriptorHandleForHeapStart()); } } CD3DX12_CPU_DESCRIPTOR_HANDLE baseHandle(pResHeap->GetCPUDescriptorHandleForHeapStart()); // Create SRVs CreateRawSRV(pDevice, baseHandle, valueSize, pSRVResources[0]); CreateStructSRV(pDevice, baseHandle, valueSize, sizeof(float), pSRVResources[1]); CreateTex2DSRV(pDevice, baseHandle, valueSize, DXGI_FORMAT_R32_FLOAT, pSRVResources[2]); // Create UAVs CreateRawUAV(pDevice, baseHandle, valueSize, pUAVResources[0]); CreateStructUAV(pDevice, baseHandle, valueSize, sizeof(float), pUAVResources[1]); CreateTypedUAV(pDevice, baseHandle, valueSize, DXGI_FORMAT_R32_FLOAT, pUAVResources[2]); CreateTex1DUAV(pDevice, baseHandle, valueSize, DXGI_FORMAT_R32_FLOAT, pUAVResources[3]); D3D12_FILTER filters[] = {D3D12_FILTER_MIN_MAG_LINEAR_MIP_POINT, D3D12_FILTER_COMPARISON_MIN_MAG_LINEAR_MIP_POINT}; float borderColors[] = {30.0, 31.0}; CreateDefaultSamplers(pDevice, pSampHeap->GetCPUDescriptorHandleForHeapStart(), filters, borderColors, NumSamplers); // Run the compute shader and copy the results back to readable memory. pCommandList->Dispatch(DispatchGroupX, DispatchGroupY, DispatchGroupZ); RecordTransitionBarrier(pCommandList, pUAVResources[NumUAVs - 2], D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE); pCommandList->CopyResource(pReadBuffer, pUAVResources[NumUAVs - 2]); pCommandList->Close(); ExecuteCommandList(pCommandQueue, pCommandList); WaitForSignal(pCommandQueue, FO); MappedData data(pReadBuffer, valueSize*sizeof(float)); const float *pData = (float*)data.data(); LogCommentFmt(L"Verify bound resources are properly selected"); VERIFY_ARE_EQUAL(pData[0], 10); VERIFY_ARE_EQUAL(pData[1], 11); VERIFY_ARE_EQUAL(pData[2], 12); VERIFY_ARE_EQUAL(pData[3], 20); VERIFY_ARE_EQUAL(pData[4], 21); VERIFY_ARE_EQUAL(pData[5], 22); VERIFY_ARE_EQUAL(pData[6], 30); VERIFY_ARE_EQUAL(pData[7], 1); // samplecmp 1 means it matched 31 } TEST_F(ExecutionTest, SignatureResourcesTest) { std::string pShader = "ByteAddressBuffer g_rawBuf : register(t0);\n" "StructuredBuffer g_structBuf : register(t1);\n" "Texture2D g_tex : register(t2);\n" "RWByteAddressBuffer g_rwRawBuf : register(u0);\n" "RWStructuredBuffer g_rwStructBuf : register(u1);\n" "RWBuffer g_result : register(u2);\n" "RWTexture1D g_rwTex : register(u3);\n" "SamplerState g_samp : register(s0);\n" "SamplerComparisonState g_sampCmp : register(s1);\n" "[NumThreads(1, 1, 1)]\n" "void main(uint ix : SV_GroupIndex) {\n" " g_result[0] = g_rawBuf.Load(0);\n" " g_result[1] = g_structBuf.Load(0);\n" " g_result[2] = g_tex.Load(0);\n" " g_result[3] = g_rwRawBuf.Load(0);\n" " g_result[4] = g_rwStructBuf.Load(0);\n" " g_result[5] = g_rwTex.Load(0);\n" " g_result[6] = g_tex.SampleLevel(g_samp, -0.5, 0);\n" " g_result[7] = g_tex.SampleCmpLevelZero(g_sampCmp, -0.5, 31.0);\n" "}\n"; CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL_6_6)) return; RunResourceTest(pDevice, pShader.c_str(), L"cs_6_6", /*isDynamic*/false); } TEST_F(ExecutionTest, DynamicResourcesTest) { static const char pShader[] = "static ByteAddressBuffer g_rawBuf = ResourceDescriptorHeap[0];\n" "static StructuredBuffer g_structBuf = ResourceDescriptorHeap[1];\n" "static Texture2D g_tex = ResourceDescriptorHeap[2];\n" "static RWByteAddressBuffer g_rwRawBuf = ResourceDescriptorHeap[3];\n" "static RWStructuredBuffer g_rwStructBuf = ResourceDescriptorHeap[4];\n" "static RWBuffer g_result = ResourceDescriptorHeap[5];\n" "static RWTexture1D g_rwTex = ResourceDescriptorHeap[6];\n" "static SamplerState g_samp = SamplerDescriptorHeap[0];\n" "static SamplerComparisonState g_sampCmp = SamplerDescriptorHeap[1];\n" "[NumThreads(1, 1, 1)]\n" "void main(uint ix : SV_GroupIndex) {\n" " g_result[0] = g_rawBuf.Load(0);\n" " g_result[1] = g_structBuf.Load(0);\n" " g_result[2] = g_tex.Load(0);\n" " g_result[3] = g_rwRawBuf.Load(0);\n" " g_result[4] = g_rwStructBuf.Load(0);\n" " g_result[5] = g_rwTex.Load(0);\n" " g_result[6] = g_tex.SampleLevel(g_samp, -0.5, 0);\n" " g_result[7] = g_tex.SampleCmpLevelZero(g_sampCmp, -0.5, 31.0);\n" "}\n"; CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL_6_6)) return; RunResourceTest(pDevice, pShader, L"cs_6_6", /*isDynamic*/true); } #define MAX_WAVESIZE 128 #define strinfigy2(arg) #arg #define strinfigy(arg) strinfigy2(arg) void ExecutionTest::WaveSizeTest() { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL_6_6)) { return; } // Check Wave support if (!DoesDeviceSupportWaveOps(pDevice)) { // Optional feature, so it's correct to not support it if declared as such. WEX::Logging::Log::Comment(L"Device does not support wave operations."); return; } // Get supported wave sizes D3D12_FEATURE_DATA_D3D12_OPTIONS1 waveOpts; VERIFY_SUCCEEDED(pDevice->CheckFeatureSupport((D3D12_FEATURE)D3D12_FEATURE_D3D12_OPTIONS1, &waveOpts, sizeof(waveOpts))); UINT minWaveSize = waveOpts.WaveLaneCountMin; UINT maxWaveSize = waveOpts.WaveLaneCountMax; DXASSERT_NOMSG(minWaveSize <= maxWaveSize); DXASSERT((minWaveSize & (minWaveSize - 1)) == 0, "must be a power of 2"); DXASSERT((maxWaveSize & (maxWaveSize - 1)) == 0, "must be a power of 2"); // read shader config CComPtr pStream; std::shared_ptr ShaderOpSet = std::make_shared(); ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); // format shader source const char waveSizeTestShader[] = "struct TestData { \r\n" " uint count; \r\n" "}; \r\n" "RWStructuredBuffer data : register(u0); \r\n" "\r\n" "// Note: WAVESIZE will be defined via compiler option -D\r\n" "[wavesize(WAVESIZE)]\r\n" "[numthreads(" strinfigy(MAX_WAVESIZE) "*2,1,1)]\r\n" "void main(uint3 tid : SV_DispatchThreadID ) { \r\n" " data[tid.x].count = WaveActiveSum(1); \r\n" "}\r\n"; struct WaveSizeTestData { uint32_t count; }; for (UINT waveSize = minWaveSize; waveSize <= maxWaveSize; waveSize *= 2) { // format compiler args char compilerOptions[32]; VERIFY_IS_TRUE(sprintf_s(compilerOptions, sizeof(compilerOptions), "-D WAVESIZE=%d", waveSize) != -1); // run the shader std::shared_ptr test = RunShaderOpTestAfterParse(pDevice, m_support, "WaveSizeTest", [&](LPCSTR Name, std::vector &Data, st::ShaderOp *pShaderOp) { VERIFY_IS_TRUE((0 == strncmp(Name, "UAVBuffer0", 10))); pShaderOp->Shaders.at(0).Arguments = compilerOptions; pShaderOp->Shaders.at(0).Text = waveSizeTestShader; VERIFY_IS_TRUE(sizeof(WaveSizeTestData)*MAX_WAVESIZE <= Data.size()); WaveSizeTestData *pInData = (WaveSizeTestData *)Data.data(); memset(&pInData, sizeof(WaveSizeTestData)*MAX_WAVESIZE, 0); }, ShaderOpSet); // verify expected values MappedData dataUav; WaveSizeTestData *pOutData; test->Test->GetReadBackData("UAVBuffer0", &dataUav); VERIFY_ARE_EQUAL(sizeof(WaveSizeTestData)*MAX_WAVESIZE, dataUav.size()); pOutData = (WaveSizeTestData*)dataUav.data(); LogCommentFmt(L"Verifying test result for wave size %d", waveSize); for (unsigned i = 0; i < MAX_WAVESIZE; i++) { if (!VERIFY_ARE_EQUAL(pOutData[i].count, waveSize)) break; } } } // Atomic operation testing // Atomic tests take a single integer index as input and contort it into some // kind of interesting contributor to the operation in question. // So each vertex, pixel, thread, or other will have a unique index that produces // a contributing value to the calculation which is stored in a small resource // For arithmetic or bitwise operations, each contributor accumulates to the same // location in the resource indexed by the operation type. Addition is in index 0 // umin/umax are in 1 and 2 and so on. // To make sure that the most significant bits are involved in the calculation, // particularly in the case of 64-bit values, each contributing value is duplicated // to the lower and upper halves of the value. There is an exception to this when // addition exceeds the available size and also for compare and exchange explained below. // For compare and exchange operations, 64 output locations are shared by the various lanes. // Each lane attempts to write to a location that is shared with several others. // The first one to write to it determines its contents, which will be the lane index // in the upper bits and the output location index in the lower bits. // This ensures that the compare operations consider the upper bits in the comparison. // The initial compare store is followed by a compare exchange that compares for the // value the current lane would have assigned there. Finally, the output of the cmpxchg // is used to determine if the current lane should perform the final unconditional exchange. // The values are verified by checking the lower bits for the matching location index // and ensuring that the upper bits undergoing the same transformation result in the location index. // For lane index the location is calculated and final result assigned as if by this code: // g_outputBuf[(ix/3)%64] = (ix << shBits) | ((ix/3)%64); bool AtomicResultMatches(const BYTE *uResults, uint64_t gold, size_t size) { if (memcmp(uResults, &gold, size)) { if (size == 4) LogCommentFmt(L" value %d is not %d", ((uint32_t*)uResults)[0], (uint32_t)gold); else LogCommentFmt(L" value %lld is not %lld", ((uint64_t*)uResults)[0], gold); return false; } return true; } // Used to duplicate the lower half bits into the upper half bits of an integer // To verify that the full value is being considered, many tests duplicate the results into the upper half #define SHIFT(val, bits) (((val)&((1ULL<<(bits))-1ULL)) | ((val) << (bits))) // Symbolic constants for the results #define ADD_IDX 0 #define UMIN_IDX 1 #define UMAX_IDX 2 #define AND_IDX 3 #define OR_IDX 4 #define XOR_IDX 5 #define SMIN_IDX 0 #define SMAX_IDX 1 // Verify results for atomic operations. and are pointers to // the readback resource sections containing unsigned and signed integers respectively. // is a poiner to the readback resource containing the results of the compare // and exchange operations tests. is the number of bytes between results for // all of the results pointers. is the number of indices that went into the results // which is used to determine what the results should be. is the size in bits of // the produced results, either 32 or 64. void VerifyAtomicResults(const BYTE *uResults, const BYTE *sResults, const BYTE *pXchg, size_t stride, size_t maxIdx, size_t bitSize) { // Each atomic test performs the test on the value in the lower half // and also duplicated in the upper half of the value. The SHIFT macros account for this. // This is to verify that the upper bits are considered size_t shBits = bitSize/2; size_t byteSize = bitSize/8; // Test ADD Operation // ADD just sums all the indices. The result should the sum of the highest and lowest indices // multiplied by half the number of sums. size_t addResult = (maxIdx)*(maxIdx-1)/2; LogCommentFmt(L"Verifying %d-bit integer atomic add", bitSize); // For 32-bit values, the sum exceeds the 16 bit limit, so we can't duplicate // That's fine, the duplication is really for 64-bit values. if (bitSize < 64) VERIFY_IS_TRUE(AtomicResultMatches(uResults + stride*ADD_IDX, addResult, byteSize)); else VERIFY_IS_TRUE(AtomicResultMatches(uResults + stride*ADD_IDX, SHIFT(addResult, shBits), byteSize)); // Test MIN and MAX Operations // The result of a simple min and max of any sequence of indices would be fairly uninteresting // and certain erroneous behavior might mistakenly produce the correct results. // To make it interesting, the contributing values will change depending on the evenness of the index. // On an even index, min and max operate on the bitflipped index. For signed compares, this is // interpretted as a negative value and for unsigned, a very high value. // For unsigned min/max, index 0 will be bitflipped to ~0, which is interpretted as the maximum // Because zero is manipulated, this leaves 1 as the lowest value. LogCommentFmt(L"Verifying %d-bit integer atomic umin", bitSize); VERIFY_IS_TRUE(AtomicResultMatches(uResults + stride*UMIN_IDX, SHIFT(1ULL, shBits), byteSize)); // UMin LogCommentFmt(L"Verifying %d-bit integer atomic umax", bitSize); VERIFY_IS_TRUE(AtomicResultMatches(uResults + stride*UMAX_IDX, ~0ULL, byteSize)); // UMax // For signed min/max, the index just before the last will be bitflipped (maxIndex is always even). // This is interpretted as -maxIndex and will be the lowest // The maxIndex will be unaltered and interpretted as the highest. LogCommentFmt(L"Verifying %d-bit integer atomic smin", bitSize); VERIFY_IS_TRUE(AtomicResultMatches(sResults + stride*SMIN_IDX, SHIFT(-((int)maxIdx-1), shBits), byteSize)); // SMin LogCommentFmt(L"Verifying %d-bit integer atomic smax", bitSize); VERIFY_IS_TRUE(AtomicResultMatches(sResults + stride*SMAX_IDX, SHIFT(maxIdx-1, shBits), byteSize)); // SMax // Test AND and OR operations. // For AND operations, all indices are bitflipped and ANDed to the previous result. // This means that the highest bits, which are never set by the contributing indices will be set // for all the indices, so they will be set in the final result. // For OR operations, the indices are ORed to the previous result unaltered // This means that any bit that is set in any index will be set in the final OR result. // In practice, this means that the cumulative result of the AND and OR operations // are bitflipped versions of each other. // Finding the most significant set bit by the max index or next power of two (pot) // gives us the pivot point for these results size_t nextPot = 1ULL << (bitSize - 1); for (;nextPot && !((maxIdx-1) & (nextPot)); nextPot >>= 1) {} nextPot <<= 1; LogCommentFmt(L"Verifying %d-bit integer atomic and", bitSize); VERIFY_IS_TRUE(AtomicResultMatches(uResults + stride*AND_IDX, ~SHIFT(nextPot-1, shBits), byteSize)); // And LogCommentFmt(L"Verifying %d-bit integer atomic or", bitSize); VERIFY_IS_TRUE(AtomicResultMatches(uResults + stride*OR_IDX, SHIFT(nextPot-1, shBits), byteSize)); // Or // Test XOR operation // For XOR operations, a 1 is shifted by the number of spaces equal to the index and XORed // to the previous result. Because this would rapidely shift off the end of the value, // giving undefined and uninteresting results, the index is moduloed to a value that will // fit within the type size. // Because many of the tests use total numbers of lanes that can be evenly divisible by 32 or 64, // these values aren't used for the modulo since the expected result might be zero, // which could be encountered through erroneous behavior. // Instead, one less than the type size in bits is used for the modulo. // Even though we don't know the actual order these operations are performed, // indices that make up a contiguous sequence of 31 or 63 values can be thought of as one of a series of "passes". // Each "pass" sets or clears the bits depending on what's already there. // if the number of the pass is odd, the bits are being unset and all above the mod position should be set. // If even, the bits are in the process of being set and bits below the mod position should be set. size_t xorResult = ((1ULL<<((maxIdx)%(bitSize-1))) -1); if (((maxIdx/(bitSize-1))&1)) { xorResult ^= ~0ULL; // The XOR above may set uninvolved upper bits, messing up the compare. So AND off the uninvolved bits. xorResult &= ((1ULL<<(bitSize-1)) - 1); } LogCommentFmt(L"Verifying %d-bit integer atomic xor", bitSize); VERIFY_IS_TRUE(AtomicResultMatches(uResults + stride*XOR_IDX, xorResult, byteSize)); // Test CMP/XCHG Operations // This tests CompareStore, CompareExchange, and Exchange operations. // Unlike above, every lane isn't contributing to the same resource location // Instead, every lane competes with a few others to update the same resource location. // The first lane to find the contents of their location uninitialized will // update it. To verify that upper bits are considered in the comparison and // in the assignment, the value stored in the lowest bits is the location index. // This ensures that part will be the same for each of the competing lanes. // The uppermost bits are updated with the index of the lane that got there first. // Subsequent calls to CompareExchange will verify this value matches and alter // the content slightly. Finally, a simple check of the output value to what // the current lane would expect and a call to exchange will update the value once more // To verify this has gone through properly, the upper portion is converted as // if to calculate the location index and compared with the location index. // It could be the index of any of several lanes that assign to that location, // but this ensures that it is not any lane outside of that group. // The lower bits are compared to the location index as well. LogCommentFmt(L"Verifying %d-bit integer atomic cmp/xchg results", bitSize); for (size_t i = 0; i < 64; i++) { uint64_t val = *((uint64_t*)(pXchg + i*stride)); // Verify lower bits match location index exactly VERIFY_ARE_EQUAL(i, val & ((1ULL << shBits) - 1ULL)); // Verify that upper bits contain original index that transforms to location index VERIFY_ARE_EQUAL(((val >> shBits)/3)%64, i); } } void VerifyAtomicsRawTest(std::shared_ptr test, size_t maxIdx, size_t bitSize) { size_t stride = 8; // struct mirroring that in the shader struct AtomicStuff { float prepad[2][3]; UINT uintEl[4]; int sintEl[4]; struct useless { uint32_t unused[3]; } postpad; float last; }; MappedData uintData, xchgData; test->Test->GetReadBackData("U0", &uintData); test->Test->GetReadBackData("U1", &xchgData); const AtomicStuff *pStruct = (AtomicStuff *)uintData.data(); const AtomicStuff *pStrXchg = (AtomicStuff *)xchgData.data(); LogCommentFmt(L"Verifying %d-bit integer atomic operations on RWStructuredBuffer resource", bitSize); VerifyAtomicResults((const BYTE*)&(pStruct[0].uintEl[2]), (const BYTE*)&(pStruct[1].sintEl[2]), (const BYTE*)&(pStrXchg[0].uintEl[2]), sizeof(AtomicStuff), maxIdx, bitSize); const BYTE *pUint = nullptr; const BYTE *pXchg = nullptr; test->Test->GetReadBackData("U2", &uintData); test->Test->GetReadBackData("U3", &xchgData); pUint = (BYTE *)uintData.data(); pXchg = (BYTE *)xchgData.data(); LogCommentFmt(L"Verifying %d-bit integer atomic operations on RWByteAddressBuffer resource", bitSize); VerifyAtomicResults(pUint, pUint + stride*6, pXchg, stride, maxIdx, bitSize); } void VerifyAtomicsTypedTest(std::shared_ptr test, size_t maxIdx, size_t bitSize) { size_t stride = 8; MappedData uintData, sintData, xchgData; const BYTE *pUint = nullptr; const BYTE *pSint = nullptr; const BYTE *pXchg = nullptr; // Typed resources can't share between 32 and 64 bits if (bitSize == 32) { test->Test->GetReadBackData("U4", &uintData); test->Test->GetReadBackData("U5", &sintData); test->Test->GetReadBackData("U6", &xchgData); } else { test->Test->GetReadBackData("U12", &uintData); test->Test->GetReadBackData("U13", &sintData); test->Test->GetReadBackData("U14", &xchgData); } pUint = (BYTE *)uintData.data(); pSint = (BYTE *)sintData.data(); pXchg = (BYTE *)xchgData.data(); LogCommentFmt(L"Verifying %d-bit integer atomic operations on RWBuffer resource", bitSize); VerifyAtomicResults(pUint, pSint + stride, pXchg, stride, maxIdx, bitSize); // Typed resources can't share between 32 and 64 bits if (bitSize == 32) { test->Test->GetReadBackData("U7", &uintData); test->Test->GetReadBackData("U8", &sintData); test->Test->GetReadBackData("U9", &xchgData); } else { test->Test->GetReadBackData("U15", &uintData); test->Test->GetReadBackData("U16", &sintData); test->Test->GetReadBackData("U17", &xchgData); } pUint = (BYTE *)uintData.data(); pSint = (BYTE *)sintData.data(); pXchg = (BYTE *)xchgData.data(); LogCommentFmt(L"Verifying %d-bit integer atomic operations on RWTexture resource", bitSize); VerifyAtomicResults(pUint, pSint + stride, pXchg, stride, maxIdx, bitSize); } void VerifyAtomicsSharedTest(std::shared_ptr test, size_t maxIdx, size_t bitSize) { size_t stride = 8; MappedData uintData, xchgData; const BYTE *pUint = nullptr; const BYTE *pXchg = nullptr; test->Test->GetReadBackData("U10", &uintData); test->Test->GetReadBackData("U11", &xchgData); pUint = (BYTE *)uintData.data(); pXchg = (BYTE *)xchgData.data(); LogCommentFmt(L"Verifying %d-bit integer atomic operations on groupshared variables", bitSize); VerifyAtomicResults(pUint, pUint + stride*6, pXchg, stride, maxIdx, bitSize); } void VerifyAtomicsTest(std::shared_ptr test, size_t maxIdx, size_t bitSize) { VerifyAtomicsRawTest(test, maxIdx, bitSize); VerifyAtomicsTypedTest(test, maxIdx, bitSize); } TEST_F(ExecutionTest, AtomicsTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); st::ShaderOp *pShaderOp = ShaderOpSet->GetShaderOp("Atomics"); // Test compute shader LogCommentFmt(L"Verifying 32-bit integer atomic operations in compute shader"); std::shared_ptr test = RunShaderOpTestAfterParse(pDevice, m_support, "Atomics", nullptr, ShaderOpSet); VerifyAtomicsTest(test, 32*32, 32); VerifyAtomicsSharedTest(test, 32*32, 32); // Test mesh shader if available pShaderOp->CS = nullptr; if (DoesDeviceSupportMeshShaders(pDevice)) { LogCommentFmt(L"Verifying 32-bit integer atomic operations in amp/mesh/pixel shaders"); test = RunShaderOpTestAfterParse(pDevice, m_support, "Atomics", nullptr, ShaderOpSet); VerifyAtomicsTest(test, 8*8*2 + 8*8*2 + 64*64, 32); VerifyAtomicsSharedTest(test, 8*8*2 + 8*8*2, 32); } // Test Vertex + Pixel shader pShaderOp->MS = nullptr; LogCommentFmt(L"Verifying 32-bit integer atomic operations in vert/pixel shaders"); test = RunShaderOpTestAfterParse(pDevice, m_support, "Atomics", nullptr, ShaderOpSet); VerifyAtomicsTest(test, 64*64+6, 32); } TEST_F(ExecutionTest, Atomics64Test) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL_6_6)) return; std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); st::ShaderOp *pShaderOp = ShaderOpSet->GetShaderOp("Atomics"); // Reassign shader stages to 64-bit versions // Collect 64-bit shaders LPCSTR CS64 = nullptr, VS64 = nullptr, PS64 = nullptr; LPCSTR AS64 = nullptr, MS64 = nullptr; for (st::ShaderOpShader &S : pShaderOp->Shaders) { if (!strcmp(S.Name, "CS64")) CS64 = S.Name; if (!strcmp(S.Name, "VS64")) VS64 = S.Name; if (!strcmp(S.Name, "PS64")) PS64 = S.Name; if (!strcmp(S.Name, "AS64")) AS64 = S.Name; if (!strcmp(S.Name, "MS64")) MS64 = S.Name; } pShaderOp->CS = CS64; pShaderOp->VS = VS64; pShaderOp->PS = PS64; pShaderOp->AS = AS64; pShaderOp->MS = MS64; // Test compute shader LogCommentFmt(L"Verifying 64-bit integer atomic operations on raw buffers in compute shader"); std::shared_ptr test = RunShaderOpTestAfterParse(pDevice, m_support, "Atomics", nullptr, ShaderOpSet); VerifyAtomicsRawTest(test, 32*32, 64); // Test mesh shader if available pShaderOp->CS = nullptr; if (DoesDeviceSupportMeshShaders(pDevice)) { LogCommentFmt(L"Verifying 64-bit integer atomic operations on raw buffers in amp/mesh/pixel shader"); test = RunShaderOpTestAfterParse(pDevice, m_support, "Atomics", nullptr, ShaderOpSet); VerifyAtomicsRawTest(test, 8*8*2 + 8*8*2 + 64*64, 64); } // Test Vertex + Pixel shader pShaderOp->MS = nullptr; LogCommentFmt(L"Verifying 64-bit integer atomic operations on raw buffers in vert/pixel shader"); test = RunShaderOpTestAfterParse(pDevice, m_support, "Atomics", nullptr, ShaderOpSet); VerifyAtomicsRawTest(test, 64*64+6, 64); } TEST_F(ExecutionTest, AtomicsTyped64Test) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL_6_6)) return; if (!DoesDeviceSupportInt64(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support int64 operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } if (!DoesDeviceSupportTyped64Atomics(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support int64 atomic operations on typed resources."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); st::ShaderOp *pShaderOp = ShaderOpSet->GetShaderOp("Atomics"); // Reassign shader stages to 64-bit versions // Collect 64-bit shaders LPCSTR CS64 = nullptr, VS64 = nullptr, PS64 = nullptr; LPCSTR AS64 = nullptr, MS64 = nullptr; for (st::ShaderOpShader &S : pShaderOp->Shaders) { if (!strcmp(S.Name, "CSTY64")) CS64 = S.Name; if (!strcmp(S.Name, "VSTY64")) VS64 = S.Name; if (!strcmp(S.Name, "PSTY64")) PS64 = S.Name; if (!strcmp(S.Name, "ASTY64")) AS64 = S.Name; if (!strcmp(S.Name, "MSTY64")) MS64 = S.Name; } pShaderOp->CS = CS64; pShaderOp->VS = VS64; pShaderOp->PS = PS64; pShaderOp->AS = AS64; pShaderOp->MS = MS64; // Test compute shader LogCommentFmt(L"Verifying 64-bit integer atomic operations on typed resources in compute shader"); std::shared_ptr test = RunShaderOpTestAfterParse(pDevice, m_support, "Atomics", nullptr, ShaderOpSet); VerifyAtomicsTypedTest(test, 32*32, 64); // Test mesh shader if available pShaderOp->CS = nullptr; if (DoesDeviceSupportMeshShaders(pDevice)) { LogCommentFmt(L"Verifying 64-bit integer atomic operations on typed resources in amp/mesh/pixel shader"); test = RunShaderOpTestAfterParse(pDevice, m_support, "Atomics", nullptr, ShaderOpSet); VerifyAtomicsTypedTest(test, 8*8*2 + 8*8*2 + 64*64, 64); } // Test Vertex + Pixel shader pShaderOp->MS = nullptr; LogCommentFmt(L"Verifying 64-bit integer atomic operations on typed resources in vert/pixel shader"); test = RunShaderOpTestAfterParse(pDevice, m_support, "Atomics", nullptr, ShaderOpSet); VerifyAtomicsTypedTest(test, 64*64+6, 64); } TEST_F(ExecutionTest, AtomicsShared64Test) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice, D3D_SHADER_MODEL_6_6)) return; if (!DoesDeviceSupportInt64(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support int64 operations."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } if (!DoesDeviceSupportShared64Atomics(pDevice)) { WEX::Logging::Log::Comment(L"Device does not support int64 atomic operations on groupshared variables."); WEX::Logging::Log::Result(WEX::Logging::TestResults::Skipped); return; } std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); st::ShaderOp *pShaderOp = ShaderOpSet->GetShaderOp("Atomics"); // Reassign shader stages to 64-bit versions // Collect 64-bit shaders LPCSTR CS64 = nullptr, PS64 = nullptr; LPCSTR AS64 = nullptr, MS64 = nullptr; for (st::ShaderOpShader &S : pShaderOp->Shaders) { if (!strcmp(S.Name, "CSSH64")) CS64 = S.Name; if (!strcmp(S.Name, "CSSH64")) CS64 = S.Name; if (!strcmp(S.Name, "PS64")) PS64 = S.Name; if (!strcmp(S.Name, "ASSH64")) AS64 = S.Name; if (!strcmp(S.Name, "MSSH64")) MS64 = S.Name; } pShaderOp->CS = CS64; pShaderOp->PS = PS64; pShaderOp->AS = AS64; pShaderOp->MS = MS64; LogCommentFmt(L"Verifying 64-bit integer atomic operations on groupshared variables in compute shader"); std::shared_ptr test = RunShaderOpTestAfterParse(pDevice, m_support, "Atomics", nullptr, ShaderOpSet); VerifyAtomicsSharedTest(test, 32*32, 64); // Test mesh shader if available pShaderOp->CS = nullptr; if (DoesDeviceSupportMeshShaders(pDevice)) { LogCommentFmt(L"Verifying 64-bit integer atomic operations on groupshared variables in amp/mesh/pixel shader"); test = RunShaderOpTestAfterParse(pDevice, m_support, "Atomics", nullptr, ShaderOpSet); VerifyAtomicsSharedTest(test, 8*8*2 + 8*8*2, 64); } } // Float Atomics // These operations are almost the same as for the 32-bit and 64-bit integer tests // The difference is that there is no need to verify the upper bits. // So there is no storing of different parts in upper and lower halves. // Additionally, the only operations that are supported on floats // are compare and exchange operations. So that's all that is tested here. // Just as above, a number of lanes are assigned the same output value. // Unlike above, one location is needed for the result of the special NaN test // For this reason, the conversion is reduced by one and shifted by one to leave // the zero-indexed location available. // Verify results for a particular set of atomics results void VerifyAtomicFloatResults(const float *results) { // The first entry is for NaN to ensure that compares between NaNs succeed // The sentinal value is 0.123, for which this compare is sufficient. VERIFY_IS_TRUE(results[0] >= 0.120 && results[0] < 0.125); // Start at 1 because 0 is just for NaN tests for (size_t i = 1; i < 64; i++) { VERIFY_ARE_EQUAL((int(results[i])/3)%63 + 1, (int)i); } } void VerifyAtomicsFloatSharedTest(std::shared_ptr test) { MappedData Data; const float *pData = nullptr; test->Test->GetReadBackData("U4", &Data); pData = (float *)Data.data(); LogCommentFmt(L"Verifying float cmp/xchg atomic operations on groupshared variables"); VerifyAtomicFloatResults(pData); } void VerifyAtomicsFloatTest(std::shared_ptr test) { // struct mirroring that in the shader struct AtomicStuff { float prepad[2][3]; float fltEl[2]; struct useless { uint32_t unused[3]; } postpad; }; // Test Compute Shader MappedData Data; const float *pData = nullptr; test->Test->GetReadBackData("U0", &Data); const AtomicStuff *pStructData = (AtomicStuff *)Data.data(); LogCommentFmt(L"Verifying float cmp/xchg atomic operations on RWStructuredBuffer resources"); VERIFY_IS_TRUE(pStructData[0].fltEl[1] >= 0.120 && pStructData[0].fltEl[1] < 0.125); for (size_t i = 1; i < 64; i++) { VERIFY_ARE_EQUAL((int(pStructData[i].fltEl[1])/3)%63 + 1, (int)i); } test->Test->GetReadBackData("U1", &Data); pData = (float *)Data.data(); LogCommentFmt(L"Verifying float cmp/xchg atomic operations on RWByteAddressBuffer resources"); VerifyAtomicFloatResults(pData); test->Test->GetReadBackData("U2", &Data); pData = (float *)Data.data(); LogCommentFmt(L"Verifying float cmp/xchg atomic operations on RWBuffer resources"); VerifyAtomicFloatResults(pData); test->Test->GetReadBackData("U3", &Data); pData = (float *)Data.data(); LogCommentFmt(L"Verifying float cmp/xchg atomic operations on RWTexture resources"); VerifyAtomicFloatResults(pData); } TEST_F(ExecutionTest, AtomicsFloatTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); CComPtr pDevice; if (!CreateDevice(&pDevice)) return; std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); st::ShaderOp *pShaderOp = ShaderOpSet->GetShaderOp("FloatAtomics"); // Test compute shader LogCommentFmt(L"Verifying float cmp/xchg atomic operations in compute shader"); std::shared_ptr test = RunShaderOpTestAfterParse(pDevice, m_support, "FloatAtomics", nullptr, ShaderOpSet); VerifyAtomicsFloatTest(test); VerifyAtomicsFloatSharedTest(test); // Test mesh shader if available pShaderOp->CS = nullptr; if (DoesDeviceSupportMeshShaders(pDevice)) { LogCommentFmt(L"Verifying float cmp/xchg atomic operations in amp/mesh/pixel shaders"); test = RunShaderOpTestAfterParse(pDevice, m_support, "FloatAtomics", nullptr, ShaderOpSet); VerifyAtomicsFloatTest(test); VerifyAtomicsFloatSharedTest(test); } // Test Vertex + Pixel shader pShaderOp->MS = nullptr; LogCommentFmt(L"Verifying float cmp/xchg atomic operations in vert/pixel shaders"); test = RunShaderOpTestAfterParse(pDevice, m_support, "FloatAtomics", nullptr, ShaderOpSet); VerifyAtomicsFloatTest(test); } // The IsHelperLane test renders 3-pixel triangle into 16x16 render target restricted // to 2x2 viewport alligned at (0,0) which guarantees it will run in a single quad. // // Pixels to be rendered* // (0,0)* (0,1)* // (1,0) (1,1)* // // Pixel (1,0) is not rendered and is in helper lane. // // Each thread will use ddx_fine and ddy_fine to read the IsHelperLane() values from other threads. // The bottom right pixel will write the results into the UAV buffer. // // Then the top level pixel (0,0) is discarded and the process above is repeated. // // Runs with shader models 6.0 and 6.6 to test both the HLSL built-in IsHelperLane fallback // function (sm <= 6.5) and the IsHelperLane intrisics (sm >= 6.6). // TEST_F(ExecutionTest, HelperLaneTest) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); #ifdef ISHELPERLANE_PLACEHOLDER string args = "-DISHELPERLANE_PLACEHOLDER"; #else string args = ""; #endif D3D_SHADER_MODEL TestShaderModels[] = { D3D_SHADER_MODEL_6_0, D3D_SHADER_MODEL_6_6 }; for (unsigned i = 0; i < _countof(TestShaderModels); i++) { D3D_SHADER_MODEL sm = TestShaderModels[i]; LogCommentFmt(L"Verifying IsHelperLane in shader model 6.%1u", ((UINT)sm & 0x0f)); CComPtr pDevice; if (!CreateDevice(&pDevice, sm, false /* skipUnsupported */)) continue; std::shared_ptr test = RunShaderOpTestAfterParse(pDevice, m_support, "HelperLaneTestNoWave", // this callbacked is called when the test is creating the resource to run the test [&](LPCSTR Name, std::vector& Data, st::ShaderOp* pShaderOp) { VERIFY_IS_TRUE(0 == _stricmp(Name, "UAVBuffer0")); std::fill(Data.begin(), Data.end(), (BYTE)0xCC); pShaderOp->Shaders.at(0).Arguments = args.c_str(); pShaderOp->Shaders.at(1).Arguments = args.c_str(); }, ShaderOpSet); struct HelperLaneTestResult { int32_t is_helper_00; int32_t is_helper_10; int32_t is_helper_01; int32_t is_helper_11; }; MappedData uavData; test->Test->GetReadBackData("UAVBuffer0", &uavData); HelperLaneTestResult* pTestResults = (HelperLaneTestResult*)uavData.data(); MappedData renderData; test->Test->GetReadBackData("RTarget", &renderData); const uint32_t* pPixels = (uint32_t*)renderData.data(); // before discard VERIFY_ARE_EQUAL(pTestResults[0].is_helper_00, 0); VERIFY_ARE_EQUAL(pTestResults[0].is_helper_10, 0); VERIFY_ARE_EQUAL(pTestResults[0].is_helper_01, 1); VERIFY_ARE_EQUAL(pTestResults[0].is_helper_11, 0); // after discard VERIFY_ARE_EQUAL(pTestResults[1].is_helper_00, 1); VERIFY_ARE_EQUAL(pTestResults[1].is_helper_10, 0); VERIFY_ARE_EQUAL(pTestResults[1].is_helper_01, 1); VERIFY_ARE_EQUAL(pTestResults[1].is_helper_11, 0); UNREFERENCED_PARAMETER(pPixels); } } struct HelperLaneWaveTestResult60 { // 6.0 wave ops int32_t anyTrue; int32_t allTrue; XMUINT4 ballot; int32_t waterfallLoopCount; int32_t allEqual; int32_t countBits; int32_t sum; int32_t product; int32_t bitAnd; int32_t bitOr; int32_t bitXor; int32_t min; int32_t max; int32_t prefixCountBits; int32_t prefixProduct; int32_t prefixSum; }; struct HelperLaneQuadTestResult { int32_t is_helper_this; int32_t is_helper_across_X; int32_t is_helper_across_Y; int32_t is_helper_across_Diag; }; struct HelperLaneWaveTestResult65 { // 6.5 wave ops XMUINT4 match; int32_t mpCountBits; int32_t mpSum; int32_t mpProduct; int32_t mpBitAnd; int32_t mpBitOr; int32_t mpBitXor; }; struct HelperLaneWaveTestResult { HelperLaneWaveTestResult60 sm60; HelperLaneQuadTestResult sm60_quad; HelperLaneWaveTestResult65 sm65; }; struct foo { int32_t a; int32_t b; int32_t c; }; struct bar { foo f; int32_t d; XMUINT4 g; }; foo f = {1, 2, 3}; bar b = { { 1, 2, 3 }, 0, { 1, 2, 3, 4 } }; HelperLaneWaveTestResult HelperLane_CS_ExpectedResults = { // HelperLaneWaveTestResult60 { 0, 1, { 0x7, 0, 0, 0 }, 3, 1, 3, 12, 64, 1, 0, 0, 10, 1, 2, 16, 4 }, // HelperLaneQuadTestResult { 0, 0, 0, 0 }, // HelperLaneWaveTestResult65 { {0x7, 0, 0, 0}, 2, 4, 16, 1, 0, 0 } }; HelperLaneWaveTestResult HelperLane_VS_ExpectedResults = HelperLane_CS_ExpectedResults; HelperLaneWaveTestResult HelperLane_PS_ExpectedResults = { // HelperLaneWaveTestResult60 { 0, 1, { 0xB, 0, 0, 0 }, 3, 1, 3, 12, 64, 1, 0, 0, 10, 1, 2, 16, 4 }, // HelperLaneQuadTestResult { 0, 1, 0, 0 }, // HelperLaneWaveTestResult65 { {0xB, 0, 0, 0}, 2, 4, 16, 1, 0, 0 } }; HelperLaneWaveTestResult HelperLane_PSAfterDiscard_ExpectedResults = { // HelperLaneWaveTestResult60 { 0, 1, { 0xA, 0, 0, 0 }, 2, 1, 2, 8, 16, 1, 0, 0, 10, 1, 1, 4, 2 }, // HelperLaneQuadTestResult { 0, 1, 0, 1 }, // HelperLaneWaveTestResult65 { {0xA, 0, 0, 0}, 1, 2, 4, 1, 0, 0 } }; bool HelperLaneResultLogAndVerify(const wchar_t* testDesc, uint32_t expectedValue, uint32_t actualValue) { bool matches = (expectedValue == actualValue); LogCommentFmt(L"%s%s, expected = %u, actual = %u", matches ? L" - " : L"FAILED: ", testDesc, expectedValue, actualValue); return matches; } bool HelperLaneResultLogAndVerify(const wchar_t* testDesc, XMUINT4 expectedValue, XMUINT4 actualValue) { bool matches = (expectedValue.x == actualValue.x && expectedValue.y == actualValue.y && expectedValue.z == actualValue.z && expectedValue.w == actualValue.w); LogCommentFmt(L"%s%s, expected = (0x%X,0x%X,0x%X,0x%X), actual = (0x%X,0x%X,0x%X,0x%X)", matches ? L" - " : L"FAILED: ", testDesc, expectedValue.x, expectedValue.y, expectedValue.z, expectedValue.w, actualValue.x, actualValue.y, actualValue.z, actualValue.w); return matches; } bool VerifyHelperLaneWaveResults(ExecutionTest::D3D_SHADER_MODEL sm, HelperLaneWaveTestResult& testResults, HelperLaneWaveTestResult& expectedResults, bool verifyQuads) { bool passed = true; { HelperLaneWaveTestResult60& tr60 = testResults.sm60; HelperLaneWaveTestResult60& tr60exp = expectedResults.sm60; passed &= HelperLaneResultLogAndVerify(L"WaveActiveAnyTrue(IsHelperLane())", tr60exp.anyTrue, tr60.anyTrue); passed &= HelperLaneResultLogAndVerify(L"WaveActiveAllTrue(!IsHelperLane())", tr60exp.allTrue, tr60.allTrue); passed &= HelperLaneResultLogAndVerify(L"WaveActiveBallot(true) has exactly 3 bits set", tr60exp.ballot, tr60.ballot); passed &= HelperLaneResultLogAndVerify(L"!WaveReadLaneFirst(IsHelperLane()) && WaveIsFirstLane() in a waterfall loop", tr60exp.waterfallLoopCount, tr60.waterfallLoopCount); passed &= HelperLaneResultLogAndVerify(L"WaveActiveAllEqual(IsHelperLane())", tr60exp.allEqual, tr60.allEqual); passed &= HelperLaneResultLogAndVerify(L"WaveActiveCountBits(true)", tr60exp.countBits, tr60.countBits); passed &= HelperLaneResultLogAndVerify(L"WaveActiveSum(4)", tr60exp.sum, tr60.sum); passed &= HelperLaneResultLogAndVerify(L"WaveActiveProduct(4)", tr60exp.product, tr60.product); passed &= HelperLaneResultLogAndVerify(L"WaveActiveBitAnd(!IsHelperLane())", tr60exp.bitAnd, tr60.bitAnd); passed &= HelperLaneResultLogAndVerify(L"WaveActiveBitOr(IsHelperLane())", tr60exp.bitOr, tr60.bitOr); passed &= HelperLaneResultLogAndVerify(L"WaveActiveBitXor(IsHelperLane())", tr60exp.bitXor, tr60.bitXor); passed &= HelperLaneResultLogAndVerify(L"WaveActiveMin(IsHelperLane() ? 1 : 10)", tr60exp.min, tr60.min); passed &= HelperLaneResultLogAndVerify(L"WaveActiveMax(IsHelperLane() ? 10 : 1)", tr60exp.max, tr60.max); passed &= HelperLaneResultLogAndVerify(L"WavePrefixCountBits(1)", tr60exp.prefixCountBits, tr60.prefixCountBits); passed &= HelperLaneResultLogAndVerify(L"WavePrefixProduct(4)", tr60exp.prefixProduct, tr60.prefixProduct); passed &= HelperLaneResultLogAndVerify(L"WavePrefixSum(2)", tr60exp.prefixSum, tr60.prefixSum); } if (verifyQuads) { HelperLaneQuadTestResult& quad_tr = testResults.sm60_quad; HelperLaneQuadTestResult& quad_tr_exp = expectedResults.sm60_quad; passed &= HelperLaneResultLogAndVerify(L"QuadReadAcross* - lane 3 / pixel (1,1) - IsHelperLane()", quad_tr_exp.is_helper_this, quad_tr.is_helper_this); passed &= HelperLaneResultLogAndVerify(L"QuadReadAcross* - lane 2 / pixel (0,1) - IsHelperLane()", quad_tr_exp.is_helper_across_X, quad_tr.is_helper_across_X); passed &= HelperLaneResultLogAndVerify(L"QuadReadAcross* - lane 1 / pixel (1,0) - IsHelperLane()", quad_tr_exp.is_helper_across_Y, quad_tr.is_helper_across_Y); passed &= HelperLaneResultLogAndVerify(L"QuadReadAcross* - lane 0 / pixel (0,0) - IsHelperLane()", quad_tr_exp.is_helper_across_Diag, quad_tr.is_helper_across_Diag); } if (sm >= D3D_SHADER_MODEL_6_5) { HelperLaneWaveTestResult65& tr65 = testResults.sm65; HelperLaneWaveTestResult65& tr65exp = expectedResults.sm65; passed &= HelperLaneResultLogAndVerify(L"WaveMatch(true) has exactly 3 bits set", tr65exp.match, tr65.match); passed &= HelperLaneResultLogAndVerify(L"WaveMultiPrefixCountBits(1, no_masked_bits)", tr65exp.mpCountBits, tr65.mpCountBits); passed &= HelperLaneResultLogAndVerify(L"WaveMultiPrefixSum(2, no_masked_bits)", tr65exp.mpSum, tr65.mpSum); passed &= HelperLaneResultLogAndVerify(L"WaveMultiPrefixProduct(4, no_masked_bits)", tr65exp.mpProduct, tr65.mpProduct); passed &= HelperLaneResultLogAndVerify(L"WaveMultiPrefixAnd(IsHelperLane() ? 0 : 1, no_masked_bits)", tr65exp.mpBitAnd, tr65.mpBitAnd); passed &= HelperLaneResultLogAndVerify(L"WaveMultiPrefixOr(IsHelperLane() ? 1 : 0, no_masked_bits)", tr65exp.mpBitOr, tr65.mpBitOr); passed &= HelperLaneResultLogAndVerify(L"verify WaveMultiPrefixXor(IsHelperLane() ? 1 : 0, no_masked_bits)", tr65exp.mpBitXor, tr65.mpBitXor); } return passed; } void CleanUAVBuffer0Buffer(LPCSTR BufferName, std::vector& Data, st::ShaderOp* pShaderOp) { UNREFERENCED_PARAMETER(pShaderOp); VERIFY_IS_TRUE(0 == _stricmp(BufferName, "UAVBuffer0")); std::fill(Data.begin(), Data.end(), (BYTE)0xCC); } // // The IsHelperLane test that use Wave intrinsics to verify IsHelperLane() and Wave operations on active lanes. // // Runs with shader models 6.0, 6.5 and 6.6 to test both the HLSL built-in IsHelperLane fallback // function (sm <= 6.5) and the IsHelperLane intrisics (sm >= 6.6) and the shader model 6.5 wave intrinsics (sm >= 6.5). // // For compute and vertex shaders IsHelperLane() always returns false and might be optimized away in the front end. // However it can be exposed to the driver in CS/VS through an exported function in a library so drivers need // to be prepared to handle it. For this reason the test is compiled with disabled optimizations (/Od). // The tests are also validating that wave intrinsics operate correctly with 3 threads in a CS or 3 vertices // in a VS where the rest of the lanes in the wave are not active (dead lanes). // TEST_F(ExecutionTest, HelperLaneTestWave) { WEX::TestExecution::SetVerifyOutput verifySettings(WEX::TestExecution::VerifyOutputSettings::LogOnlyFailures); CComPtr pStream; ReadHlslDataIntoNewStream(L"ShaderOpArith.xml", &pStream); std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); st::ShaderOp* pShaderOp = ShaderOpSet->GetShaderOp("HelperLaneTestWave"); #ifdef ISHELPERLANE_PLACEHOLDER LPCSTR args = "/Od -DISHELPERLANE_PLACEHOLDER"; #else LPCSTR args = "/Od"; #endif if (args[0]) { for (st::ShaderOpShader& S : pShaderOp->Shaders) S.Arguments = args; } bool testPassed = true; D3D_SHADER_MODEL TestShaderModels[] = { D3D_SHADER_MODEL_6_0, D3D_SHADER_MODEL_6_5, D3D_SHADER_MODEL_6_6 }; for (unsigned i = 0; i < _countof(TestShaderModels); i++) { D3D_SHADER_MODEL sm = TestShaderModels[i]; LogCommentFmt(L"\r\nVerifying IsHelperLane using Wave intrinsics in shader model 6.%1u", ((UINT)sm & 0x0f)); bool smPassed = true; CComPtr pDevice; if (!CreateDevice(&pDevice, sm, false /* skipUnsupported */)) { continue; } if (!DoesDeviceSupportWaveOps(pDevice)) { LogCommentFmt(L"Device does not support wave operations in shader model 6.%1u", ((UINT)sm & 0x0f)); continue; } if (sm >= D3D_SHADER_MODEL_6_5) { // Reassign shader stages to 6.5 versions LPCSTR CS65 = nullptr, VS65 = nullptr, PS65 = nullptr; for (st::ShaderOpShader& S : pShaderOp->Shaders) { if (!strcmp(S.Name, "CS65")) CS65 = S.Name; if (!strcmp(S.Name, "VS65")) VS65 = S.Name; if (!strcmp(S.Name, "PS65")) PS65 = S.Name; } pShaderOp->CS = CS65; pShaderOp->VS = VS65; pShaderOp->PS = PS65; } const unsigned CS_INDEX = 0, VS_INDEX = 0, PS_INDEX = 1, PS_INDEX_AFTER_DISCARD = 2; // Test Compute shader { std::shared_ptr test = RunShaderOpTestAfterParse(pDevice, m_support, "HelperLaneTestWave", CleanUAVBuffer0Buffer, ShaderOpSet); MappedData uavData; test->Test->GetReadBackData("UAVBuffer0", &uavData); HelperLaneWaveTestResult* pTestResults = (HelperLaneWaveTestResult*)uavData.data(); LogCommentFmt(L"\r\nCompute shader"); smPassed &= VerifyHelperLaneWaveResults(sm, pTestResults[CS_INDEX], HelperLane_CS_ExpectedResults, true); } // Test Vertex + Pixel shader { pShaderOp->CS = nullptr; std::shared_ptr test = RunShaderOpTestAfterParse(pDevice, m_support, "HelperLaneTestWave", CleanUAVBuffer0Buffer, ShaderOpSet); MappedData uavData; test->Test->GetReadBackData("UAVBuffer0", &uavData); HelperLaneWaveTestResult* pTestResults = (HelperLaneWaveTestResult*)uavData.data(); LogCommentFmt(L"\r\nVertex shader"); smPassed &= VerifyHelperLaneWaveResults(sm, pTestResults[VS_INDEX], HelperLane_VS_ExpectedResults, false); LogCommentFmt(L"\r\nPixel shader"); smPassed &= VerifyHelperLaneWaveResults(sm, pTestResults[PS_INDEX], HelperLane_PS_ExpectedResults, true); LogCommentFmt(L"\r\nPixel shader with discarded pixel"); smPassed &= VerifyHelperLaneWaveResults(sm, pTestResults[PS_INDEX_AFTER_DISCARD], HelperLane_PSAfterDiscard_ExpectedResults, true); MappedData renderData; test->Test->GetReadBackData("RTarget", &renderData); const uint32_t* pPixels = (uint32_t*)renderData.data(); UNREFERENCED_PARAMETER(pPixels); } testPassed &= smPassed; } VERIFY_ARE_EQUAL(testPassed, true); } #ifndef _HLK_CONF static void WriteReadBackDump(st::ShaderOp *pShaderOp, st::ShaderOpTest *pTest, char **pReadBackDump) { std::stringstream str; unsigned count = 0; for (auto &R : pShaderOp->Resources) { if (!R.ReadBack) continue; ++count; str << "Resource: " << R.Name << "\r\n"; // Find a descriptor that can tell us how to dump this resource. bool found = false; for (auto &Heaps : pShaderOp->DescriptorHeaps) { for (auto &D : Heaps.Descriptors) { if (_stricmp(D.ResName, R.Name) != 0) { continue; } found = true; if (_stricmp(D.Kind, "UAV") != 0) { str << "Resource dump for kind " << D.Kind << " not implemented yet.\r\n"; break; } if (D.UavDesc.ViewDimension != D3D12_UAV_DIMENSION_BUFFER) { str << "Resource dump for this kind of view dimension not implemented yet.\r\n"; break; } // We can map back to the structure if a structured buffer via the shader, but // we'll keep this simple and simply dump out 32-bit uint/float representations. MappedData data; pTest->GetReadBackData(R.Name, &data); uint32_t *pData = (uint32_t *)data.data(); size_t u32_count = ((size_t)R.Desc.Width) / sizeof(uint32_t); for (size_t i = 0; i < u32_count; ++i) { float f = *(float *)pData; str << i << ": 0n" << *pData << " 0x" << std::hex << *pData << std::dec << " " << f << "\r\n"; ++pData; } break; } if (found) break; } if (!found) { str << "Unable to find a view for the resource.\r\n"; } } str << "Resources read back: " << count << "\r\n"; std::string s(str.str()); CComHeapPtr pDump; if (!pDump.Allocate(s.size() + 1)) throw std::bad_alloc(); memcpy(pDump.m_pData, s.data(), s.size()); pDump.m_pData[s.size()] = '\0'; *pReadBackDump = pDump.Detach(); } // This is the exported interface by use from HLSLHost.exe. // It's exclusive with the use of the DLL as a TAEF target. extern "C" { __declspec(dllexport) HRESULT WINAPI InitializeOpTests(void *pStrCtx, st::OutputStringFn pOutputStrFn) { HRESULT hr = EnableExperimentalShaderModels(); if (FAILED(hr)) { pOutputStrFn(pStrCtx, L"Unable to enable experimental shader models.\r\n."); } return S_OK; } __declspec(dllexport) HRESULT WINAPI RunOpTest(void *pStrCtx, st::OutputStringFn pOutputStrFn, LPCSTR pText, ID3D12Device *pDevice, ID3D12CommandQueue *pCommandQueue, ID3D12Resource *pRenderTarget, char **pReadBackDump) { HRESULT hr; if (pReadBackDump) *pReadBackDump = nullptr; st::SetOutputFn(pStrCtx, pOutputStrFn); CComPtr pInfoQueue; CComHeapPtr pDump; bool FilterCreation = false; if (SUCCEEDED(pDevice->QueryInterface(&pInfoQueue))) { // Creation is largely driven by inputs, so don't log create/destroy messages. pInfoQueue->PushEmptyStorageFilter(); pInfoQueue->PushEmptyRetrievalFilter(); if (FilterCreation) { D3D12_INFO_QUEUE_FILTER filter; D3D12_MESSAGE_CATEGORY denyCategories[] = { D3D12_MESSAGE_CATEGORY_STATE_CREATION }; ZeroMemory(&filter, sizeof(filter)); filter.DenyList.NumCategories = _countof(denyCategories); filter.DenyList.pCategoryList = denyCategories; pInfoQueue->PushStorageFilter(&filter); } } else { pOutputStrFn(pStrCtx, L"Unable to enable info queue for D3D.\r\n."); } try { dxc::DxcDllSupport m_support; m_support.Initialize(); const char *pName = nullptr; CComPtr pStream = SHCreateMemStream((BYTE *)pText, (UINT)strlen(pText)); std::shared_ptr ShaderOpSet = std::make_shared(); st::ParseShaderOpSetFromStream(pStream, ShaderOpSet.get()); st::ShaderOp *pShaderOp; if (pName == nullptr) { if (ShaderOpSet->ShaderOps.size() != 1) { pOutputStrFn(pStrCtx, L"Expected a single shader operation.\r\n"); return E_FAIL; } pShaderOp = ShaderOpSet->ShaderOps[0].get(); } else { pShaderOp = ShaderOpSet->GetShaderOp(pName); } if (pShaderOp == nullptr) { std::string msg = "Unable to find shader op "; msg += pName; msg += "; available ops"; const char sep = ':'; for (auto &pAvailOp : ShaderOpSet->ShaderOps) { msg += sep; msg += pAvailOp->Name ? pAvailOp->Name : "[n/a]"; } CA2W msgWide(msg.c_str()); pOutputStrFn(pStrCtx, msgWide); return E_FAIL; } std::shared_ptr test = std::make_shared(); test->SetupRenderTarget(pShaderOp, pDevice, pCommandQueue, pRenderTarget); test->SetDxcSupport(&m_support); test->RunShaderOp(pShaderOp); test->PresentRenderTarget(pShaderOp, pCommandQueue, pRenderTarget); pOutputStrFn(pStrCtx, L"Rendering complete.\r\n"); if (!pShaderOp->IsCompute()) { D3D12_QUERY_DATA_PIPELINE_STATISTICS stats; test->GetPipelineStats(&stats); wchar_t statsText[400]; StringCchPrintfW(statsText, _countof(statsText), L"Vertices/primitives read by input assembler: %I64u/%I64u\r\n" L"Vertex shader invocations: %I64u\r\n" L"Geometry shader invocations/output primitive: %I64u/%I64u\r\n" L"Primitives sent to rasterizer/rendered: %I64u/%I64u\r\n" L"PS/HS/DS/CS invocations: %I64u/%I64u/%I64u/%I64u\r\n", stats.IAVertices, stats.IAPrimitives, stats.VSInvocations, stats.GSInvocations, stats.GSPrimitives, stats.CInvocations, stats.CPrimitives, stats.PSInvocations, stats.HSInvocations, stats.DSInvocations, stats.CSInvocations); pOutputStrFn(pStrCtx, statsText); } if (pReadBackDump) { WriteReadBackDump(pShaderOp, test.get(), &pDump); } hr = S_OK; } catch (const CAtlException &E) { hr = E.m_hr; } catch (const std::bad_alloc &) { hr = E_OUTOFMEMORY; } catch (const std::exception &) { hr = E_FAIL; } // Drain the device message queue if available. if (pInfoQueue != nullptr) { wchar_t buf[200]; StringCchPrintfW(buf, _countof(buf), L"NumStoredMessages=%u limit/discarded by limit=%u/%u " L"allowed/denied by storage filter=%u/%u " L"NumStoredMessagesAllowedByRetrievalFilter=%u\r\n", (unsigned)pInfoQueue->GetNumStoredMessages(), (unsigned)pInfoQueue->GetMessageCountLimit(), (unsigned)pInfoQueue->GetNumMessagesDiscardedByMessageCountLimit(), (unsigned)pInfoQueue->GetNumMessagesAllowedByStorageFilter(), (unsigned)pInfoQueue->GetNumMessagesDeniedByStorageFilter(), (unsigned)pInfoQueue->GetNumStoredMessagesAllowedByRetrievalFilter()); pOutputStrFn(pStrCtx, buf); WriteInfoQueueMessages(pStrCtx, pOutputStrFn, pInfoQueue); pInfoQueue->ClearStoredMessages(); pInfoQueue->PopRetrievalFilter(); pInfoQueue->PopStorageFilter(); if (FilterCreation) { pInfoQueue->PopStorageFilter(); } } if (pReadBackDump) *pReadBackDump = pDump.Detach(); return hr; } } #endif // MARKER: ExecutionTest/DxilConf Shared Implementation End // Do not remove the line above - it is used by TranslateExecutionTest.py